双能量单层螺旋CT物品机的图像重建方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,面向公共交通的恐怖活动、毒品走私等恶性事件在全球范围内不断发生,公共安全成为世界各国关注的焦点,安检需求逐年提升。CT型行李物品机是爆炸物和毒品的有效检测设备,而单层螺旋CT设备由于其快速的三维检查能力,紧凑的设备体积和相对较低的成本,得到了越来越多的关注,并具有良好的市场前景。本文针对这类产品所涉及的核心重建算法进行了系统的研究,主要研究内容为双能量单层螺旋CT重建算法,以及用双能DR图像对CT图像进行修正的方法。
     本文研究了目前单层螺旋CT型物品机的检查流程和重建方式,分析了其中存在的z方向分辨率低和近似重建产生的层间螺旋伪影等问题,为解决这些问题,提出了新的应用于单层螺旋双能CT的重建算法。
     1.针对单层螺旋CT提出了ART+3DTV重建算法。通过对ART+TV方法进行推广,利用CT数据在三维方向的连续性,在ART循环中引入3DTV最小化进行约束,使单层36°投影的有限角问题能够快速收敛,减少了每层重建所需的投影数据,使可重建层数增多到原来的5-10倍,并且大大减少了层间螺旋伪影。
     2.针对实际物品机系统中双能CT+双能DR结合的扫描方式,提出了利用DR投影修正CT重建结果的方法。该方法利用ART重建过程使两套数据集在几何上相容,又利用康普顿-光电效应方法对双能投影数据进行分解,消除了不同的采集系统能谱相应不同的影响,使两套数据在物理意义上统一。DR对CT重建结果进行修正后,重建精度明显提高。
     此外,由于该算法计算量巨大,需要通过算法并行化使重建速度接近实用。本文利用GPU实现了对新的重建算法进行了加速,最终重建256×256×256的行李数据材料信息的总时间为46秒,已能够适用于算法调试工作,并满足一定的检查通过率。
In recent years, public terrorism, drug smuggling and food safety affairs occurred frequently, which turns public security into an issue of worldwide concern and in turn, places a higher expectation to the security inspection. CT baggage scanning system is effective to detect the explosive and drug, and dual energy single-slice helical CT (SHCT) has been widely adopted. With its high scanning speed, compact design and low cost, single-slice helical CT will have a good market prospect. This paper will make a systematic study on the reconstruction algorithms of SHCT and focus on high pitch dual energy SHCT reconstruction algorithm and a correction method with dual energy DR image used on the CT image.
     This paper studies the scanning procedure and reconstruction method of the present SHCT, analyzes the problems of low resolution of Z direction and the helical artifact between layers during approximate reconstruction. In order to solve these problems, this paper proposes a new reconstruction algorithm for single-slice dual energy CT.
     1. This paper proposes the ART+3DTV reconstruction algorithm for single-slice helical CT. By studying the ART+TV algorithm used on limit-angle problem, this paper introduces 3DTV minimization limitation into the ART iteration, in order to solve the special limit-angle problem, in which each slice contains 36 degree projections. This method reduces the required data during reconstruction, accelerates the convergence of the iteration, increases the reconstruction slices to 5-10 times and reduces the artifact between slices.
     2. This paper proposes CT image correction method with DR image based on dual energy CT and DR scanning. This method eliminates the different effect of different systems by making the two data system geometrically compatible and using Compton-Photoelectric effect to resolute the dual energy image data, so as to make the two data system physically unified. After DR correction, the CT reconstruction result realizes higher accuracy.
     In addition, this algorithm needs huge calculation, so we need parallel algorithm to make it practical. And this paper uses GPU to accelerate the reconstruction procedure, and the acclerated algorithm can reconstruct the metarial information of a 256×256×256 baggage data in 46 seconds, which can completely meet the requirement of algorithm research and reach the demanded inspection throughput.
引文
[1] Singh S, Singh M. Explosives detection systems (EDS) for aviation security. Signal Process, 2003, 83(1):31-55.
    [2]何山.爆炸物探测技术.警察技术, 2007, 6:63-64.
    [3] Novakoff A K. FAA bulk technology overview for explosives detection. Proceedings of SPIE Applications of Signal and Image Processing in Explosives Detection Systems, Boston, 1993, 1824:2-12.
    [4]唐杰.物品机锥束螺旋CT图像重建算法研究[博士学位论文].清华大学, 2007.
    [5]汤昕烨,张丽,陈志强.双能DR物质识别算法在CT成像系统中的应用.中国体视学与图像分析, 2007, 12(2):88-92.
    [6]张国伟.双能X射线成像算法及应用研究[博士学位论文].清华大学, 2008.
    [7]蔡建新,包尚联,王卫东.双能X线骨密度仪的原理和结构.核电子学与探测技术, 1996, 16(6):424-426.
    [8]邓振生,贺洪德,张锋,等.双能量X线图像处理技术中射束硬化补偿算法的研究.北京生物医学工程, 2005, 24(3):176-179.
    [9]常冬梅,郭红霞,林东生.双能γ射线穿透法测量土壤密度和水含量.核电子学与探测技术, 1998, 18(5):375-378.
    [10]侯朝勤,龚亚林,张伟.铁矿浆品位在线分析系统的研制.同位素, 2003, 16(3-4):129-133.
    [11]衣宏昌,梁漫春,林谦.基于辐射测量技术的几种煤灰分检测方法的比较.选煤技术, 2004, 2:54-56.
    [12] Wang X W, Li J M, Kang K J, et al. Material discrimination by high-energy X-ray dual-energy imaging. High energy physics and nuclear physics, 2007, 31(11):1076-1081.
    [13]邬小平,陈志强,王学武.双能X射线材料识别技术在大型集装箱检测系统中的应用.核电子学与探测技术, 2005, 25(6):782-784.
    [14] Ogorodnikov S, Petrunin V. Processing of interlaced images in 4-10 MeV dual energy customs system for material recognition. Physical Review Special Topics-Accelerators and Beams, 2002, 5(10):104701.
    [15]邬小平,王学武,谢亚丽.基于贝叶斯决策的双能X射线材料分辨算法研究.中国体视学与图像分析, 2003, 8(3):162-165.
    [16]邬小平.双能X射线材料识别技术研究与应用[硕士学位论文].清华大学, 2004.
    [17] Engler P, Friedman W D. Review of dual-energy computed tomography techniques. Materials Evaluation, 1990, 48(5):623-629.
    [18] Takai M, Kaneko M. Discrimination between thorotrast and iodine contrast medium by means of dual-energy CT scanning. Phys Med Biol, 1984, 29(8):959-967.
    [19] Rao G U, Yaghmai I, Wist A O, et al. Systematic errors in bone-mineral measurements by quantitative computed tomography. Med Phys, 1987, 14(1):62-69.
    [20] Oelckers S, Graeff W. In situ measurement of iron overload in liver tissue by dual-energy methods. Phys Med Biol, 1996, 41(7):1149-1165.
    [21] Coleman A J, Sinclair M. A beam-hardening correction using dual-energy computed tomography. Phys Med Biol, 1985, 30(11):1251-1256.
    [22] Sidky E Y, Zou Y, Pan X. Impact of polychromatic X-ray sources on helical, cone-beam computed tomography and dual-energy methods. Phys Med Biol, 2004, 49(11):2293-2303.
    [23] Kinahan P E, Alessio A M, Fessler J A. Dual energy CT attenuation correction methods for quantitative assessment of response to cancer therapy with PET/CT imaging. Technol Cancer Res T, 2006, 5(4):319-327.
    [24] Gehrke S, Wirth K E. Application of conventional- and dual-energy X-ray tomography in process engineering. IEEE Sens J, 2005, 5(2):183-187.
    [25] Roder F L. Principles, history, and status of dual-energy computerized tomographic explosives detection. Journal of Testing and Evaluation, 1985, 13(3):211-216.
    [26] Ying Z R, Naidu R, Crawford C. Dual energy computed tomography for explosive detection. Journal of X-ray Science and Technology, 2006, 14(4):235-256.
    [27] Ying Z R, Naidu R, Guilbert K, et al. Dual energy volumetric X-ray tomographic sensor for luggage screening. Proceedings of IEEE Sensors Applications Symposium, San Diego, 2007, 1-6.
    [28] Alvarez R, Macovski A. Energy-selective reconstruction in X-ray computerized tomography. Phys Med Biol, 1976, 21(5):733-744.
    [29] Alvarez R. Extraction of energy-dependent information in radiography. California: Stanford University, 1976.
    [30] Kalender W A, Perman W H, Vetter J R, et al. Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys, 1986, 13(3):334-339.
    [31] Lehmann L A, Alvarez R E, Macovski A, et al. Generalized image combinations in dual KVP digital radiography. Med Phys, 1981, 8(5):659-667.
    [32] Goodsitt M M. Beam hardening errors in post-processing dual energy quantitative computed tomography. Med Phys, 1995, 22(7):1039-1047.
    [33] Heismann B J, Leppert J, Stierstorfer K. Density and atomic number measurements with spectral X-ray attenuation method. J Appl Phys, 2003, 94(3):2073-2079.
    [34] GE Security http://www.gesecurity.com
    [35] Reveal Imaging http://www.revealimaging.com/
    [36]安继刚.电离辐射探测器.北京:原子能出版社, 1995.
    [37]吴治华.原子核物理实验方法.北京:原子能出版社, 1997
    [38] Evans R D. The Atomic Nucleus. McGraw-Hill Education, 1955.
    [39] Kak A C, Slaney M. Principles of Computerized Tomography. Piscataway, NJ: IEEE, 1987.
    [40] Zou Y, Pan X, Sidky E Y. Image reconstruction in regions-of-interest from truncated projections in a reduced fan-beam scan. Phys Med Biol, 2005, 50:13-27.
    [41] Feldkamp IA, Davis LC, Kress JW. Practical cone-beam algorithm[J]. Opt Soc Am A, 1984, 1(6): 612.
    [42] Sidky E, Kao C M, Pan X. Effect of the data constraint on few-view, fan-beam CT image reconstruction by TV minimization. Proceedings of the 2006 IEEE Medical Imaging Conference, San Diego, 2006.
    [43] Ruth C, Joseph P M. Estimation of a photon energy spectrum for a computed tomography scanner. Med Phys, 1997, 24(5):695-702.
    [44] Briesmeister J F. MCNPTM. A general Monte Carlo N-Particle transport code, version 4C, LA-13709M-Manual. Los Alamos National Laboratory, 2000.
    [45] Zhang L, Zhang G W, Chen Z Q, et al. X-ray spectrum estimation from transmission measurements using the expectation maximization method. Proceedings of IEEE Medical Imaging Conference, Hawaii, 2007, 3089-3093.
    [46] Hsieh J. Computed Tomography: Principles, Desigh, Artifacts, and Recent Adavnces. Washington: SPIE Press, 2003.
    [47] Wenyuan Bi, Zhiqiang Chen, Li Zhang, Yuxiang Xing. Real-time Visualize Reconstruction Procedure Using CUDA. IEEE Nuclear Science Symposium Conference Record, 2009
    [48] Hubbell J H, Seltzer S M. Tables of X-ray mass attenuation coefficients and mass energy-absorption coefficients. NIST Standard Reference Database 126. http:// physics.nist.gov/PhysRefData/XrayMassCoef/cover.html.
    [49] Berger M J, Hubbell J H, Seltzer S M, et al. XCOM: photon cross sections database. NIST Standard Reference Database 8. http://physics.nist.gov/PhysRefData/Xcom /Text/XCOM.html.
    [50] Zhang G W, Zhang L, Chen Z Q. An H-L curve method for material discrimination of dual energy X-ray inspection systems. Proceedings of IEEE Nuclear Science Symposium, Puerto Rico, 2005, 326-328.
    [51] Gilbert P. Iterative methods for the reconstruction of three dimensional objects from their projections. J Theor Biol, 1972, 36:105-117.
    [52] Herman G T. Image reconstruction from projections: the fundamentals of computerized tomography. New York: Academic, 1980.
    [53] Radon J. Uber die bestimmung von funktionen durch ihre integralwerte langs gewisser mannigfaltigkeiten. Ber Verb Saechs Akad Wiss Leipzig Math Phys Kl, 1917, 69:262-277.
    [54] Tuy H. An inversion formula for cone-beam reconstruction. SIAM J Appl Math, 1983, 43:546-552.
    [55] Katsevich A. An improved exact filtered backprojection algorithm for spiral computed tomography. Adv Appl Math, 2004, 32:681-697.
    [56] Wang G, Vannier M W. Optimal pitch in spiral computed tomography. Med Phys, 1997, 24(10):1635-1639.
    [57] Noo F, Defrise M, Clackdoyle R. Single-slice rebinning method for helical cone-beam CT. Phys Med Biol, 1999, 44:561-570.
    [58] Hsieh J. A general approach to the reconstruction of x-ray helical computed tomography. Med Phys, 1996, 23(2):221-229.
    [59] Wenyuan Bi, Yuxiang Xing, Zhiqiang Chen, Li Zhang. Fast imaging by a single-slice-detector helical CT. IEEE Nuclear Science Symposium Conference Record, 2008: p3330-3333.
    [60]段新辉.高能X射线多视角及双能CT成像方法研究[博士学位论文].清华大学, 2009.
    [61] Cand`es E, Romberg J. l 1-magic, 2007. Available at www.l1-magic.org
    [62] Sidky E, Kao C M, Pan X. Accurate image reconstruction from few-views and limited-angle data in divergent-beam CT. J X Sci Tech, 2006, 14:119-139.
    [63] Natterer F, Wubbeling F. Mathematical Methods in Image Reconstruction. Philadelphia: SIAM, 2001
    [64] NVIDIA Corporation. NVIDIA CUDA Programming Guide. 2009. http://developer.download.nvidia.com/compute/cuda/2_3/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.3.pdf
    [65] NVIDIA Corporation. Tesla C1060 Computing Processor Board. 2009. http://www.nvidia.com/docs/IO/43395/BD-04111-001_v05.pdf
    [66] Mueller K, Yagel R, Wheller J J. A fast and accurate projection algorithm for the Algebraic Reconstruction Technique (ART). Proceedings of the 1998 SPIE Medical Imaging Conference, 1998.
    [67] Mueller K, Yagel R, Cornhill J F. Accelerating the anti-aliased algebraic reconstruction technique (ART) by table-based voxel-backward projection. Proceedings of EMBS’95, 1995:579~580
    [68] Xu F, Mueller K. Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware. IEEE Trans Nucl Sci, 2005, 52(3): 654-63.
    [69] Wenyuan Bi, Zhiqiang Chen, Li Zhang, Yuxiang Xing. Accelerate helical cone-beam CT with graphics hardware. Progress in Biomedical Optics and Imaging - Proceedings of SPIE, Vol.6913.
    [70] Wenyuan Bi, Zhiqiang Chen, Li Zhang, Yuxiang Xing. Real-time Visualize Reconstruction Procedure Using CUDA. IEEE Nuclear Science Symposium Conference Record, 2009
    [71] Wenyuan Bi, Zhiqiang Chen, Li Zhang, Yuxiang Xing Fast Detection of 3D Planes by a Single Slice Detector Helical CT, IEEE Nuclear Science Symposium Conference Record, 2009
    [72] Bian J, Yang K, Packard N, et al. SU-GG-I-21: Image Reconstruction From Sparse Data in Breast CT. Medical Physics, 2008, 35:2647.
    [73] Bornefalk H, Lundqvist M. Dual-energy imaging using a photon counting detector with electronic spectrum-splitting. Proceedings of SPIE Medical Imaging, San Diego, 2006, 6142: 61421H.
    [74]毕文元,陈志强,利用可编程图形处理器加速CT重建与体数据的绘制,第十一届中国体视学与图像分析学术会议论文集,2006.
    [75]毕文元,陈志强,张丽,邢宇翔,基于CUDA的三维重建过程实时可视化方法. CT理论与应用研究,2010,19(2): 21-28.
    [76]边肇祺,张学工.模式识别,第二版.北京:清华大学出版社, 1999.
    [77] Cand`es E, Wakin M, Boyd S. Enhancing sparsity by reweighted L1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5):877–905.
    [78] Cand`es E, Wakin M. An introduction to compressive sampling [a sensing/sampling paradigm that goes against the common knowledge in data acquisition]. IEEE Signal Processing Magazine, 2008, 25(2):21–30.
    [79] Candes E J, Romberg J, Tao T. Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans Info Theor, 2006, 52:489-509.
    [80] Chen G H, Zhuang T, Nett B, et al. A showcase of exact cone-beam image reconstruction algorithms for circle-based trajectories. Proceedings of Fully Three-Dimensional Image Reconstruction Meeting in Radiology and Nuclear Medicine, Salt Lake City, 2005:295-299.
    [81]蔡大用,白峰杉.现代科学计算.北京:科学出版社, 2001.
    [82] Dai ZS, Chen ZQ, Zhang L, et al. Accelerated 3D T-FDK reconstruction algorithm using the commodity graphics hardware. Journal of Tsinghua University, 2007, 46: 077004.
    [83] Defrise M, Clack R. A cone-beam reconstruction algorithm using shift-invariant filtering and cone-beam backprojection. IEEE Transactions on Medical Imaging, 1994, 13 (1):186~195
    [84] Engel K, Kraus M, Ertl T. High-quality pre-integrated volume rendering using hardware-accelerated pixel shading[C] Siggraph workshop on Graphics hardware, 2001: 9-16.
    [85]傅健,路宏年,龚磊.锥束射线三维大视场工业CT成像方法研究.光学技术, 2006, 32(2):209-212.
    [86]傅健,路宏年.工业CT半扫描成像技术.北京航空航天大学学报, 2005, 31(9):966-969.
    [87] Gao H, Zhang L, Xing Y, et al. Volumetric imaging from a multisegment straight-line trajectory and a practical reconstruction algorithm. Optical Engineering, 2007, 46:077004.
    [88]高河伟.基于直线轨迹扫描的X射线断层成像系统及重建方法研究[博士学位论文].清华大学, 2008.
    [89] Gordon R, Bender R, Herman G T. Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J Teor Biol, 1970, 29:471-481.
    [90] Gu J, Zhang L, Yu G, et al. X-ray CT metal artifacts reduction through curvature based sinogram inpainting. Journal of X-Ray Science and Technology, 2006, 14(2):73–82.
    [91] Heffernan P B, Robb R A. Image reconstruction from incomplete projection data: Iterative reconstruction-reprojection techniques. IEEE Trans Biomed Eng, 1983, BME-30:838-841.
    [92] Kachelrie? M, Knaup M and Bockenbach. Hyperfast perspective cone-beam backprojection. IEEE Med. Imaging Conf. Rec.(2006)
    [93] Kachelrie? M, Knaup M, Bockenbach O. Hyper fast perspective cone-beam back projection. IEEE Med Imaging Conf Rec, 2006.
    [94] Klaus Engel, Martin Kraus, Thomas Ertl. High-Quality Pre-Integrated Volume Rendering Using Hardware-Accelerated Pixel Shading. Siggraph 2003
    [95] Kudo H, Noo F, Defrise M, et al. New super-short-scan algorithms for fan-beam and cone-beam reconstruction. Proceedings of the 2002 IEEE Medical Imaging Conference. 2002:902-906.
    [96] Kudo H, Saito T. Helical-scan computed tomography using cone-beam projections. Santa Fe, NM, USA: IEEE 1991.
    [97] Kudo H, Saito T. Helical-scan computed tomography using cone-beam projections. IEEE NSS-MIC Conference Record, 1991: 1958-1962.
    [98] LaRoque S, Sidky E, Pan X. Accurate image reconstruction from sparse data in diffraction tomography using a total variation minimization algorithm. Proceedings ofProceedings of SPIE, volume 6513, 2007. 651302.
    [99] Li L, Kang K J, Chen Z Q, et al. The FDK algorithm with an expanded definition domain for cone-beam reconstruction preserving oblique line integrals. J X Ray Sci Tech, 2006, 14(4): 217-234.
    [100]李亮. CT投影变换理论及锥束重建方法研究[博士学位论文].清华大学, 2007.
    [101]李庆扬,关治,白峰杉.数值计算原理.北京:清华大学出版社, 2000.
    [102] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. E. Haeberli. Fast shadows and lighting effects using texture mapping. Computer Graphics Proceedings of SIGGRAPH’92, vol. 26, 1992: 249~252
    [103] McCullough E C. Photon attenuation in computed tomography. Med Phys, 1975, 2(6): 307-320.
    [104] Mueller K, Chang J, Amols H, et al. Cone-beam computed tomography (CT) for amegavoltage linear accelerator (LINAC) using an electronic portal imaging device (EPID) and the algebraic reconstruction technique (ART). In World Congress on Medical Physics and Biomedical Engineering, 2000.
    [105] Mueller K, Xu F, Neophytou N. Why do commodity graphics hardware boards (GPUs) work so well for acceleration of computed tomography. SPIE Electronic Imaging Computational Imaging, 2007.
    [106] Mueller K, Xu F. Practical considerations for GPU accelerated CT. IEEE Int Symp Biomed Imaging, 2006: 1184-1187.
    [107] Mueller K, Yagel R, Cornhill J F. The weighted distance scheme: a globally optimizing projection ordering method for the algebraic reconstruction technique (ART). IEEE Transactions on Medical Imaging, 1997, 16 (2):223~230
    [108] Mueller K, Yagel R. On the use of graphics hardware to accelerate algebraic reconstruction methods. Proc. 1999 SPIE Medical Imaging, 1999: 3659~3662
    [109] Mueller K, Yagel R. Rapid 3-D cone-beam reconstruction with the simultaneous algebraic reconstruction technique (SART) using 2-D texture mapping hardware. IEEE Transactions on Medical Imaging. 2000, 19 (12): 1227~1237
    [110] Worldwide Phantom Database of IMP. Website of Institute of Medical Physics, University Erlangen. http://www.imp.uni-erlangen.de/phantoms/thorax/thorax.htm
    [111] P. Viola, M. Jones, and D. Snow. Detecting pedestrians using patterns of motion and appearance. IEEE International Conference on Computer Vision (ICCV), pp. 734-741, 2003.
    [112] Pan X, Zou Y, Xia D. Image reconstruction in peripheral and central regions-of-interest and data redundancy. Med Phys, 2005, 32:673-684.
    [113] Panin V, Zeng G, Gullberg G. Total variation regulated EM algorithm [SPECTreconstruction]. IEEE Transactions on Nuclear Science, 1999, 46(6):2202–2210.
    [114] Parker D L. Optimal short scan convolution reconstruction for fan-beam CT. Med Phys, 1982, 9(2):254-257.
    [115] Prasad S G, Parthasaradhi K, Bloomer W D. Effective atomic numbers of composite materials for total and partial interaction processes for photons, electrons, and protons. Med Phys, 1997, 24(6):883-885.
    [116] Ramtin Shams, R.A.Kennedy“Efficient Histogram Algorithms for NVIDIA CUDA compatible devices”ICSPCS 2007
    [117] Shams R, Kennedy R. Efficient histogram algorithms for NVIDIA CUDA compatible devices. ICSPCS, 2007.
    [118] Shepp L A, Logan B F. The Fourier reconstruction of a head section. IEEE Trans Nucl Sci, 1974, NS-21:21-43.
    [119] Shi X H. Improving object classification in X-ray luggage inspection. Blacksburg: Virginia Polytechnic Institute and State University, 2000.
    [120] Sidky E Y, Yu L, Pan X, et al. A robust method of X-ray source spectrum estimation from transmission measurements: Demonstrated on computer simulated, scatter-free transmission data. J Appl Phys, 2005, 97:124701.
    [121] Tang J, Zhang L, Chen ZQ, et al. A BPF-type algorithm for CT with a curved PI detector. Physics in Medicine and Biology, 2006, 51: N287-N293.
    [122] Turbell H. Cone-beam reconstruction using filtered backprojection [PhD Thesis]. Linkoping University, 2001.
    [123] Wang G, Frei T, Vannier M. Fast iterative algorithm for metal artifact reduction in X-ray CT. Academic Radiology, 2000, 7(8):607–614.
    [124] Wang G, Lin TH, Cheng PC, et al. General cone-beam reconstruction algorith. IEEE Transactions on Medical Imaging, 1993, 12(3): 486.
    [125] Wang G, Lin TH, Cheng PC, Shinozaki, Kim H. Scanning cone-beam reconstruction algorithm for X-ray microtomography. Proc. SPIE. 1556, 1991: 99~113
    [126] Wang G, Lin TH, Cheng PC, Shinozaki. A general cone-beam reconstruction algorithm . IEEE Trans. on Medical Imaging, 1993, 12(3): 486~495
    [127] Wang G, Liu Y, Liu T H, Cheng P C. Half-scan cone-beam x-ray microtomography formula. J Scanning Microscopy, 1994, 16: 216~220
    [128] Wang G, Snyder D, O’Sullivan J, et al. Iterative deblurring for CT metal artifact reduction.IEEE transactions on medical imaging, 1996, 15(5):657–664.
    [129]王琪,陈志强,邬小平. X射线安全检查技术综述. CT理论与应用研究, 2004, 13(1):32-37.
    [130]王旭.基于通用PC显卡的大型工业CT重建的硬件加速:[硕士学位论文].清华大学,2004
    [131]王志明,张丽,王丽君.基于单程分裂与归并图像分割的集装箱号识别.中国图象图形学报, 2007, 12(003):450–455.
    [132]肖永顺.大型工业CT的快速迭代重建算法及可视化技术研究:[博士学位论文].清华大学,2004
    [133] Yan X, Leahy R M. Cone beam tomography with circular, elliptical and spiral obit. Physics in Medicine and Biology, 1992, 37(3): 493.
    [134] Yang N C, Leichner P K, Hawkins W G. Effective atomic numbers for low-energy total photon interactions in human tissues. Med Phys, 1987, 14(5):759-766.
    [135] Ying Z R, Naidu R, Crawford C. Dual energy computed tomography for explosive detection. Journal of X-ray Science and Technology, 2006, 14(4):235-256.
    [136] Ying Z R, Naidu R, Guilbert K, et al. Dual energy volumetric X-ray tomographic sensor for luggage screening. Proceedings of IEEE Sensors Applications Symposium, San Diego, 2007, 1-6.
    [137] Zhang L, Zhang G W, Chen Z Q, et al. X-ray spectrum estimation from transmission measurements using the expectation maximization method. Proceedings of IEEE Medical Imaging Conference, Hawaii, 2007, 3089-3093.
    [138] Zhao X, Bian J, Emil S. Y, et al. GPU-based 3D cone-beam CT image reconstruction: application to micro CT. Nuclear Science Symposium Conference Record. IEEE Volume 5, 3922– 3925, 2007.
    [139] Zou Y, Pan X, Sidky E Y. Theory and algorithms for image reconstruction on chords and within regions of interest. J Opt Soc Am, 2005, A22: 2372-2384.
    [140]曾杰.基于SVM的双能辐射图像处理方法研究[硕士学位论文].清华大学, 2005.
    [141]张国伟,张丽,陈志强.双能X射线检查系统的Monte Carlo模拟.清华大学学报:自然科学版, 2006, 46(6):813-816.
    [142]赵星,胡晶晶,潘晓川,张朋.一种新的基于GPU实现的锥束CT正投影算法.电子学报. 2009 37(6)
    [143]庄天戈. CT原理与算法.上海:上海交通大学出版社,1992

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700