高密度下行床—提升管组合反应器实验研究和反应流模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面对低碳烯烃不断增长的市场需求以及车用燃料日益提高的环保标准,传统的提升管催化裂化过程难以适应多产低碳烯烃兼顾清洁汽油生产的炼化一体化需求。在清华大学反应工程研究组长期的下行床和提升管研究基础上,本文提出多区反应控制的新型下行床-提升管组合反应器设计思想:利用下行床平推流的特性进行短停留时间、高苛刻度操作达到多产低碳烯烃目的;提升管采取低温、长停留时间操作以促进氢转移反应降低汽油产品的烯烃含量。
     构建了大型冷模装置,证明了上述概念设计的可操作性。系统的颗粒循环量可达400 kg/m2/s以上,下行床完全发展段可实现固含率达5%的高密度操作。建立了全床压力平衡模型,分析了系统内不同组件导致的压降随设计和操作条件的变化,以及在整个压力平衡中的贡献,与实验数据可较好地吻合。进一步建立了耦合反应-扩散方程、流体力学方程、传热方程、集总动力学的二维反应器工程模型,成功预测了提升管、下行床和不同方式的组合反应器的催化裂化行为,结果表明:相比于提升管,下行床可以更好地控制反应深度以增大中间产物的选择性,在高剂油比时更为显著。将二者优势相结合,可实现催化裂化过程多产低碳烯烃兼顾降低汽油烯烃含量的炼化一体化要求。
     为深化气固反应流机理研究,建立了CFD-DEM跨尺度反应流模型,考虑基于颗粒尺度的流动、传热、催化剂行为以及基于连续介质尺度的气相反应行为,成功地瞬态模拟了提升管和下行床用于催化裂化过程所不同的反应器特性,在广泛的剂油比下比较了提升管和下行床反应器的催化裂化反应行为,证明了下行床平推流流型对催化裂化过程的重要性。模拟结果与文献报道吻合较好。
     为实现复杂多相流的无干扰流场测试技术,从理论角度出发,提出并建立了一维轴对称X射线CT技术和快速X射线CT技术的新方法,通过实验不同层次地验证了技术的可行性和先进性,为X射线CT技术用于多相流实验研究乃至工业应用提供了新的解决方案。
With the growing demand on the production of ethylene and propylene as well as the environmental concerns on the cleaner fuels for automobile, conventional fluid catalytic cracking (FCC) riser reactors can hardly facilitate the multifunctional purpose for the integration of refinery and petrochemical processes. A multi-zone reactor design, i.e., a coupled downer-to-riser reactor (DTRR), was proposed in this work to carry out the main primary and secondary reactions in two different reaction zones with different hydrodynamics and process conditions. The feed oil first enters into a downer reactor, undergoing a high severity operation but a short contact time between phases, for production of light olefins. After a certain conversion, the reacting flow transfers into a riser for the further cracking reactions of the heavy components adsorbed on the catalysts. Here a lower temperature and a longer residence time are favorable, especially to promote hydrogen shift reactions which reduce the olefins content in the product of gasoline.
     A pilot-scale experimental setup (cold model) was built to demonstrate the feasibility of running gas-solid flows smoothly in the DTRR system. High solids flux conditions, i.e., above 400 kg/m2/s, were achieved in the experimental apparatus, where the solids volume fraction in the fully developed region of the downer reaches up to 5%. Hydrodynamics in such a reactor coupling system was studied using a compressive model that considered the pressure balances around all the sub-units in the prototype. The continuity closure condition was used to determine the material balance of the solid particles flowing in the circulating fluidized bed system. The model predictions had good agreement with the experimental data in rather wide operating conditions.
     A two-dimensional convection-diffusion-reaction model incorporated with hydrodynamics and a 14-lump kinetic model was established to predict the conversion and yields of different products in a single riser, a single downer and different coupling schemes of the reactor columns. The results showed that downer reactor has better control on the desired intermediate products (e.g., gasoline) than riser reactor due to the plug-flow performance, especially under the conditions of higher catalyst to oil ratios. The DDTR design combines the advantages of both riser and downer, in which more yields of gasoline and light olefins can be achieved. Furthermore, it was predicted that the coupled reactor design has more potential to obtain cleaner gasoline with less olefin content.
     For a better description of the gas-solid reacting flows, a computational fluid dynamics (CFD) model for gas-phase flow combined with a discrete element method (DEM) for particle movement, i.e., CFD-DEM, was extended to incorporate the heat transfer behaviors between particles and between gas and particles. This is a so-called cross-scale modeling of gas-solid reacting flows due to the particle movement, heat transfer and catalysis at the particle-scale together with gas-phase reactions at the grid-scale. This Eulerian-Lagrangian model has clearer physical meanings by considering the particle behavior in a discrete manner than a Eulerian-Eulerian (two-fluid) model by assuming the particle phase as a continuous medium. The transient simulations for riser/downer based FCC process showed that downer reactor benefits from the plug-flow performance in comparison with riser for the FCC process. The predicted reactor performances had good agreement either qualitatively or quantitatively with the corresponding hot-model data available in the literature.
     In order to measure the multiphase flow behavior in a non-intrusive way, two types of X-ray computed tomography techniques were proposed in theoretical schemes: one is for one-dimensional measurement of concentration field with axisymmetric character, another is a novel method for fast measurement of dynamic concentration variations. The proposed new methodologies were demonstrated by both different experiments and numerical simulations. For the reduced request on the X-ray hardware, the two approaches are expected to serve the experimental studies in lab-scale even in some industry applications.
引文
[1] Abel A, Huang Z P, Rinard I H, Shinnar R, Sapre A V. Dynamic and control of fluidized catalytic crackers. 1. Modeling of the current genereation of FCC's. Ind. Eng. Chem. Res., 1995, 34(4): 1228-1243.
    [2] Abul-Hamayel M A, Siddiqui M A B, Ino T, Aitani A M. Experimental determination of high-severity fluidized catalytic cracking (HS-FCC) deactivation constant. Applied Catalysis A: General, 2002, 237(1-2): 71-80.
    [3] Abul-Hamayel M A. Comparison of downer and riser based fluid catalytic cracking process at high severity condition: A pilot plant study. Petrol. Sci. Technol., 2004, 22(5-6): 475-490.
    [4] Adams C K. Gas mixing in fast fluidized beds. In: Circulating Fluidized Bed Technology II. Basu P, Large J F, eds. Pergamon Press, Oxford, 1988, pp. 299-306.
    [5] Adanez J, Gayan P, Celaya J, de Diego L F, Garcia-Labiano F, Abad A. Chemical looping combustion in a 10 kW(th) prototype using a CuO/Al2O3 oxygen carrier: Effect of operating conditions on methane combustion. Ind. Eng. Chem. Res., 2006, 45(17): 6075-6080.
    [6] Aitani A, Yoshikawa T, Ino T. Maximization of FCC light olefins by high severity operation and ZSM-5 addition. Catal. Today, 2000, 60(1-2): 111-117.
    [7] Akita K, Yoshida F. Gas Holdup and Volumetric Mass Transfer Coefficient in Bubble Columns - Effects of Liquid Properties. Ind. Eng. Chem. Proc. Des. Develop., 1973, 12(1): 76-80.
    [8] Ali H, Rohani S, Corriou J P. Modeling and control of a riser type fluid catalytic cracking (FCC) unit. Trans. Inst. Chem. Eng., 1997, 75(A4): 401-412.
    [9] Arandes J M, Azkoiti M J, Bilbao J, de Lasa H I. Modelling FCC units under steady and unsteady state conditions. Can. J. Chem. Eng., 2000, 78(1): 111-123.
    [10] Araujo-Monroy C, Lopez-Isunza F. Modeling and simulation of an industrial fluid catalytic cracking riser reactor using a lump-kinetic model for a distinct feedstock. Ind. Eng. Chem. Res., 2006, 45(1): 120-128.
    [11] Asaki T J, Chartrand R, Vixie K R, Wohlberg B. Abel inversion using total-variation regularization. Inverse Problems, 2005, 21(6): 1895-1903.
    [12] Avidan A A, Edwards M, Owen H O. Innovative improvements highlight FCC's past and future Oil & Gas J., 1990, 88(2): 33-58.
    [13] Bai D, Jin Y, Yu Z Q. Acceleration of particles and momentum exchange between gas and solids in fast fluidized beds. In: Fluidization'91 - Science and Technology. Kwauk M, Hasatani M, eds. Science Press, Beijing, 1991b, pp. 110-115.
    [14] Bai D R, Jin Y, Yu Z Q, Gan N J. Radial profiles of local solid concentration and velocity in a concurrent downflow. In: Circulating Fluidized Bed Technology III. Basu P, Hori M, Hasatani M, eds. Pergamon Press, Toronto, 1991a, pp. 157-162.
    [15] Bai D, Kato K. Saturation carrying capacity of gas and flow regimes in CFB. J. Chem. Eng. Japan, 1995, 28(2): 179-185.
    [16] Bai D, Issangya A S, Zhu J X, Grace J R. Analysis of the overall pressure balance around a high-density circulating fluidized bed. Ind. Eng. Chem. Res., 1997, 36(9): 3898-3903.
    [17] Bai D, Kato K. Quantitative estimation of solids holdups at dense and dilute regions of circulating fluidized beds. Powder Technol., 1999, 101(3): 183-190.
    [18] Baker M C, Bonazza R. Visualization and measurements of void fraction in a gas-molten tin multiphase system by X-ray absorption. Exeriments in Fluids, 1998, 25(1): 61-68.
    [19] Baltanas M A, Froment G F. Computer generation of reaction networks and calculation of product distributions in the hydroisomerization and hydrocracking of paraffins on Pt-containing bifunctional catalyst. Computers & Chemical Engineering, 1985, 9(1): 71-81.
    [20] Banholzer W F, Spiro C L, Kosky P G, Maylotte D H. Direct imaging of time-averaged flow patterns in a fluidized reactor using X-ray computed tomography. Ind. Eng. Chem. Res., 1987, 26(4): 763-767.
    [21] Bartholomew R N, Casagrande R M. Measuring solids concentration in fluidized systems by Gamma-ray absorption. Ind. Eng. Chem., 1957, 49(3): 428-431.
    [22] Bauman R J. Global Petrochemical Outlook: Good Times Ahead. Argentine Petrochemical Institute (IPA), 2005.
    [23] Beck M S, Williams R A. Process tomography: A European innovation and its applications. Measurement Sci. Technol., 1996, 7(3): 215-224.
    [24] Berry T A, McKeen T R, Pugsley T S, Dalai A K. Two-dimensional reaction engineering model of the riser section of a fluid catalytic cracking unit. Ind. Eng. Chem. Res., 2004, 43(18): 5571-5581.
    [25] Bi H T, Zhu J X. Static Instability Analysis of Circulating Fluidized Beds and Concept of High-density Risers. AIChE J., 1993, 39(8): 1272-1280.
    [26] Bi H T, Zhou J, Qin S Z, Grace J R. Annular wall layer thickness in circulating fluidized bed risers Can. J. Chem. Eng., 1996, 74(5): 811-814.
    [27] Bolkan-Kenny Y G, Pugsley T S, Berruti F. Computer simulation of the performance of fluid catalytic cracking (FCC) risers and downers. Ind. Eng. Chem. Res., 1994, 33(12):3043-3052.
    [28] Borkink J G, Westerterp K R. Influence of tube and particle diameter on heat transport in packed beds. AIChE J., 1992, 38(5): 703-715.
    [29] Bouilard J X, Lyczkkowski R W, Gidaspow D. Porosity distribution in a fluidized bed with an immersed obstacle. AIChE J., 1989, 35(6): 908-912.
    [30] Boyer C, Duquenne A M, Wild G. Measuring techniques in gas-liquid and gas-liquid-solid reactors. Chem. Eng. Sci., 2002, 57(16): 3185-3215.
    [31] Buchanan J S. Analysis of heating and vaporization of feed droplets in fluidized catalytic cracking risers. Ind. Eng. Chem. Res., 1994, 33(12): 3104-3111.
    [32] Caballero R, Molina J, Gómez T, Luque M, Torrico A. A Genetic Algorithm to solve an Integer Goal Programming Model for the Higher Education. In: Workshop on Multiple Objective Metaheuristics, Paris, 2002.
    [33] Campbell D M, Klein M T. Construction of a molecular representation of a complex feedstock by monte carlo and quadrature methods. Applied Catalysis A: General, 1997, 160(1): 41-54.
    [34] Cao C S, Jin Y, Yu Z Q, Wang Z W. The gas-solids velocity profiles and slip phenomenon in a concurrent downflow circulating fluidized bed. In: Circulating Fluidized Bed Technology IV. Avidan A A, ed. AIChE, New York, 1994, pp. 406-413.
    [35] Cao Y, Pan W P. Investigation of chemical looping combustion by solid fuels. 1. Process analysis. Energy & Fuels, 2006, 20(5): 1836-1844.
    [36] Chang T. Louisiana refinery revamp takes advantage of heavy sour margins Oil & Gas J., 1998, 96(45): 68-72.
    [37] Chaouki J, Larachi F, Dudukovic M P. Noninvasive tomographic and velocimetric monitoring of multiphase flows. Ind. Eng. Chem. Res., 1997, 36(11): 4476-4503.
    [38] Chen H Z, Li H Z. Characterization of a high-density downer reactor. Powder Technol., 2004, 146(1-2): 84-92.
    [39] Chen H Z, Li H Z, Kwauk M. Two-phase structure in a high-density downer. Powder Technol., 2005, 158(1-3): 115-123.
    [40] Chen H Z, Li H Z, Tan S Y. Mechanism of achieving a dense downer: Modeling and validation. Ind. Eng. Chem. Res., 2006, 45(10): 3488-3495.
    [41] Cheng Y, Guo Y C, Wei F, Jin Y, Lin W Y. Modeling the hydrodynamics of downer reactors based on kinetic theory. Chem. Eng. Sci., 1999, 54(13-14): 2019-2027.
    [42] Cheng Y, Wei F, Guo Y C, Jin Y. CFD simulation of hydrodynamics in the entrance region of a downer. Chem. Eng. Sci., 2001, 56(4): 1687-1696.
    [43] Cheng Y, Wu C N, Zhu J X, Wei F, Jin Y. Downer reactor: from fundamental study to industrial application. Powder Technol., 2007: in press.
    [44] Choi H G, Joseph D D. Fluidization by lift of 300 circular particles in plane Poiseuille flow by direct numerical simulation. Journal of Fluid Mechanics, 2001, 438: 101-128.
    [45] Christensen G, Apelian M R, Hickey K J, Jaffe S B. Future directions in modeling the FCC process: An emphasis on product quality. Chem. Eng. Sci., 1999, 54(13-14): 2753-2764.
    [46] Corma A, Gonzalez-Alfaro V, Orchilles A V. The role of pore topology on the behaviour of FCC zeolite additives. Applied Catalysis A: General, 1999, 187(2): 245-254.
    [47] Cormack A M. Representation of a function by its line integrals, with some radiological applications. J. Appl. Phys, 1963, 34(9): 2722-2727.
    [48] Covezzi M, Mei G. The multizone circulating reactor technology. Chem. Eng. Sci., 2001, 56(13): 4059-4067.
    [49] Cowen A R. Digital X-ray imaging. Meas. Sci. Technol., 1991, 2: 691-707.
    [50] Cundall P A, Strack O D L. A discrete numerical model for granular assemblies. Geotechnique, 1979, 29(1): 47-65.
    [51] Dahlstrom B, Ham K, Becker M E, Hum T P, Lacijan L, Lorsbach T. Canadian refiner gets 2-year payout with FCC revamp. Oil & Gas J., 1996, 94(33): 77-83.
    [52] Das A K, Baudrez E, Marin G B, Heynderickx G J. Three-dimensional simulation of a fluid catalytic cracking riser reactor. Ind. Eng. Chem. Res., 2003, 42(12): 2602-2617.
    [53] Dasch C J. One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods. Appl. Opt., 1992, 31(8): 1146-1152.
    [54] Daun K J, Thomson K A, Liu F S, Smallwood G J. Deconvolution of axisymmetric flame properties using Tikhonov regularization. Appl. Opt., 2006, 45(19): 4638-4646.
    [55] Dean R R, Mauleon J L, Letzsch W S. New Resid Cracker. Oil & Gas J., 1982, 80(40): 75-88.
    [56] Deng R S, Wei F, Jin Y, Zhang Q H, Jin Y. Downer catalytic pyrolysis (DCP): A novel process for light olefins production. Chem. Eng. Technol., 2002b, 25(7): 711-716.
    [57] Deng R S, Wei F, Jin Y, Zhang Q H, Jin Y. Experimental study of the deep catalytic cracking process in a downer reactor. Ind. Eng. Chem. Res., 2002a, 41(24): 6015-6019.
    [58] Deng R S, Wei F, Liu T F, Jin Y. Radial behavior in riser and downer during the FCC process. Chem. Eng. Proc., 2002c, 41(3): 259-266.
    [59] Deng R S, Liu H E, Gao L, Wang L, Wei F, Jin Y. Study on the FCC process in a novel riser-downer-coupling reactor (II): Simulation and hot experiments. Ind. Eng. Chem. Res., 2005, 44(5): 1446-1453.
    [60] Derouin C, Nevicato D, Forissier M, Wild G, Bernard J R. Hydrodynamics of riser units and their impact on FCC operation. Ind. Eng. Chem. Res., 1997, 36(11): 4504-4515.
    [61] Dewachtere N V, Santaella F, Froment G F. Application of a single-event kinetic model inthe simulation of an industrial riser reactor for the catalytic cracking of vacuum gas oil. Chem. Eng. Sci., 1999, 54(15-16): 3653-3660.
    [62] Di Felice R. The voidage function for fluid-particle interaction systems. Int. J. Multiphase Flow, 1994, 20(1): 153-159.
    [63] Du B, Warsito W, Fan L S. ECT studies of the choking phenomenon in a gas-solid circulating fluidized bed. AIChE J., 2004, 50(7): 1386-1406.
    [64] Dudukovic M P, Larachi F, Mills P L. Multiphase reactors - revisited. Chem. Eng. Sci., 1999, 54(13-14): 1975-1995.
    [65] Dudukovic M P. Opaque multiphase flows: experiments and modeling. Exp. Therm. Fluid Sci., 2002, 26(6-7): 747-761.
    [66] Dyakowski T. Process tomography applied to multi-phase flow measurement. Measurement Sci. Technol., 1996, 7(3): 343-353.
    [67] Dyakowski T, Edwards R B, Xie C G, Williams R A. Application of capacitance tomography to gas-solid flows. Chem. Eng. Sci., 1997, 52(13): 2099-2110.
    [68] Engl H W, Hanke M, Neubauer A. Regularization of Inverse Problems. Dordrecht: Kluwer, 1996.
    [69] Ergun S. Fluid flow through packed columns. Chem. Eng. Prog., 1952, 48(2): 89-94.
    [70] Feng W, Vynckier E, Froment G F. Single-event kinetics of catalytic cracking. Ind. Eng. Chem. Res., 1993, 32(12): 2997-3005.
    [71] Feng Y Q, Yu A B. Assessment of model formulations in the discrete particle simulation of gas-solid flow. Ind. Eng. Chem. Res., 2004a, 43(26): 8378-8390.
    [72] Feng Y Q, Yu A B. Comments on "Discrete particle-continuum fluid modelling of gas-solid fluidised beds" by Kafui et al. [Chemical Engineering Science 57 (2002) 2395-2410]. Chem. Eng. Sci., 2004b, 59(3): 719-722.
    [73] Fligner M, Schipper P H, Sapre A V, Krambeck F J. Two phase cluster model in riser reactors: Impact of radial density distribution on yields. Chem. Eng. Sci., 1994, 49(24B): 5813-5818.
    [74] Fujiyama Y. Process for fluid catalytic cracking of oils. US Patent: No. 5904837, 1999.
    [75] Fujiyama Y, Redhwi H H, Aitani A M, Saeed M R, Dean C F. Demonstration plant for new FCC technology yields increased propylene. Oil & Gas J., 2005, 103(36): 54-58.
    [76] Gao J S, Xu C M, Lin S X, Yang G H, Guo Y C. Advanced model for turbulent gas-solid flow and reaction in FCC riser reactors. AIChE J., 1999, 45(5): 1095-1113.
    [77] Gao J S, Xu C M, Lin S X, Yang G H, Guo Y C. Simulations of gas-liquid-solid 3-phase flow and reaction in FCC riser reactors. AIChE J., 2001, 47(3): 677-692.
    [78] Gianetto A, Farag H I, Blasetti A P, de Lasa H I. Fluid catalytic cracking catalyst forreformulated gasolines - kinetic modeling. Ind. Eng. Chem. Res., 1994, 33(12): 3053-3062.
    [79] Gidaspow D. Multiphase flow and fluidization: continuum and kinetic theory descriptions. New York: Academic Press, 1992.
    [80] Grace J R, Issangya A S, Bai D. Situating the high-density circulating fluidized bed. AIChE J., 1999, 45(10): 2108-2116.
    [81] Grassler T, Wirth K E. X-ray computer tomography - Potential and limitation for the measurement of local solids distribution in circulating fluidized beds. In: Proceedings of the 1st World Congress on Industrial Process Tomography. York T, Dyakowski T, Peyton T, Hunt A, eds. Buxton (Greater Manchester), 1999, pp. 402-409.
    [82] Grassler T, Wirth K E. X-ray computer tomography - potential and limitation for the measurement of local solids distribution in circulating fluidized beds. Chem. Eng. J., 2000, 77(1-2): 65-72.
    [83] Grefenstetter J J. Optimization of Control Parameters for Genetic Algorithms. IEEE Trans. SMC., 1986, 16(1): 122-126.
    [84] Gross B, Jacob S M, Nace D M, Voltz S E. Simulation of catalytic cracking process. US Patent: No. 3960707, 1976.
    [85] Gross B. Heat balance in FCC process and apparatus with downflow reactor riser. US Patent: No. 4411773, 1983.
    [86] Gross B, Ramage M P. FCC reactor with a downflow reactor riser. US Patent: No. 4385985, 1983.
    [87] Gupta A, Rao D S. Model for the performance of a fluid catalytic cracking (FCC) riser reactor: effect of feed atomization. Chem. Eng. Sci., 2001, 56(15): 4489-4503.
    [88] Gupta A, Rao D S. Effect of feed atomization on FCC performance: simulation of entire unit. Chem. Eng. Sci., 2003, 58(20): 4567-4579.
    [89] Hammersberg P, M?ng?rd M. Correction for beam hardening artefacts in computerised tomography. J. X-Ray Sci. Technol., 1998, 8(1): 75-93.
    [90] Han I S, Chung C B. Dynamic modeling and simulation of a fluidized catalytic cracking process. Part I: Process modeling. Chem. Eng. Sci., 2001, 56(5): 1951-1971.
    [91] Hansen P C. Analysis of discrete ill-posed problems by means of the L-curve. SIAM Rev., 1992, 34(4): 561-580.
    [92] Hansen P C, O'Leary D P. The use of the L-curve in the regularization of discrete ill-posed problems. SIAM J. Sci. Comput., 1993, 14(6): 1487-1503.
    [93] Hansen P C. Rank-Deficient and Discrete Ill-Posed Problems. Philadelphia: Society of Industrial and Applied Mathematics, 1998.
    [94] Hansen P C. Regularization Tools: A Matlab Package for Analysis and Solution of Discrete Ill-posed Problems (Version 3.1 for Matlab 6.0). 2001 (http://www.imm.dtu.dk/~pch).
    [95] Harvel G D, Hori K, Kawanishi K, Chang J S. Real-time cross-sectional averaged void fraction measurements in vertical annulus gas-liquid two-phase flow by neutron radiography and X-ray tomography techniques. Nuclear Instruments & Methods in Physics Research Section A, 1996, 371(3): 544-552.
    [96] Harvel G D, Hori K, Kawanishi K, Chang J S. Cross-sectional void fraction distribution measurements in a vertical annulus two-phase flow by high speed X-ray computed tomography and real-time neutron radiography techniques. Flow Meas. Instrum., 1999, 10(4): 259-266.
    [97] Heindel T J, Monefeldt J L. Observations of the bubble dynamics in a pulp suspension using flash X-ray radiography. TAPPI J., 1998, 81(11): 149-158.
    [98] Heindel T J. Bubble size in a cocurrent fiber slurry. Ind. Eng. Chem. Res., 2002, 41(3): 632-641.
    [99] Herbert P M, Gauthier T A, Briens C L, Bergougnou M A. Flow study of a 0.05 m diameter downflow circulating fluidized bed. Powder Technol., 1998, 96(3): 255-261.
    [100] Herman G T. Image Reconstruction from Projections: The Fundamentals of Computerized Tomography. New York: Academic Press, 1980.
    [101] Hervieu E, Jouet E, Desbat L. Development and validation of an X-ray tomography for two-phase flows. In: Proceedings of the ICMF-2001. Michaelides E E, ed. Elsevier Science, New-Orleans, USA, 2001, pp. 1-12.
    [102] Holloway J P, Shannon S, Sepke S M, Brake M L. A reconstruction algorithm for a spatially resolved plasma optical emission spectroscopy sensor. J. Quant. Spectrosc. Radiat. Transfer, 2001, 68(1): 101-115.
    [103] Holoboff J, Kantzas A, Kalogerakis N. Utilization of computer-assisted tomography in the determination of the spatial variability of voidage in a gas-solid fluidized bed. In: Fluidization VIII. Large J F, ed. Engineering Foundation, Tours, France, 1995, pp. 295-302.
    [104] Hoomans B P B, Kuipers J A M, Briels W J, van Swaaij W P M. Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidized bed: a hard sphere approach. Chem. Eng. Sci., 1996, 51(1): 99-118.
    [105] Houdry E, Burt W F, Pew A E, Peters W A. Catalytic processing by the Houdry process. Nat. Petroleum News, 1938, 30(48): R570-R580.
    [106] Hounsfield G N. Computerized transverse axial scanning (tomography): I. Description of system. Br. J. Radiol., 1973, 46(552): 1016-1022.
    [107] Huang S M, Plaskowski A B, Xie C G, Beck M S. Tomographic imaging of two-component flow using capacitance sensors. J. Phys. E.: Sci. Instrum., 1989, 22(3): 173-177.
    [108] Hubers J L, Striegel A C, Heindel T J, Gray J N, Jensen T C. X-ray computed tomography in large bubble columns. Chem. Eng. Sci., 2005, 60(22): 6124-6133.
    [109] Ibsen C H, Helland E, Hjertager B H, Solberg T, Tadrist L, Occelli R. Comparison of multi-fluid and discrete particle modeling in numerical predictions of gas particle flow in circulating fluidized beds. Powder Technol., 2004, 149(1): 29-41.
    [110] Issangya A S, Grace J R, Zhu J X. Bottom and exit region solids hold-ups in circulating fluidized beds. In: Circulating Fluidized Bed Technology VIII. Cen K F, ed. Beijing: International Academic Publishers World Publishing Corporation, Hangzhou, China, 2005, pp. 209-215.
    [111] Iwashita K, Oda M. Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech., 1998, 124(3): 285-292.
    [112] Jacob S M, Gross B, Voltz S, Weekman V W J. A lumping and reaction scheme for catalytic cracking. AIChE J., 1976, 22(4): 701-713.
    [113] Jin Y, Zheng Y, Wei F. State-of-the-art review of downer reactors. In: Circulating Fluidized Bed Technology VII. Grace J R, Zhu J X, de Lasa H I, eds. Canadian Society for Chemical Engineers, Niagara Falls, 2002, pp. 40-60.
    [114] Johnston P M, de Lasa H, Zhu J X. Axial flow structure in the entrance region of downer fluidized bed: Effects of the distributor design. Chem. Eng. Sci., 1999, 54(13-14): 2161-2173.
    [115] Jones D R M, Davidson J F. The flow of particles from a fluidized bed through an orifice. Rheol. Acta, 1965, 4: 180-192.
    [116] Kai T, Misawa M, Takahashi T, Tiseanu I, Ichikawa N, Takada N. Application of fast X-ray CT scanner to visualization of bubbles in fluidized bed. J. Chem. Eng. Japan, 2000, 33(6): 906-909.
    [117] Kaiser S, Loffler G, Bosch K, Hofbauer H. Hydrodynamics of a dual fluidized bed gasifier. Part II: simulation of solid circulation rate, pressure loop and stability. Chem. Eng. Sci., 2003, 58(18): 4215-4223.
    [118] Kak A C, Slaney M. Principles of Computerized Tomographic Imaging. New York: IEEE Press, 1988.
    [119] Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phase olefin polymerization. Chem. Eng. Sci., 1999, 54(24): 5809-5821.
    [120] Kantzas A. Computation of Holdups in Fluidized and Trickle Beds by Computer-Assisted Tomography. AIChE J., 1994, 40(7): 1254-1261.
    [121] Kantzas A, Kalogeraki N. Monitoring the fluidization characteristics of polyolefin resins using X-ray computer assisted tomography scanning. Chem. Eng. Sci., 1996, 51(10): 1979-1990.
    [122] Kantzas A, Wright I, Kalogerakis N. Quantification of channeling in polyethylene resin fluid beds using X-ray computer assisted tomography (CAT). Chem. Eng. Sci., 1997, 52(13): 2023-2035.
    [123] Kauff D A, Bartholic D B, Steves C A, Keim M R. Successful application of the MSCC processs. In: NPRA Annual Meeting, San Antonio, Texas, 1996, pp. AM-96-27.
    [124] Kawaguchi T, Sakamoto M, Tanaka T, Tsuji Y. Quasi-three-dimensional numerical simulations of spouted beds in cylinder. Powder Technol., 2003, 109(1-3): 3-12.
    [125] Kemoun A, Ong B C, Gupta P, Al-Dahhan M H, Dudukovic M P. Gas holdup in bubble columns at elevated pressure via computed tomography. Int. J. Multiphase Flow, 2001, 27(5): 929-946.
    [126] Kim Y J, Bang J H, Kim S D. Bed-to-wall heat transfer in a downer reactor. Can. J. Chem. Eng., 1999, 77(2): 207-212.
    [127] Kitson C G. Applications of flash X-ray to ballistic research. Insight, 1994, 36(8): 590-594.
    [128] Koch D L, Sangani A S. Particle pressure and marginal stability limits for a homogeneous monodisperse gas-fluidized bed: kinetic theory and numerical simulations. Journal of Fluid Mechanics, 1999, 400: 229-263.
    [129] Koch D L, Hill R J. Inertial effects in suspension and porous-media flows. Annual Review of Fluid Mechanics, 2001, 33: 619-647.
    [130] Konno H, Saito S. Pneumatic conveying of solids through straight pipes. J. Chem. Eng. Japan, 1969, 2: 211-217.
    [131] Kumar S B, Moslemian D, Dudukovic M P. Aγ-ray tomographic scanner for imaging voidage distribution in two-phase flow systems. Flow Meas. Instrum., 1995, 6(1): 61-73.
    [132] Kumar S B, Moslemian D, Dudukovic M P. Gas-holdup measurements in bubble columns using computed tomography. AIChE J., 1997, 43(6): 1414-1425.
    [133] Kunni D, Levenspiel O. Fluidization Engineering. New York: Robert E. Krieger Publishing Co., 1977.
    [134] Kwauk M, Wang N D, Li Y, Chen B Y, Shen Z Y. Fast fluidization at ICM. In: Circulating Fluidized Bed Technology. Basu P, ed. Pergamon Press, Toronto, 1986, pp. 33-62.
    [135] Lee L S, Chen Y W, Haung T N, Pan W Y. Four lump kinetic model for fluid catalytic cracking process. Can. J. Chem. Eng., 1989, 67(8): 615-619.
    [136] Lehner P, Wirth K E. Characterization of the flow pattern in a downer reactor. Chem. Eng. Sci., 1999, 54(22): 5471-5483.
    [137] Li Y, Kwauk M. The dynamics of fast fluidization. In: Fluidization. Grace J R, Matsen J M, eds. Plenum Press, New York, 1980, pp. 537-544.
    [138] Li Z Q, Wu C N, Wei F, Jin Y. Experimental study of high-density gas-solids flow in a new coupled circulating fluidized bed. Powder Technol., 2004, 139(3): 214-220.
    [139] Li J, Webb C, Pandiella S S, Campbell G M, Dyakowski T, Cowell A, McGlinchey D. Solid deposition in low-velocity slug flow pneumatic conveying. Chem. Eng. Sci., 2005, 60(1): 167-173.
    [140] Liguras D K, Allen D T. Structural models for catalytic cracking 1. Model compound reactions. Ind. Eng. Chem. Res., 1989a, 28(6): 665-673.
    [141] Liguras D K, Allen D T. Structural models for catalytic cracking. 2. Reactions of Simulated Oil Mixtures. Ind. Eng. Chem. Res., 1989b, 28(6): 674-683.
    [142] Lim K S, Peeler P, Close R, Joyce T. Estimation of solids circulation rates in CFB from pressure loop profiles. In: Circulating Fluidized Bed Technology VI. Werther J, ed. DECHEMA, Frankfurt, 1999, pp. 819-824.
    [143] Limtrakul S, Boonsrirat A, Vatanatham T. DEM modeling and simulation of a catalytic gas-solid fluidized bed reactor: a spouted bed as a case study. Chem. Eng. Sci., 2004, 59(22-23): 5225-5231.
    [144] Liu W, Luo K B, Zhu J X, Beeckmans J M. Characterization of high-density gas-solids downward fluidized flow. Powder Technol., 2001, 115(1): 27-35.
    [145] Lu X S, Li S G, Du L, Yao J Z, Lin W G, Li H Z. Flow structures in the downer circulating fluidized bed. Chem. Eng. J., 2005, 112(1-3): 23-31.
    [146] Lyngfelt A, Leckner B, Mattisson T. A fluidized-bed combustion process with inherent CO2 separation; application of chemical-looping combustion. Chem. Eng. Sci., 2001, 56(10): 3101-3113.
    [147] Ma Y, Zhu J X. Experimental study of heat transfer in a co-current downflow fluidized bed (downer). Chem. Eng. Sci., 1999, 54(1): 41-50.
    [148] Ma Y L, Zhu J. Heat transfer in the downer and the riser of a circulating fluidized bed - A comparative study. Chem. Eng. Technol., 2001, 24(1): 85-90.
    [149] Maadhah A G, Abul-Hamayel M, Aitani A M, Ino T, Okuhara T. Down-flowing FCC reactor - increases propylene, gasoline make. Oil & Gas Journal, 2000, 98(33): 66-70.
    [150] Macey D J, Marshall R. Absolute quantitation of radiotracer uptake in the lungs using a gamma camera. J. Nucl. Med., 1982, 23(8): 731-734.
    [151] Maenchen J, Cooperstein G, O'Malley J. Advances in pulsed power-driven radiography systems. Proceeding of the IEEE, 2004, 92(7): 1021-1042.
    [152] Magee J S, Ritter R E, Wallace D N, Blazek J J. FCC feed composition affects catalyst octane performance. Oil & Gas J., 1980, 78(31): 63-67.
    [153] Marchot P, Toye D, Pelsser A M, Crine M, L'Homme G. Liquid distribution images on structure packing by X-ray computed tomography. AIChE J., 2001, 47(6): 1471-1476.
    [154] Martignoni W, de Lasa H I. Heterogeneous reaction model for FCC riser units. Chem. Eng. Sci., 2001, 56(2): 605-612.
    [155] Martin M P, Derouin C, Turlier P, Forissier M, Wild G, Bernard J R. Catalytic cracking in riser reactors: core-annulus and elbow effects. Chem. Eng. Sci., 1992, 47(9-11): 2319-2324.
    [156] Martin J C. In: Martin T H, Williams M, Kristiansen M, eds. Advances in Pulsed Power Technology (Vol. 3): J.C. Martin on Pulsed Power. New York: Plenum Press, 1996.
    [157] Miller C, Filipow L, Jackson S, Riauka T. Planar imaging quantification using 3D attenuation correction data and Monte Carlo simulated buildup factors. Phys. Med. Biol., 1996, 41(8): 1401-1423.
    [158] Mirrazavi S K, Jones D F, Tamiz M. A comparison of genetic and conventional methods for the solution of integer goal programmes. European Journal of Operational Research, 2001, 132(3): 594-602.
    [159] Mizusako F, Ogasawara K, Kondo K. Flash x-ray radiography using imaging plates for the observation of hypervelocity objects. Rev. Sci. Instrum., 2005, 76(2): No. 025102.
    [160] Murcia A A. Numerous Changes Mark FCC Technology Advance. Oil & Gas J., 1992, 90(20): 68-71.
    [161] Nayak S V, Joshi S L, Ranade V V. Modeling of vaporization and cracking of liquid oil injected in a gas-solid riser. Chem. Eng. Sci., 2005, 60(22): 6049-6066.
    [162] Neurock M, Libanati C, Nigam A, Klein M T. Monte carlo simulation of complex reaction systems: molecular structure and reactivity in modelling heavy oils. Chem. Eng. Sci., 1990, 45(8): 2083-2088.
    [163] Nicuum P K, Bunn D P. Catalytic Cracking System. US Patent: No. 4514285, 1985.
    [164] Nicuum P K, Miller R B, Claude A M, Silverman M A, Bhore N A, Liu K, Chitnis G K, McCarthy S J. MAXOFIN: A novel FCC process for maximizing light olefins using a new generation of ZSM-5 additive. In: NPRA Annual Meeting, San Francisco, 1998, pp. AM-98-18.
    [165] Oliveira L L. Catalytic Cracking Kinetic Models - Parameters Estimation (in Portuguese). [MSc Thesis]. Brazil: Univ. Federal do Rio de Janeiro, 1987.
    [166] Ouyang J, Li J. Particle-motion-resolved discrete model for simulating gas-solid fluidization. Chem. Eng. Sci., 1999, 54(13-14): 2077-2083.
    [167] Ouyang J, Yu A B. Simulation of gas-solid flow in vertical pipe by hard-sphere model. Particulate Science and Technology, 2005, 23: 47-61.
    [168] Pan L, Hewitt G F. Precise measurement of cross sectional phase fractions in three phase flow using a dual-energy gamma densitometer. In: ANS Proceedings, 1995 National Heat Transfer Conference: General topics in Heat Transfer and Mass Transfer discussed. Habib I S, et al., eds. Oregon, Portland, 1995, pp. 71-78.
    [169] Pareek V K, Adesina A A, Srivastava A, Sharma R. Modeling of a non-isothermal FCC riser. Chem. Eng. J., 2003, 92(1-3): 101-109.
    [170] Peixoto F C, de Medeiros J L. Reactions in multiindexed continuous mixtures: Catalytic cracking of petroleum fractions. AIChE J., 2001, 47(4): 935-947.
    [171] Petrick S W. Generalized approach to cooling charge-coupled devices using thermoelectric coolers. Opt. Eng., 1987, 26(10): 965-971.
    [172] Pitault I, Nevicato D, Forissier M, Bernard J R. Kinetic-model based on a molecular description for catalytic cracking of vacuum gas oil. Chem. Eng. Sci., 1994, 49(24A): 4249-4262.
    [173] Plank C J. The invention of zeolite cracking catalyst - A personal viewpoint. In: Heterogeneous Catalysis, Selected American Histories, ACS Symposium Series 222. Davis B H, Hettinger W P, eds. Washington, DC, 1983, pp. 253-271.
    [174] Qian Z, Wei F, Yu H, Zhang M H. Dense turbulent entrance for downer: hydrodynamic and mixing behavior. In: Circulating Fluidized Bed Technology VII. Grace J R, Zhu J, de Lasa H, eds. Canadian society for chemical engineering, Ottawa, Canada, 2002, pp. 75~82.
    [175] Quann R J, Jaffe S B. Structure oriented lumping: Describing the chemistry of complex hydrocarbon mixtures. Ind. Eng. Chem. Res., 1992, 31 (11): 2483-2497.
    [176] Ranz W E, Marshall W R. Evaporation from drops. Chem. Eng. Proc., 1952, 48(3): 141-146.
    [177] Redhwi H, Ino T, Fujiyama Y, Kleemeier K, Dean C, Al-Nemer M, Abul-Hamayel M, Maadhah A. Meeting Olefins Demand in a Novel FCC Technology. In: 18th World Petroleum Congress, Johannesburg, 2005, pp. Block 2, Forum 10.
    [178] Reginska T. A regularization parameter in discrete ill-posed problems. SIAM J. Sci. Comput., 1996, 17(3): 740-749.
    [179] Rhodes M J, Geldart D. A model for the circulating fluidized bed. Powder Technol., 1987, 53(3): 155-162.
    [180] Richter H, Knoche K. Reversibility of combustion processes. In: Efficiency and Costing: Second Law Analysis of Processes, ACS Symposium Series 235. Gaggioli R A, ed. Washington, DC, 1983, pp. 71-86.
    [181] Rogues Y, Gauthier T, Pontier R, Briens C L, Bergougnou M A. Residence time distributions of solids in a gas-solids downflow transport reactor. In: Circulating Fluidized Bed Technology IV. Avidan A A, ed. AIChE, New York, 1994, pp. 555-559.
    [182] Rong D, Mikami T, Horio M. Particle and bubble movements around tubes immersed in fluidized beds - a numerical study. Chem. Eng. Sci., 1999, 54(23): 5737-5754.
    [183] Rowe P N. Experimental properties of bubbles. In: Fluidization. Davidson J F, Harrison D, eds. Academic Press, London, 1971, pp. 121-191.
    [184] Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D, 1992, 60(1-4): 259-268.
    [185] Rudolph V, Chong Y O, Nicklin D J. Standpipe modeling for circulating fluidized beds. In: Circulating Fluidized Bed Technology III. Basu P, Hasatani M, eds. Pergamon Press, Oxford, 1991, pp. 49-64.
    [186] Santos J L, Asua J M, de la Cal J C. Modeling of olefin gas-phase polymerization in a multizone circulating reactor. Ind. Eng. Chem. Res., 2006, 45(9): 3081-3094.
    [187] Savage S B, Jeffrey D J. The stress tensor in a granular flow at high shear rates. J. Fluid Mech., 1981, 110: 255-272.
    [188] Saxton A L, Worley A C. Modern catalytic cracking design. Oil & Gas J., 1970, 68(20): 82-99.
    [189] Schmit C E, Eldridge R B. Investigation of X-ray imaging vapor-liquid contactors. 1. Studies involving stationary objects and a simple flow system. Chem. Eng. Sci., 2004, 59(6): 1255-1266.
    [190] Schuurmans H J A. Measurements in a Commercial Catalytic Cracking Unit. Ind. Eng. Chem. Proc. Des. Develop., 1980, 19(2): 267-271.
    [191] Schweitzer J H, Bayle J, Gauthier T. Local gas hold-up measurements in fluidized bed and slurry bubble column. Chem. Eng. Sci., 2001, 56(3): 1103-1110.
    [192] Seville J P K, Morgan J E P, Clift R. Tomographic determination of the voidage structure of gas fluidized beds in the jet region. In: Fluidization. ?stergaard V, K., S?rensen A, eds. Engineering Foundation, New York, 1986, pp. 87-92.
    [193] Shaikh A, Al-Dahhan M. Characterization of the hydrodynamic flow regime in bubble columns via computed tomography. Flow Meas. Instrum., 2005, 16(2-3): 91-98.
    [194] Shan H H, Dong H J, Zhang J F, Niu G L. Experimental study of two-stage riser FCC reactions. Fuel, 2001, 80(8): 1179-1185.
    [195] Shepp L A, Logan B F. Reconstructing interior head tissue from x-ray transmissions. IEEE Trans. Nucl. Sci., 1971, NS-21: 228-236.
    [196] Shih T H, Liou W W, Shabbir A, Yang Z, Zhu J. A new k-εeddy-viscosity model for high Reynolds number turbulent flows model development and validation. Computers & Fluids, 1995, 24(2): 227-238.
    [197] Shollenberger K A, Torczynski J R, Adkins D R, O'Hern T J, Jackson N B. Gamma-densitometry tomography of gas holdup spatial distribution in industrial-scale bubble columns. Chem. Eng. Sci., 1997, 52(13): 2037-2048.
    [198] Sinclair J L, Jackson R. Gas-particle flow in a vertical pipe with particle-particle interactions. AIChE J., 1989, 35(9): 1473-1486.
    [199] Smolders K, Baeyens J. The axial and radial solid loadings up the CFB-riser. Chinese J. Chem. Eng., 2000, 8(2): 171-175.
    [200] Stobbe E R, de Boer B A, Geus J W. The reduction and oxidation behaviour of manganeseoxides. Catalysis Today, 1999, 47(1-4): 161-167.
    [201] Souza J A, Vargas J V C, Von Meien O F, Martignoni W, Amico S C. A two-dimensional model for simulation, control, and optimization of FCC risers. AIChE J., 2006, 52(5): 1895-1905.
    [202] Takeuchi S, Wang S, Rhodes M. Discrete element simulation of a flat-bottomed spouted bed in the 3-D cylindrical coordinate system. Chem. Eng. Sci., 2004, 59(17): 3495-3504.
    [203] Theologos K N, Markatos N C. Advanced modeling of fluid catalytic cracking riser type reactors. AIChE J., 1993, 39(6): 1007-1017.
    [204] Theologos K N, Lygeros A I, Markatos N C. Feedstock atomization effects on FCC riser reactors selectivity. Chem. Eng. Sci., 1999, 54(22): 5617-5625.
    [205] Thomson K A, Gulder O L, Weckman E J, Fraser R A, Smallwood G J, Snelling D R. Soot concentration and temperature measurements in co-annular, nonpremixed CH4/air laminar flames at pressures up to 4 MPa. Combustion and Flame, 2005, 140(3): 222-232.
    [206] Tikhonov A N. Inverse problems in heat conduction. J. Eng. Phys., 1975, 29(1): 816-820.
    [207] Tomiyama A. Struggle with computational bubble dynamics. Multiphase Sci. Tech., 1998, 10(4): 369-405.
    [208] Tsuji Y, Tanaka T, Ishida T. Lagrangian numerical simulation of plug flow of cohesionless particle in a horizontal pipe. Powder Technol., 1992, 71(3): 239-250.
    [209] Tsuji Y, Kawaguchi T, Tanaka T. Discrete particle simulation of two dimensional fluidized bed. Powder Technol., 1993, 77(1): 79-87.
    [210] Tsuo Y P, Gidaspow D. Computation of flow patterns in circulating fluidized beds. AIChE J., 1990, 36(6): 885-896.
    [211] Van de Casteele E, Van Dyck D, Sijbers J, Raman E. An energy-based beam hardening model in tomography. Phys. Med. Biol., 2002, 47(23): 4181-4190.
    [212] Van Landeghem F, Nevicato D, Pitault I, Forissier M, Turlier P, Derouin C, Bernard J R. Fluid catalytic cracking: modelling of an industrial riser. Applied Catalysis A: General, 1996, 138(5): 381-405.
    [213] Vandoormaal J P, Raithby G D. Enhancements of the SIMPLE Method for Predicting Incompressible Fluid Flows. Numer. Heat Transfer, 1984, 7(1): 147-163.
    [214] Vargas W L, McCarthy J J. Heat conduction in granular materials. AIChE J., 2001, 47(5): 1052-1059.
    [215] Vest C M. Tomography for properties of materials that bend rays: a tutorial. Appl. Opt., 1985, 23(23): 4089-4094.
    [216] Viitanen P I. Tracer studies on a riser reactor of a fluidized catalyst cracking plant. Ind. Eng. Chem. Res., 1993, 32(4): 577-583.
    [217] Wang Z, Bai D, Jin Y. Hydrodynamics of cocurrent downflow circulating fluidized bed (CDCFB). Powder Technol., 1992, 70(3): 271-275.
    [218] Wang P, Zheng K W. Regularization of an Abel equation. Integr. Equ. Oper. Theory, 1997, 29(2): 243-249.
    [219] Wang Z W, Wei F, Jin Y, Yu Z Q. Fundamental studies on the hydrodynamics and mixing of gas and solid in a downer reactor. Chinese J. Chem. Eng., 1997, 5(3): 236-245.
    [220] Wang Y, Wang J J, Wang K L, Liu G Z, Zhu G F, Zhang Y L, Du H L. Portable pulsed electronic digital X-ray imager. NDT&E International, 1999, 32(4): 215-218.
    [221] Wang Y, Cheng J P, Li Y J, Tian H, Du H L. Development and evaluation of a four-channel digital flash X-ray imaging system. Nuclear Instruments & Methods in Physics Research Section A: Accelerators Spectrometers Detectors and Associated Equipment, 2003, 496(2-3): 496-503.
    [222] Warsito W, Ohkawa M, Kawata N, Uchida S. Cross-sectional distributions of gas and solid holdups in slurry bubble column investigated by ultrasonic computed tomography. Chem. Eng. Sci., 1999, 54(21): 4711-4728.
    [223] Warsito W, Fan L S. Neural network based multi-criterion optimization image reconstruction technique for imaging two- and three-phase flow systems using electrical capacitance tomography. Measurement Sci. Technol., 2001, 12(12): 2198-2210.
    [224] Warsito W, Fan L S. ECT imaging of three-phase fluidized bed based on three-phase capacitance model. Chem. Eng. Sci., 2003b, 58(3-6): 823-832.
    [225] Warsito W, Fan L S. 3D-ECT velocimetry for flow structure quantification of gas-liquid-solid fluidized beds. Can. J. Chem. Eng., 2003a, 81(3-4): 875-884.
    [226] Warsito W, Fan L S. Neural network multi-criteria optimization image reconstruction technique (NN-MOIRT) for linear and non-linear process tomography. Chem. Eng. Sci., 2003c, 42(8-9): 663-674.
    [227] Watano S, Saito S, Suzuki T. Numerical simulation of electrostatic charge in powder pneumatic conveying process. Powder Technol., 2003, 135-136: 112-117.
    [228] Weekman V W J. A model of catalytic cracking conversion in fixed, moving and fluid-bed reactors. Ind. Eng. Chem. Proc. Des. Develop., 1968, 7(1): 90-95.
    [229] Wei J, Prater C D. A new approach to 1st-order chemical reaction systems. AIChE J., 1963, 9(1): 77-81.
    [230] Wei F, Wang Z W, Jin Y, Yu Z Q, Chen W. Dispersion of lateral and axial solids in a cocurrent downflow circulating fluidized bed. Powder Technol., 1994, 81(1): 25-31.
    [231] Wei F, Zhu J X. Effect of flow direction on axial solid dispersion in gas solids cocurrent upflow and downflow systems. Chem. Eng. J., 1996, 64(3): 345-352.
    [232] Wei F, Ran X, Zhou R J, Luo G H, Jin Y. A dispersion model for fluid catalytic crackingriser and downer reactors. Ind. Eng. Chem. Res., 1997, 36(12): 5049-5053.
    [233] Wei F, Lin H F, Cheng Y, Wang Z W, Jin Y. Profiles of particle velocity and solids fraction in a high-density riser. Powder Technol., 1998, 100(2-3): 183-189.
    [234] Weinstein H, Shao M, Wasserzug L. Radial Solid Density Variation in a Fast Fluidized Bed. In: Fluidization and Fluid Particle Systems: Recent Advances. George E K, ed. American Institute of Chemical Engineers, New York, 1984, pp. 117-121.
    [235] Wen C Y, Yu. Y H. Mechanics of fluidisation. Chemical Engineering Program Symposium Series, 1966, 62(62): 100-111.
    [236] Werther J. Measurement techniques in fluidized beds. Powder Technol., 1999, 102(1): 15-36.
    [237] Wu Y X, Ong B C, Al-Dahhan M H. Predictions of radial gas holdup profiles in bubble column reactors. Chem. Eng. Sci., 2001, 56(3): 1207-1210.
    [238] Wu C N, Cheng Y, Wei F, Jin Y. Novel design and modeling of a coupled high-density downer-riser reactor. In: The Eighth International Conference on Circulating Fluidized Beds. Cen K F, ed. Hangzhou, China, 2005, pp. 720-726.
    [239] Wu C N, Cheng Y, Jin Y. Modeling the hydrodynamics in a coupled high-density downer-to-riser reactor. Powder Technology, 2007, 179: (doi: 10.1016/j.powtec.2007).
    [240] WWFC. World-Wide Fuel Charter. 2002.
    [241] Xu B H, Yu A B. Numerical simulation of the gas-particle flow in a fluidized bed by combining discrete particle method with computational fluid dynamics. Chem. Eng. Sci., 1997, 52(16): 2785-2809.
    [242] Xu B H, Yu A B. Comments on the paper "Numerical simulation of the gas-solid flow in a fluidized bed by combining discrete particle method with computational fluid dynamics" - Reply. Chem. Eng. Sci., 1998, 53(14): 2646-2647.
    [243] Yaffe M J, Rowlands J A. X-ray detectors for digital radiography. Phys. Med. Biol., 1997, 42(1): 1-39.
    [244] Yang W C. A model for the dynamics of a circulating fluidized bed loop. In: Circulating Fluidized Bed Technology II. Basu P, Large J F, eds. Pergamon Press, New York, 1988, pp. 181-191.
    [245] Yang W C, Knowlton T M. L-valve equations. Powder Technol., 1993, 77(1): 49-54.
    [246] Yang Y L, Jin Y, Yu Z Q, Zhu J X, Bi H T. Local slip behaviors in the circulating fluidized bed AIChE Symp. Ser., 1993, 89(296): 81-90.
    [247] Zhang W, Tung Y, Johnsson F. Radial Voidage Profiles in Fast Fluidized Beds of Different Diameters. Chem. Eng. Sci., 1991, 46(12): 3045-3052.
    [248] Zhang H, Zhu J X, Bergougnou M A. Hydrodynamics in downflow fluidized beds (1): solids concentration profiles and pressure gradient distributions. Chem. Eng. Sci., 1999a,54(22): 5461-5470.
    [249] Zhang H, Zhu J X, Bergougnou M A. Flow development in a gas-solids downer fluidized bed. Can. J. Chem. Eng., 1999b, 77(2): 194-198.
    [250] Zhang J P, Fan L S, Zhu C, Pfeffer R, Qi D W. Dynamic behavior of collision of elastic spheres in viscous fluids. Powder Technol., 1999c, 106(1-2): 98-109.
    [251] Zhang H, Zhu J X. Hydrodynamics in downflow fluidized beds (2): Particle velocity and solids flux profiles. Chem. Eng. Sci., 2000, 55(19): 4367-4377.
    [252] Zhang M H, Qian Z, Yu H, Wei F. The solid flow structure in a circulating fluidized bed riser/downer of 0.42-m diameter. Powder Technol., 2003a, 129(1-3): 46-52.
    [253] Zhang M H, Qian Z, Yu H, Wei F. The near wall dense ring in a large-scale down-flow circulating fluidized bed. Chem. Eng. J., 2003b, 92(1-3): 161-167.
    [254] Zhang M H, Chu K W, Yu A B, Wei F. Cluster behavior in CFB riser and downer simulated by CFD-DPM method. In: Circulating Fluidized Bed VIII. Cen K F, ed. Hangzhou, China, 2005, pp. 299-305.
    [255] Zhao Y Z, Cheng Y, Ding Y L, Jin Y. Understanding the hydrodynamics in a 2-dimensional downer by CFD-DEM simulation. In: Fluidization XII. Berruti F, Bi X T, Pugsley D, eds. Vancouver, Canada, 2007, pp. 855-862.
    [256] Zheng Y, Cheng Y, Wei F, Jin Y. CFD simulation of hydrodynamics in downer reactors. Chem. Eng. Comm., 2002, 189(12): 1598-1610.
    [257] Zhou H, Flamant G, Gauthier D, Lu J. Lagrangian approach for simulation the gas-particle flow structure in a circulating fluidized bed riser. International Journal of Multiphase Flow, 2002, 28(11): 1801-1821.
    [258] Zhu J X, Yu Z Q, Jin Y, Grace J R, Issangya A. Cocurrent downflow circulating fluidized bed (Downer) reactors - A state of the art review. Can. J. Chem. Eng., 1995, 73(5): 662-677.
    [259] Zhu H P, Zhou Z Y, Yang R Y, Yu A B. Discrete particle simulation of particulate systems: Theoretical developments. Chem. Eng. Sci., 2007, 62(13): 3378-3396.
    [260]白丁荣,金涌,俞芷青.循环流态化(II)气-固流动规律.化学反应工程与工艺, 1991, 7(3): 303-317.
    [261]陈恒志,李洪钟.高密度循环流化床研究现状及展望.过程工程学报, 2002, 2(2): 186-192.
    [262]陈恒志,李洪钟,柳华,李连轩.高密度下行床内颗粒浓度径向分布的研究.化学反应工程与工艺, 2004, 20(1): 41-46.
    [263]陈恒志,李洪钟.高密度下行床反应器的流体力学特性.化工学报, 2005a, 56(3): 455-461.
    [264]陈恒志,李洪钟.高密度下行床相结构分析.化工学报, 2005b, 56(8): 1456-1461.
    [265]陈俊武.影响催化裂化汽油组成的化学反应问题.当代石油化工, 2003, 11(7): 1-7.
    [266]陈俊武.催化裂化工艺与工程(第一册).北京:中国石化出版社, 2005b.
    [267]陈俊武.催化裂化工艺与工程(第二册).北京:中国石化出版社, 2005c.
    [268]陈俊武.催化裂化工艺与工程(第三册).北京:中国石化出版社, 2005a.
    [269]程易.气固两相流动数值模拟及其非线性动力学分析. [博士学位论文].北京:清华大学化学工程系, 2000.
    [270]邓先梁,沙颖逊,王龙延,王国良,孟繁东.渣油催化裂化反应动力学模型的研究.石油炼制与化工, 1994, 26(8): 35-39.
    [271]董峰,邓湘,徐立军,徐苓安.过程层析成像技术综述.仪器仪表用户, 2001, 8(1): 6-11.
    [272]高金森.催化裂化提升管反应器内流动传热及反应的数值模拟. [博士学位论文].北京:中国石油大学, 1997.
    [273]高金森,徐春明,杨光华,郭印诚,林文漪.提升管反应器气固两相流动反应模型及数值模拟I.气固两相流动反应模型的建立.石油学报(石油加工), 1998, 14(1): 27-33.
    [274]高金森,徐春明,林世雄,郭印诚,王希麟.催化裂化提升管反应器气液固三相流动反应的数值模拟气液固1.三相流动反应模型的建立.石油学报(石油加工), 1999, 15(3): 16-22.
    [275]高金森,徐春明,白跃华.催化裂化汽油催化改质降烯烃反应规律的试验研究.炼油技术与工程, 2004, 34(5): 11-15.
    [276]郭湘波,龙军,侯拴弟,邹圣武. FCC反应机理与分子水平动力学模型研究(I)动力学模型建立.石油炼制与化工, 2004, 35(11): 74-78.
    [277]郭湘波. FCC催化剂复配性能及流动-反应耦合数学模拟. [博士学位论文].北京:石油化工科学研究院, 2005.
    [278]郭湘波,龙军,侯拴弟,何峻. FCC反应机理与分子水平动力学模型研究(III)重油催化裂化模型的建立.石油炼制与化工, 2005, 36(7): 59-63.
    [279]郭湘波.石油化工科学研究院. 2006b:个人交流.
    [280]郭湘波,侯拴弟,龙军,朱丙田,张占柱.重油催化裂化反应历程数值模拟(II)重油催化反应历程数值模拟.石油学报(石油加工), 2006a, 22(1): 9-14.
    [281]侯拴弟,龙军,郭湘波,朱丙田,张占柱.重油催化裂化反应历程数值模拟(II)模型建立及流体力学性能模拟.石油学报(石油加工), 2006, 21(5): 19-27.
    [282]霍永清,王亚民,汪燮卿等.多产液化气和高辛烷值汽油MGG工艺技术.石油炼制, 1993, 24(5): 41-52.
    [283]江洪波,欧阳福生,翁惠新.重油催化裂化反应集总动力学模型(III)工业装置的模拟计算.化工学报, 2001, 52(7): 606-611.
    [284]金涌,俞芷青,白丁荣,祁春明,钟孝湘.并流下行快速流态化气-固两相流动模型的研究.化学反应工程与工艺, 1990, 6(2): 17-23.
    [285]金涌,魏飞,程易,汪展文,王金福.气固并流折叠式快速流化床反应装置.专利号: ZL00100823.4, 2000.
    [286]金涌,祝京旭,汪展文,俞芷青主编.流态化工程原理.北京:清华大学出版社, 2001.
    [287]李强,魏飞,罗国华,王雷,张琪皓.催化裂化汽油的下行床催化转化.石油化工, 2004, 33(5): 402-406.
    [288]林世雄.石油炼制工程(下).北京:石油工业出版社, 1988.
    [289]林宗虎,王栋,王树众,林益.近期多相流基础理论研究综述.西安交通大学学报, 2001, 35(9): 881-885.
    [290]刘红云,卢择卫.急冷技术在催化裂化中的应用.炼油设计, 1996, 26(2): 33-36.
    [291]刘明言,杨扬,薛娟萍,胡宗定.气液固三相流化床反应器测试技术.过程工程学报, 2005, 5(2): 217-222.
    [292]刘树安,郑秉霖,王梦光.基于GAs求解整数规划问题的算法设计.东北大学学报(自然科学版), 1998, 19(2): 198-200.
    [293]毛信军,翁惠新,朱钟敏.催化裂化集总动力学模型的研究III:轻燃料油原料和产物的分析及动力学常数的测定.石油学报(石油加工), 1985, 1(4): 12-17.
    [294]毛信军,王顺生,翁惠新,朱钟敏,邹滢,刘馥英.催化裂化动力学模型的建立及其应用.华东化工学院学报, 1988, 14(4): 409-417.
    [295]欧阳福生,江洪波,翁惠新.针对多产柴油的催化裂化集总动力学模型研究——模型的建立和工业模拟.石油学报(石油加工), 2003, 19(6): 16-23.
    [296]钱震.大型气固并流下行床流动行为及出入口结构研究. [博士学位论文].北京:清华大学化学工程系, 2006.
    [297]沙颖逊,陈香生,刘继绪.催化裂化集总动力学模型的研究I:物理模型的确立.石油学报(石油加工), 1985, 1(1): 3-15.
    [298]沙颖逊,孟凡东,阎遂宁,韩剑敏.催化裂化反应再生系统模拟优化软件的研究和应用.石油炼制与化工, 1997, 28(6): 52-28.
    [299]沙颖逊,崔中强,王明党,王国良,张洁.重质油裂解制烯烃的HCC工艺.石油化工, 1999, 28(9): 618-621.
    [300]孙武,常增明.两段提升管催化裂化孤岛油VGO工业试验.中国石油大学胜利学院学报, 2006, 20(3): 7-9.
    [301]汤海涛.灵活多效催化裂化工艺技术应用研究.炼油设计, 2001, 31(6): 8-10.
    [302]汤海涛,王龙延,王国良,张立新,魏家禄,陈正洪,滕天灿,孙中杭.灵活多效催化裂化工艺技术的工业试验.炼油技术与工程, 2003, 33(3): 15-18.
    [303]田捷,包尚联,周明全.医学影像处理与分析.北京:电子工业出版社, 2003.
    [304]汪申,时铭显.我国催化裂化提升管反应系统设备技术的进展.石油化工动态, 2000,8(5): 46-50.
    [305]王韶华,吴雷.多产异构烷烃并增产丙烯技术(MIP-CGP)工业应用.石油化工设计, 2006, 23(4): 39-41.
    [306]王顺生,翁惠新,毛信军,刘馥英.催化裂化集总动力学模型的研究IV:重燃料油网络动力学参数的测定.石油学报(石油加工), 1988, 4(3): 18-26.
    [307]王瑜,钮根林,杜峰,孙星东,杨朝合,徐春明.重油催化裂化装置提升管在线取样研究.石油大学学报(自然科学版), 2002, 26(5): 80-83.
    [308]魏飞,金涌,俞芷青.新一代催化裂化装置的开发——气固超短接触催化裂化过程.油气加工, 1994a, 4(1): 36-30.
    [309]魏飞,金涌,俞芷青,甘宁俊,汪展文.颗粒磷光示踪技术在循环流化床中的应用.化工学报, 1994b, 45(2): 230-235.
    [310]魏飞,刘金忠,金涌,俞芷青.气固并流下行床气体扩散行为的研究.化工学报, 1994c, 45(4): 429-434.
    [311]魏飞,祝京旭.气固下行流化床反应器(III)气、固混合.化学反应工程与工艺, 1996, 12(4): 429-437.
    [312]魏飞,金涌,钱震,余皓,汪展文.适用于气固并流下行床反应器的催化剂入口装置.专利号: ZL00106169.0, 2000.
    [313]魏飞,罗国华,李志强,金涌.气固并流下行与上行耦合的催化裂化反应工艺及反应装置.专利号: ZL02103833.3, 2002.
    [314]魏国志. RFCC装置标定情况分析(I).催化裂化, 1998, 17(11): 7-11.
    [315]翁惠新,毛信军,严正泽.催化裂化反应动力学模型的研究——轻烷烃催化裂化反应网络及动力学常数的测定.石油炼制, 1983, 10: 36-42.
    [316]翁惠新,王顺生,邹滢.催化裂化反应集总动力学模型的研究.化学反应工程与工艺, 1987, 3(4): 9-17.
    [317]翁惠新,马军,欧阳福生.重油催化裂化反应集总动力学模型(II)模型的工业验证.化工学报, 1995b, 46(6): 669-674.
    [318]翁惠新,欧阳福生,马军.重油催化裂化反应集总动力学模型(I)模型的建立.化工学报, 1995a, 46(6): 662-668.
    [319]吴长江.聚丙烯技术新进展.石油化工, 2006, 35(3): 289-294.
    [320]吴世法.近代成象技术与图像处理.北京:国防工业出版社, 1997.
    [321]肖庭延,宋金来. Abel变换数值反演的离散正则化方法.计算物理, 2000, 17(6): 602-610.
    [322]肖庭延,于慎根,王彦飞.反问题的数值解法.北京:科学出版社, 2003.
    [323]邢付雷,吕涯.催化裂化多产丙烯工艺.石化技术, 2005, 12(4): 42-46.
    [324]邢文训,谢金星.现代优化计算方法.北京:清华大学出版社, 1999.
    [325]徐春明,林世雄,吕亮功,唐清林.工业提升管在线取样的研究.炼油设计, 1997, 27(3): 39-42.
    [326]许友好,余本德,张执刚,龙军,蒋福康.一种用于流化催化转化的提升管反应器.专利号: ZL99105903.4, 1999.
    [327]许友好,张久顺,龙军.生产清洁汽油组分的催化裂化新工艺MIP.石油炼制与化工, 2001, 32(8): 1-5.
    [328]许友好,张久顺,龙军,何鸣元,徐惠,郝希仁.多产异构烷烃的催化裂化工艺技术开发与工业应用.中国工程科学, 2003a, 5(5): 55-58.
    [329]许友好,张久顺,徐惠,郝希仁.多产异构烷烃的催化裂化工艺的工业应用.石油炼制与化工, 2003b, 34(11): 1-6.
    [330]许友好,张久顺,马建国,龙军.生产清洁汽油组分并增产丙烯的催化裂化工艺.石油炼制与化工, 2004, 35(9): 1-4.
    [331]许友好,龚剑洪,刘宪龙,马建国.第二反应区在MIP工艺过程中所起作用的研究.石油炼制与化工, 2006, 37(12): 30-33.
    [332]杨朝合,山红红,张建芳,马安.传统催化裂化提升管反应器的弊端与两段提升管催化裂化.中国石油大学学报(自然科学版), 2007, 31(1): 127-131.
    [333]杨健,谢晓东,蔡智.增产丙烯、多产异构化烷烃的清洁汽油生产技术(MIP)在催化裂化装置上的应用.中外能源, 2006b, 11(3): 54-60.
    [334]杨健,谢晓东,蔡智,许友好. MIP-CGP技术的工业试验.石油炼制与化工, 2006a, 38(8): 54-58.
    [335]尤兴华,桑运超,刘永红,李春义,杨朝合,山红红.两段提升管催化裂化技术在玉门炼油化工总厂的应用.中国石汕大学学报(自然科学版), 2007, 31(1): 132-138.
    [336]张宝芬,彭黎辉,姚丹亚.过程层析成象技术.石油工业技术监督, 2001, 17(6): 12-15.
    [337]张建芳,山红红,李正,钮根林,孙昱东.两段提升管催化裂化新技术的开发(I)两段串联提升管反应器.石油学报(石油加工), 2000, 16(5): 66-69.
    [338]张久顺.提高催化裂化柴油产率的常用措施.炼油设计, 1999, 29(11): 7-10.
    [339]张明辉.提升管/下行床反应器颗粒聚集行为的实验和数值模拟研究. [博士学位论文].北京:清华大学化学工程系, 2004.
    [340]张玉林,范恩瑞. FCC急冷技术的应用和经济效益分析.黑龙江石油化工, 1999, 10(4): 5-8.
    [341]张志攀. X射线成像技术测量气固两相流. [硕士学位论文].北京:清华大学化学工程系, 2002.
    [342]张志攀,刘会娥,罗国华,汪展文,魏飞. X射线投影成像法测量气固流化床中的固含分布(I)原理及图像处理方法.过程工程学报, 2002, 2(5): 400-405.
    [343]张志攀,罗国华,魏飞,汪展文. X射线投影成像法测量气固流化床中的固含分布(II)应用及误差分析.过程工程学报, 2003, 2(5): 400-405.
    [344]赵燕,杨茹欣.国外聚烯烃生成技术进展.乙烯工业, 2005, 17(3): 6-10.
    [345]赵永志,程易,金涌.提升管与下行床颗粒团聚行为的离散颗粒模拟.化工学报, 2007, 58(1): 44-63.
    [346]郑雨,魏飞,金涌.下行床反应器内催化裂化过程的CFD模拟.化工学报, 2003, 54(8): 1078-1086.
    [347]周力行.湍流两相流动和燃烧的统一关联矩阵封闭模型.工程热物理学报, 1991, 12(2): 203-206.
    [348]朱开宏,毛信军,翁惠新.催化裂化集总动力学模型的研究II:实验方案的计算机事前模拟.石油学报(石油加工), 1985, 1(3): 47-55.
    [349]朱开宏,袁渭康编著.化学反应工程分析.上海:华东理工大学出版社, 2002.
    [350]祝京旭,魏飞,杨勇林.气固下行流化床反应器(I)下行管反应器的发展及其应用.化学反应工程与工艺, 1996, 12(2): 214-224.
    [351]庄天戈. CT原理与算法.上海:上海交通大学出版社, 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700