X射线脉冲星导航算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了X射线脉冲星导航算法,包括观测数据处理、误差修正、模糊度搜索、导航定位等。主要工作及创新点概括如下:
     1.通过对脉冲星的特性分析,总结了适宜于X射线脉冲星导航的脉冲星所应具备的条件。分析了X射线脉冲星导航的原理、基本要素、算法流程及其与其他导航系统的异同点。导出了脉冲星差分观测方程,分析了它们对测量误差的消除或减弱能力。概述了X射线脉冲星导航在定时、定姿、测速、定位方面的导航算法。
     2.以地面射电观测数据处理及时间模型建立精化为目标,研究了将脉冲到达时间观测量转换到太阳系质心处TCB/TDB时间尺度的计算方法及时间模型精化算法。统计分析了Einstein延迟、Shapiro延迟、Roemer延迟、色散延迟以及大气延迟改正的量级及变化特点,对比了不同双星模型及行星星历对脉冲星参数拟合的影响,以期为数据处理提供依据。
     3.阐述了X射线巡天观测数据从数据提取到时间转换的处理流程。导出了周期搜索的计算方法,并利用Crab脉冲星的实测数据实现了轮廓折叠。发现当搜索周期未达到一定精度时,受观测光子数在折叠周期内平均作用,不能形成准确的脉冲轮廓。分析了折叠轮廓区间数及观测总光子数对折叠轮廓信噪比及时间分辨率的影响。
     4.给出了判断脉冲星是否受航天器自身及第三天体遮挡的计算公式。通过计算分析,总结了脉冲星可见性的变化规律。发现航天器自身遮挡是影响脉冲星可见性的主要因素。提出了提高脉冲星可见性的探测器架设方法,将脉冲星可见性由50%提高到了92%。
     5. GPS卫星导航系统通常利用精度衰减因子(DOP)进行选星,其计算方法是建立在所有卫星观测值都具有基本相同的测量误差的基础上的。本文利用SNR估算法对各脉冲星的测量误差进行了计算。分析得出不同脉冲星具有特定的观测误差,且从几十米至上千公里差异较大。因此本文导出了同时顾及不同脉冲星测量误差的差异及空间几何结构的DOP计算公式。总结了DOP随观测脉冲星的变化情况。最终通过计算给出了采用3~6颗脉冲星进行导航时的最优脉冲星组合,为X射线脉冲星导航应用提供了参考依据。
     6.编制完成了脉冲星相位模糊度搜索算法库。分析了模糊度搜索随观测误差、检核脉冲星数、时间误差、脉冲星位置误差、脉冲周期、脉冲星几何结构的变化情况。利用先双差后单差检验法以及钟差辅助检验法解决了单差检验中模糊度搜索正确性受测相误差影响较大的难点,有效降低了通过阈值的模糊度组合数,提高了模糊度搜索的成功率。基于整周期数关系式的模糊度搜索方法,可避免解算航天器位置,有效提高模糊度搜索速度,便于工程实现,但也同时失去了解算航天器位置对观测误差的平差作用。因此该方法受测量误差的影响较大。
     7.几何法定位可以解决航天器故障或轨道机动期间的航天器轨道确定问题,本文导出了脉冲星几何法定位的计算公式,编制完成了脉冲星几何法定位软件。发现星表误差对定位精度影响随航天器到时间模型基准点距离的增大而增大,应尽量将时间模型设定在距离航天器轨道较近的参考点以有利于改善定位精度。相位误差对定位精度具有严重影响。测量误差较小时,增加观测脉冲星可以降低定位误差,相反当测量误差较大时,增加观测脉冲星对提高定位精度并不一定有利。
     8.导出了利用三差观测量测速的计算公式。由于在三差测速中采样率高,观测量偶然误差对三差测速精度影响较大。采样率越高,测速精度受偶然误差影响越大,计算结果越不稳定。而采样率越低越不能反映航天器的瞬时速度。
     9.提出了基于互相关技术的脉冲星相对定位方法。该方法可以通过观测任何具有时变信号的天体进行定位,突破了X射线脉冲星绝对定位中需要选取具有稳定周期脉冲星的限制,增大了被选星源的数量。可以达到简化计算过程,缩小探测器面积的作用。
     10.在相对定位中,分别利用仿真及实测数据进行了互相关时延计算分析。发现时变信号变化幅度是影响时延测定精度的重要因素。提出了改进的时延计算方法。利用观测数据并道,在提高数据信噪比的同时可达到将时延测量精度提高到脉冲到达时间测量精度的效果,避免了数据采样间隔对时延测量精度的影响。
     11.编制完成了脉冲星动力学定轨软件。评定了各项误差对定轨精度的影响。通过计算得出:在解算航天器位置的同时,对每颗脉冲星进行钟差全弧段二次多项式参数估计,可吸收脉冲星误差系统部分,提高定轨精度。但由于增加了解算参数,当脉冲星测量误差较大时,增大了导致定轨矩阵奇异的可能性。测量误差对定轨精度的影响在动力学方程的约束下明显降低。定轨精度由几何法的几十公里提高到100米。
     12.利用单脉冲星定轨方法,在X射线脉冲星导航试验阶段具有重要的实际意义。但不同脉冲星的定轨误差从几公里至几十公里不等,精度不稳定。为解决该问题,分析了脉冲星几何位置与定轨精度的关系,发现在RTN坐标系内,R、N方向以及位置定轨误差表现出当脉冲星方向单位向量与航天器轨道面Z轴夹角接近90°时误差增大,远离90°时误差减小的变化规律,而T方向误差变化与此相反,解决了单脉冲星定轨时的选星问题。提出了提高单星定轨精度的单探测器准多星定轨方法,有效解决了单星定轨中几何结构不佳,精度较低的缺点,定轨精度可与多星定轨相媲美。
This thesis deals with the X-ray pulsar navigation algorithms including data processing, error corrections, phase ambiguity resolution, and navigation and positioning methods. The main works and contributions are summarized as follows.
     1. Necessary qualifications of pulsars for the X-ray pulsar navigartion are proposed through the analysis of pulsar character. The principle and basic elements and navigation algorithmic flow of the X-ray pulsar navigation are described. The comparisions between the X-ray pulsar navigation and other navigation systems are made. Differential observation equations are derived and their ability of eliminating and reducing observation errors is investigated. The X-ray pulsar navigation algorithms about the timing correction, attitude determination, velocity determination and positioning are generally summarized.
     2. Aimed at data processing for ground radio observations and timing model setting-up, the transformation of the time of arrival(TOA) observed onboard spacecraft to the TCB/TDB time at the barycenter of the solar system and the pulsar timing model refining are researched. The magnitude of order and variations of Einstein delay, Shapiro delay, Roemer delay, dispersion delay and atmospheric delay are statistically analysed. The influences of varying timing models for binary pulsars and of planetary ephemeris on pulsar parameter fitting are compared. These analyses constitute a reference for henceforth data processing.
     3. The X-ray surveying data processing flows from data selection to time transformation are expounded. Computing method for the period search is educed. And the pulse profile folding is realized using real data of Crab pulsar. The results show that pulse profile can not exactly formed if the period of pulse is not known to a certain precision due to the insufficiency of observed photons. The influence of profile subinterval numbers and total number of observed photons on the signal-noise ratio and time resolution of profile are analysed.
     4. Equations judging whether a pulsar is sheltered by itself or by the third celestial body are given. Variations in pulsar visibility are analysed by means of calculation. It is pointed out that the main factor which affects pulsar visibility is the spacecraft itself, and that a proper detector setting can improve the visibility from 50% to 92%.
     5. GPS satellite navigation system ususlly selects satellites by a factor called the dilution of precision(DOP) based on the assumption that all satellite measurements have equal observation error. Pulsar’s observation error are calculated using the SNR estimation method. Results show that various pulsar has normally a large observation error, from several tens of meters to thousands of kilometers. The DOP formula is deduced considering both unequal observation errors for various pulsars and their geometry configuration. Changes of DOP with the pulsar configuration are also summarized. Finally the best navigation pulsar configurations including three to six pulsars are selected through analysis, which provide a reference for the application of X-ray pulsar navigation.
     6. A library of phase ambiguity resolution algorithms is furnished. The situation about ambiguity searching are analysed which are affected by the observation error, number of pulsars, clock error, pulsar position error, pulse period, and pulsars’geometry configuration. In the single difference checkout method the ambiguity resolution correctness is severely influenced by the phase error. Using double-difference measurements followed by using single-difference measurements or using the spacecraft-clock-offset-aided single difference checkout method can solve this problem. These two methods can efficiently reduce the number of ambiguity combination that pass the threshold and improve the success ratio. Using the ambiguity resolution method based on the full-period number relation formula can avoid calculating spacecraft position. This method can effectively speed up searching and is convenient for implement, but fails to adjust observation errors during spacecraft position computation. So it suffer severely the influence of observation error.
     7. Geometric orbit determination is useful when spacecraft has a failure or in maneuver. Equations associated with the geometric orbit determination are derived and related software is developed. It is pointed out that the influence of pulsar ephemeris error is severer if the distance between the spacecraft and the point to which the timing model refers is very large. So we should manage to set the timing model reference point to the position closer to the running spacecraft. The phase error severely affects position precision. Increasing observing pulsars can reduce orbit determination error if the observation error is small. However if observation error is large, increasing observing pulsars may not benefit the orbit determination precision.
     8. Equations for the speed determination using triple-difference measurements are given. Random measurement error may bring severe influence on the triple-difference speed determination due to high sampling data rate. The higher the sampling rate the severer the influence on speed determination precision, and the results are more unstable. On the other hand the lower sampling rate may not reflect the instantaneous speed of spacecraft.
     9. Pulsar relative positioning based on the cross correlation method is presented. The spacecraft position can be determined through observing any celestial body which radiates variable signal. Thus it breaks away from the limitation of having to use pulsars that have stable period in absolute positioning. This method can use a wide range of pulsar sources. It also can simplify the calculation process and reduce the detector area as well.
     10. For the relative positioning, cross correlation calculation is carried out using simulated and real data. Results show that the amplitude of temporal signal is the main factor limiting the time delay determination precision. An improved time delay calculation method is presented. Using combined bins of observations can raise the signal-noise ratio of data and improve the time delay precision to such a level at which precision of time of arrival can be achieved. It avoid the influence of data sampling interval on time delay determination precision.
     11. A dynamic orbit determination software package is developed. The influence of all kinds of error sources on the orbit determination is assessed. It is found that the estimation of clock parameters with a second order polynomial for each pulsar in conjunction with the spacecraft position determination can absorb partial systematic errors and improve orbit determination precision. But because this method will increase the number of estimated parameters, the possibility of orbit determination matrix becoming singular is increased. The influence of observation error on the orbit determination precision is significantly reduced because of the dynamic equations. The orbit determination precision is improved from several kilometers to one hundred meters.
     12. The orbit determination by a single pulsar is very useful in the test phase of X-ray pulsar navigation. But in this case the orbit precision is not stable, varying from several kilometer to tens of kilometers. In trying to solve this problem the relationship between the palsar geometry and orbit determination precision is analysed. It is found that in RTN coordinate system the errors in R and T direction and position determination become larger when the angle between the unit vector in pulsar direction and Z-axis of orbit plane gets closer to 90°. While the errors will decrease when the angle is apart from 90°. And that the variation in T direction precision is opposite. Then the selecting pulsar problem with the single pulsar orbit determination error is investigated. A quasi-multiple pulsar orbit determination method is put forward which can improve the orbit determination precision. This method can effectively overcome the disadvantage of bad geometry configuration. And yield a precision comparable with that of the multi-pulsar orbit determination.
引文
[1]. Thornton C.L. , Border J.S. . Radiometric Tracking Techniques for Deep Space Navigation[R].John Wiley & Sons, Hoboken, NJ, 2003.
    [2]. Parkinson, B.W.,Spilker, J.J.J.Eds.Global Positioning System: Theory and application Volume I [M].Washington DC: American Institute of Aeronautics and Astronautics,1994.100-172.
    [3].郝岩.深空探测网[M].北京:国防工业出版社,1995.37-45.
    [4].秦永元,张洪钺,汪叔华.卡尔曼滤波与组合导航原理[M].西安:西北工业大学出版社.1998:238-239.
    [5]. Emadzadeh A. A.,Speyer J. L.,Hadaegh F. Y..A Parametric Study of Relative Navigation Using Pulsars[C].Institute of Navigation 63rd Annual Meeting, Cambridge, MA, 23-25 April 2007:454-459.
    [6].杨挺高,仲崇霞.毫秒脉冲星计时观测进展[J].天文学进展,2005, 23(1):1-9.
    [7].潘炼德.毫秒脉冲星在时间计量中的可能应用[J].陕西天文台台刊,2001, 24(1):1-8.
    [8].杨廷高,仲崇霞.脉冲星时稳定度及可能应用[J].时间频率学报,2004,27(2):129-137.
    [9]. Nieto M. M..The Quest to Understand the Pioneer Anomaly[J].europhysics news,2006,37(6):30-34.
    [10]. Paul S. Ray,Suneel I. Sheikh,Paul H. Graven,Michael T. Wolff,Kent S. Wood,Keith C. Gendreau.Deep Space Navigation Using Celestial X-ray Sources[C].ION NTM 2008,101-109.
    [11].房建成,宁晓琳.天文导航原理及应用[M].北京:北京航空航天大学出版社,2006.107-120.
    [12]. Hewish A.,Bell S. J.,Pilkington J. D.,Scott P. F.,Collins R. A..Observation of a Rapidly Pulsating Radio Source[J].Nature, 1968,217:709-713.
    [13]. Reichley, P., Downs, G., Morris, G..Use of Pulsar Signals as Clocks[J].NASA Jet Propulsion Laboratory Quarterly Technical Review, 1971,1(2):80-86.
    [14]. Downs G. S..Interplanetary Navigation Using Pulsating Radio Sources[R].NASA Technical Reports N74-34150,1974:1-12.
    [15]. Chester T. J.,Butman S. A..Navigation Using X-ray Pulsars[R].NASA Technical Reports N81-27129,1981,22-25.
    [16]. Wood K S. The USA Experiment on the ARGOS satellite:A Low Cost Instrument for Timing X-ray Binaries[C].EUV,X-Ray,and Gamma-Ray Instrumentation for Astronomy V, Eds. O. H. Siegmund&J.V. Vallerga, SPIE Proceedings. 1994,2280:19-30.
    [17]. Wood K S,Determan J R.Using the unconventional Stellar Aspect (USA) experiment onARGOS to determine atmospheric parameters by X-ray occultation[C].Proceedings of International Society of Optical Engineering (SPIE),Nashville, Tennessee. 2002,4485:258-265.
    [18]. Woodfork D W . The use of x-ray pulsars for aiding GPS satellite orbit determination[D].Air Force Institute of Technology.Degree of Master of Science in Astronautical Engineering.2005.
    [19]. Graven P.,Collins J.,Sheikh S.,Hanson J. E..XNAV Beyond the Moon[C].Institute of Navigation 63rd Annual Meeting, Cambridge, MA, 2007:23-25,.
    [20].帅平.美国X射线脉冲星导航计划及其启示[J].国际太空,2006,(7):7-10.
    [21].帅平,陈绍龙,吴一帆,张春青,李明.X射线脉冲星导航技术及应用前景分析[J].中国航天,2006,(10):27-32.
    [22].康连生.脉冲星观测及研究[J].中国科学院上海天文台年刊,1995,(16):276-279.
    [23].康连生.中国脉冲星观测研究进展和展望[J].科学通报,2001, 46(22):1849 -1851.
    [24].康连生.用50m射电望远镜作脉冲星观测与研究[J].天文研究与技术-国家天文台台刊,2004, 1(3):176 -187.
    [25].邱育海.密云综合孔径射电望远镜的相加系统及相应软件[J].中国科学院上海天文台年刊,1995,(16):280-281.
    [26].吴鑫基,张晋,王娜.我国脉冲星观测研究的进展和前景[J].天文学进展,1999, 17(3):236 -243.
    [27].张晋,吴鑫基,王娜,艾力·玉.乌鲁木齐天文站25m天线18cm脉冲星脉冲到达时间观测系统[J].天体物理学报,1999,19(4):447 -450.
    [28].倪广仁.超高稳定毫秒周期射电脉冲星的定时研究[J].电子科技,1995,32(6):4-6.
    [29].倪广仁.毫秒脉冲星极弱信号研究的进展和成果[J].数据采集与处理,1998,13(10):99-102.
    [30].倪广仁,杨廷高,柯熙政,和康元.毫秒脉冲量计时方法和实验研究的进展[J].陕西天文台台刊,1999,22(2):101-107.
    [31]. Ren-Dong Nan, Qi-Ming Wang, Li-Chun Zhu, Wen-Bai Zhu, Cheng-Jin Jin and Heng-Qian Gan.Pulsar Observations with Radio Telescope FAST[J].Chin. J. Astron. Astrophys, 2006,6(2):304–310.
    [32].倪广仁,杨廷高,和康元,柯熙政.毫秒脉冲星计时观测的研究进展[J].陕西天文台台刊,1998,21(2):32-38.
    [33].倪广仁,柯熙政,杨廷高,李孝辉.毫秒(ms)脉冲星计时观[J].云南天文台台刊,2003,(3):47-55.
    [34].倪广仁,杨廷高,柯熙政,和康元.毫秒脉冲星计时方法的研究进展和前景[J].天文学进展,2000,18(2):177-180.
    [35]. Graven P.,Collins J.,Sheikh S.,Hanson J.,Ray P.,Wood K..XNAV for Deep Space Navigation[C].31th annual AAS guidance and control conference,AAS 08-054.
    [36].谢振华,许录平,倪广仁,王岩.基于一维选择线谱的脉冲星辐射脉冲信号辨识[J].红外与毫米波学报,2007,26(3):187-190.
    [37].乔黎,刘建业,郑广楼,贺亮,熊智.基于X射线脉冲星导航系统探测器研究[J].传感器与微系统,2008,27(1):9-11.
    [38].胡中为,萧耐园.天文学教程(上册)[M].北京:高等教育出版社,2003.68-77.
    [39].余明.简明天文学教程[M].北京:科学出版社,2001.91-118.
    [40].方军,戴本忠.毫秒脉冲星的高能辐射[J].云南大学学报,2005,27(6):480-484.
    [41].张承民,吴鑫基,贺龙松.脉冲星的辐射机制[J].河北工学院学报,1994,23(4):77-81.
    [42]. Charles P. A.,Seward F. D..Exploring the X-ray Universe[M],Cambridge University Press,Cambridge UK,1995.
    [43]. Andrew G.Lyne,Francis Graham-Smith.Pulsar Astronomy[M].United Kingdom:Cambridge University Press,2006.50-72.
    [44]. Verbunt F.,van den Heuvel,E. P. J..Formation and Evolution of Neutron Stars and Black Holes in Binaries[J].X-ray Binaries, W. H. G. Lewin, J. van Paradijs, and E. P. J. van den Heuvel Eds.,Cambridge University Press, Cambridge UK,1995:457-494.
    [45]. Sheikh S. I. . The use of variable celestial x-ray sources for spacecraft navigation[D] . Maryland , Department of Aerospace Engineering , University of Maryland.2005.
    [46].朱慈墭.天文学教程(下册)[M].北京:高等教育出版社,2003.95-108.
    [47]. Adam M. Chandler.Pulsar Searches:From Radio to Gamma-Rays[D].California:California Institute of Technology.2003.
    [48].陈尉,屈进禄等.大质量X射线双星脉冲星4U 1901+03的脉冲轮廓研究[J].天文学报,2008,49(1):18-27.
    [49]. Darryll J. Pines.X-ray Source Navigation for Autonomous Position Determination Program [R].DARPA/TTO. USA. 2004.
    [50]. Victoria M. Kaspi.Recent progress on anomalous X-ray pulsars[J].Astrophys Space Sci,2007,(308):1–11
    [51].魏学.脉冲星观测及其若干应用(I)[J].天文学进展,1990,8(4):303-309.
    [52]. Becher W, Trumper J. The X-ray luminosity of rotation-powered neutrion stars[J]. Astronomy and Astrophysics.1997,326:682-691.
    [53].李林森.脉冲星的自转能和磁辐射功率随年龄的演变[J].东北师大学报自然科学版,2000,32(1):121-122.
    [54]. Taylor J H..Millisecond Pulsars: Nature’s Most Stable Clocks[C].Proceedings of the
    IEEE,79(7):1054-1062.
    [55].王娜,吴鑫基.射电脉冲星周期跃变研究的进展[J].天文学进展,2000,18(3):229-237.
    [56]. Lewin, W. H. G., Paradijs, J. V., Taam, R. E..X-ray Bursts[J].X-ray Binaries, W. H. G.
    Lewin, J. van Paradijs, and E. P. J. van den Heuvel Eds., Cambridge University Press,
    Cambridge UK,1995:175-232.
    [57].杨廷高.毫秒脉冲星计时的多星观测[J].宇航计测技术,2004,24(1):57-61.
    [58].仲崇霞,杨廷高.脉冲星时间稳定度的估计方法[J].时间频率学报,2004,27(1):
    48-52.
    [59].仲崇霞,杨廷高.三种综合脉冲星时算法的研究和比较[J].中国科学院研究生院学
    报,2007,24(6):806-812.
    [60]. Matsakis D. N.,Taylor J. H.,Eubanks T. M..A Statistic for Describing Pulsar and Clock
    Stabilities[J].Astronomy and Astrophysics,1997,326:924-928.
    [61]. Kaspi V. M.,Taylor J. H.,Ryba M. F..High-Precision Timing of Millisecond Pulsars.
    III:Long-Term Monitoring of PSRs B1855+09 and B1937+21[J].Astrophysical Journal,
    1994,428:713-728.
    [62].倪广仁,杨挺高.毫秒脉冲星计时和原子时[J].计量学报,2001, 22(4):308 -313.
    [63].李黎,郑伟.基于脉冲星的航天器自主导航方法研究进展[J].全国第十二届空间及运
    动体控制技术学术年会论文,2007:190-199.
    [64]. La Dongsheng , Wang Na . Autonomous Navigation based on X-Ray Pulsar
    Timing[C].Second International Conference on Space Information Technology,Proc. of
    SPIE Vol.6795,67952X,(2007).
    [65].史世平,徐青.X射线脉冲星导航定位原理及应用[J].测绘科学与工程,2007,27(2):
    5-7.
    [66].帅平,陈绍龙,吴一帆,张春青,李明.X射线脉冲星导航技术研究进展[J].空间
    科学学报,2007,27(2):169-176.
    [67]. van der Klis, M..Rapid Aperiodic Variability in X-ray Binaries[J].X-ray Binaries, W. H.
    G. Lewin, J. van Paradijs, and E. P. J. van den Heuvel Eds..Cambridge University Press,
    Cambridge UK,1995:252-307.
    [68].杨廷高.X射线脉冲星脉冲到达航天器时间测量[J].空间科学学报,2008,28(4):
    330-334.
    [69]. Taylor J H,Manchester R N,Lyne A G.Catalog of 558 pulsars[J].Astrophys. J. Suppl.
    Ser. 1993,88:529-568.
    [70].高健健,金乘进,高龙.一种基于短时傅立叶变换的脉冲星消色散算法[J].天文研
    究与技术(国家天文台台刊),2007,4(1):21-29.
    [71]. Vyacheslav E. Zavlin.Studying millisecond pulsars in X-rays[J].Astrophys Space Sci,2007,(308):297–307
    [72]. Sheikh S.I.,Golshan A. R.,Pines D. J..Absolute and Relative Position Determination Using Variable Celestial X-ray Sources[C].30th Annual AAS Guidance and Control Conference, American Astronautical Society, Breckenridge, CO, 3-7 February 2007.
    [73].倪广仁,翟造成.中国的毫秒脉冲星计时观与建议[J].量子电子学报,2002,19(4):289-294.
    [74].杨廷高.用脉冲星钟作航天器时间标准[J].时间频率学报,2007,30(2):125-131.
    [75]. John Eric Hanson.Principles of X-ray Navigation[D].Stanford:Stanford University,1996.
    [76]. Sheikh S. I.,Pines D. J.,Ray P. S.,Wood K. S.,Lovellette M. N.,Wolff M. T..The Use of X-ray Pulsars for Spacecraft Navigation[C].14th AAS/AIAA Space Flight Mechanics Conference.AAS 04-109.
    [77]. Wood K.S..Navigation studies utilizing the NRL-801 experiment and the ARGOS satellite . Small Satellite Technology and Applications III , Ed.B.J.Horais, SPIE Proceedings,1993,1940:105-116.
    [78].帅平,陈绍龙,吴一帆,张春青,李明.X射线脉冲星导航原理[J].宇航学报,2007,28(6):1538-1543.
    [79].丁国强.X射线双星高能辐射的能谱及时变分析[D].中国科学院研究生院博士学位论文.2004.
    [80].屈进禄.X射线双星的时变分析[D].中国科学院博士学位论文.2001.
    [81]. Oliver Montenbruck, Eberhard Gill . Satellite Orbits Models, Methods, and Applications[M].Berlin:Springer,2000.157-169.
    [82]. Dennis D. McCarthy,Gerard Petit.IERS Conventions(2003)[R].IERS Technical Note No.32.
    [83]. Jean Souchay,Martine Feissel-Vernier.The International Celestial Reference System and Frame[R].ICRS Center Report for 2001-2004,IERS Technical Note No.34.
    [84]. Fairhead L. , Bretagnon P. . An Analytic Formula for the Time Transformation TB-TT[J].Astronomy and Astrophysics,1990,229:240–247.
    [85]. Irwin A. W.,Fukushima, T..A Numerical Time Ephemeris of the Earth[J]. Astronomy ans Astrophysics,1999,8(348):642–652.
    [86].高洁,萧耐园.毫秒脉冲星在天体测量中的应用[J].天文学进展,1992,10(3):228-237.
    [87].倪广仁,杨挺高,柯熙政,赵当丽.毫秒脉冲星计时的方法和发展研究[J].西安电子科技大学学报(自然科学版),2000,27(6):781 -785.
    [88].杨挺高,潘炼德,倪广仁,柯熙政.毫秒脉冲星定时研究进展[J].天文学进展,2002,20(2):167-174.
    [89]. Haugan M P. Post-newtonian arrival-time analysis for a pulsar in a binary system[J]. The astrophysical journal. 1985,296:1-12.
    [90]. Moyer T D. Transformation from proper time on earth to coordinate time in solarsystem barycentric space-time frame of reference,Parts 1[J]. Celestial Mechanics. 1981,23:33-56.
    [91]. Moyer T D. Transformation from proper time on earth to coordinate time in solarsystem barycentric space-time frame of reference,Parts II[J]. Celestial Mechanics. 1981,23:57-68.
    [92].孙维瑾,费保俊,肖昱,季诚响.X射线脉冲星自主导航的光传播时间方程[J].天文学报,2008,49(2):198-206.
    [93]. R.T.Edwards,G.B.Hobbs,R.N.Manchester.Tempo2, a new pulsar timing package. II:The timing model and precision estimates[J].arXiv:astro-ph/0607664v1 31 Jul 2006.
    [94]. Standish E. M.,JPL Planetary and Lunar Ephemerides,DE405/LE405[R],Memo IOM 312.F-98-048.JPL,1998,Pasadena.
    [95]. Fukushima T.. Ephemeris Time, Planet Ephemerides, Time Measurement, Asteroids, Numberical Analysis [J].A&A,1995,294,895.
    [96]. Seidelmann P. K..Explanatory Supplement to the Astronomical Almanac[M].University Science Books,Sausalito CA,1992.
    [97]. Lorimer, D. R..Binary and Millisecond Pulsars at the New Millennium.Living Reviews in Relativity,2001,4:5.
    [98]. Hellings, R. W..Relativistic Effects in Astronomical Timing Measurements.Astronomical Journal, 1986,91:650-659.
    [99].费保俊,孙维瑾,季诚响等.单脉冲星自主导航的可行性分析[J].装甲兵工程学院学报,2007,21(3):82-88.
    [100]. Sheikh S. I,Ronald W. Hellings,Richard A. Matzner.High-Order Pulsar Timing For Navigation[C] . ION 63rd Annual Meeting , April 23-25 , 2007 , Cambrigde ,Massachusetts:432-443.
    [101].费保俊,孙维瑾,肖昱,季诚响.X射线脉冲星自主导航的基本测量原理[J].装甲兵工程学院学报,2006,20(3):59-63.
    [102]. Shapiro, I. I..Fourth Test of General Relativity.Physical Review Letters,1964,13(26):789-791.
    [103].魏学.脉冲星观测及其若干应用(II)[J].天文学进展,1990,8(4):310-316.
    [104]. X-ray source-based navigation for Autonomous Position Determination(XNAV), BAA04-23 , http://www.eps.gov/spg/ODA/DARPA
    [105]. Schaer, S..Mapping and Predicting the Earth’s Ionosphere Using the Global Positioning System[D].Switzerland:University of Bern,Astronomical Institute,1999.
    [106]. Bilitza, D..International Reference Ionosphere 2000[J].Radio Sci.,2001,36(2):261-275.
    [107]. Sekido Mamoru,Kondo Tetsuro,Kawai Eiji,Imae Michito.Evaluation of GPS-based ionospheric TEC map by comparing with VLBI data[J].Radio Sci,2003,38(4):1069.10.1029/2000RS002620.
    [108]. Davis J. L.,Herring T. A.,Shapiro I. I.,Rogers A. E. E.,Elgered G..Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length[J].Radio Sci.,1985,20:1593-1607.
    [109]. Niell A. E..Global mapping functions for the atmospheric delay at radio wavelengths.J. Geophys. Res. 101, b2, 3227-3246, 1996.
    [110]. Tomaso Belloni,Dimitrios Psaltis,Michiel van der Klis.A unified description of the timing features of accreting X-ray binaries[J].arXiv:astro-ph/0202213v2 5 Mar 2002.
    [111]. Roger Blandford,Saul.A.Teukolsky.Arrival-Time Analysis for a Pulsar in a Binary System[J].The Astrophysical Journal,1976,205:580-591.
    [112]. Epstein, R..The binary pulsar - Post-Newtonian timing effects[J].Astrophysical Journal,Part 1,1977,216:92-100.
    [113]. Damour T.,Deruelle N..General relativistic celestial mechanics of binary systems.I.The post-Newtonian motion[J].Ann Inst. H. Poincare (Physique Theorique),1985,43:107-132.
    [114]. Damour T.,Deruelle N..General Relativistic Celestial Mechanics of Binary Systems. II. The post-Newtonian Timing Formula [J] . Ann Inst. H. Poincare (Physique Theorique),1986,44:263-292.
    [115]. Taylor J. H . in General Relativity and Gravitation (ed.MacCallum, M.A.H.) [M].Cambridge University Press,1987.
    [116]. Taylor J. H.,Weisberg, J. M..Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16[J].The Astrophysical Journal,1989,345:434-454.
    [117]. Taylor J. H.,Wolszczan A.,Damour T.,Weisberg, J. M.Experimental constraints on strong-field relativistic gravity[J].Nature,1992,355:132.
    [118]. Wex N..A timing formula for main-sequence star binary pulsars[J].astro-ph/9706086 (1997).
    [119]. George Hobbs,Russell Edwards.Tempo2 user manual[R].Australia Telescope National Facility,CSIRO,PO Box 76,Epping NSW 1710,Australia.
    [120]. D.R.Lorimer,M.Kramer.Handbook of Pulsar Astronomy[M].United Kingdom:Cambridge University Press,2005.200-239.
    [121]. G.B.Hobbs,R.T.Edwards,R.N.Manchester.Tempo2, a new pulsar timing package. I:Overview [J].arXiv:astro-ph/0603381v1 15 Mar 2006.
    [122]. W.Voges , B.Aschenbach , Th.Boller . the Rosat all-sky survey bright source catalogue.Astron. Astrophys,1999,349:389-405.
    [123]. NASA/PSU/G.Pavlov.Chandra Photo Album: Vela Pulsar 06 Jun 2000.[online], URL: http://chandra.harvard.edu/photo/2000/vela/ [cited 7 March 2005].
    [124]. Micah Johnson.Xronos User’s Guide Version 5.21[EB/OL].2004
    [125]. RXTE GOF.The ABC of XTE[EB/OL].http://rxte.gsfc.nasa.gov/ docs/xte/ abc/ contents.h ml.2007.
    [126]. Jahoda K.,Swank J. H.,Giles A. B.,Stark M. J.,Strohmayer T.,Zhang W..In Orbit Performance and Calibration of the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA)[C].Proceedings of SPIE -- Volume 2808, The International Society for Optical Engineering, 9 July 1996.
    [127]. N. Ashby, D. A. Howe.Relativity and Timing in X-ray Pulsar Navigation[J].IEEE,2006,1-4244-0074-0/06/$20.00:767–770.
    [128]. Manchester R. N., G. B. Hobbs, A. Teoh, M. Hobbs.The Australia Telescope National Facility Pulsar Catalogue[J].The Astronomical Journal 129 (April 2005): 1993-2006.
    [129]. http://www.atnf.csiro.au/research/pulsar/psrcat/
    [130].洪韵芳等.天文爱好者手册[M].成都:西川辞书出版社,1999.200-208.
    [131]. Sheikh, S. I.,Pines D. J. .Recursive Estimation of Spacecraft Position Using Xray Pulsar Time of Arrival Measurements[C].ION 61st Annual Meeting,The MITRE Corporation & Draper Laboratory,27-29 June 2005,Cambridge,MA.
    [132]. Taylor J. H..Pulsar Timing and Relativistic Gravity.Philosophical Transactions of the Royal Society of London,1992,341:117-134.
    [133].许其凤.GPS卫星导航系统与精密定位[M].北京:解放军出版社,1994.156-225.
    [134].王慧南.GPS导航原理与应用[M].北京:科学出版社,2003.134-139.
    [135]. Elliott D.Kaplan , Christopher J. Hegarty . Understanding GPS : Principles and Applications[M].BeiJing:Publishing House of Electronics Industry,2007.113-150.
    [136]. Sheikh S. I.,Pines D. J.,Ray P. S.,Wood K. S.,Lovellette M. N.,Wolff M. T..Spacecraft Navigation Using X-ray Pulsars[J].Journal of Guidance, Control, and Dynamics,2006,29(1):49-63.
    [137]. Sala J,Urruela A,Villares X et a1.Feasibility Study for a Spacecraft Navigation System Relying Pulsar Timing Information[R].Barcelona:Universitat Politecnica de Catalunia,SPAIN,2004.
    [138].杨挺高,南仁东,金乘进,甘恒谦.脉冲星在空间飞行器定位中的应用[J].天文学进展,2007,25(3):249 -261.
    [139].谢振华,许录平,郭伟,,倪广仁.基于整周数关系式的TDOA周期模糊求解算法[J].仪器仪表学报,2008,29(6):1134-1138.
    [140].谢振华,许录平,倪广仁.基于最大似然的X射线脉冲星空间定位研究[J].宇航学报,2007,28(6):1605-1608.
    [141].雄凯,魏春岭,刘良栋.基于脉冲星的空间飞行器自主导航技术研究[J].航天控制,2007,25(4):36-40.
    [142].雄凯,魏春岭,刘良栋.基于脉冲星的卫星星座自主导航技术研究[J].宇航学报,2008,29(2):545-549.
    [143]. Sheikh S.I.,Ray P. S. Weiner K.,Wolff M. T.,Wood K. S..Relative Navigation of Spacecraft Utilizing Bright, Aperiodic Celestial Sources[C].Institute of Navigation 63rd Annual Meeting, Cambridge, MA, April 23-25, 2007.
    [144]. Chlohessy W.H. , Wiltshire R.S. . Terminal Guidance System for Satellite Rendezvous[J].Journal of Aerospace Sciences,1960,27 (9):653–658.
    [145].靳玉芝.老年X-射线脉冲星的辐射特性[J].四川理工学院学报(自然科学版),2008,21(3):114-116.
    [146].田文武,吴鑫基,张喜镇.候选射电脉冲星的预测[J].天体物理学报,1999,19(4):375-379.
    [147]. John Hanson,Suneel Sheikh,Paul Graven,John Collins.Noise Analysis for X-ray Navigation Systems[C].IEEE-ION Position Location and Navigation Symposium (PLANS) 2008, Monterey, CA, 5-8 May 2008.
    [148]. Golshan A. R.,Sheikh S. I..On Pulse Phase Estimation and Tracking of Variable Celestial X-Ray Sources[C].Institute of Navigation 63rd Annual Meeting, Cambridge, MA, April 23-25,2007.
    [149].柯熙政,汪丽,倪广仁.改进的小波阈值消噪法应用于脉冲星弱信号处理[J].西安理工大学学报,2008,24(1):18-21.
    [150].汪丽,柯熙政,倪广仁.基于小波变换的脉冲星弱信号的去噪方法研究[J].天文研究与技术(国家天文台台刊),2008,5(1):49-54.
    [151].阎迪,许录平,谢振华.脉冲星信号的模糊阈值小波降噪算法[J].西安交通大学学报,2007,41(10):1193-1196.
    [152].朱晓明,廖辐成,唐远炎.基于小波分析的脉冲星信号消噪处理[J].天文学报,2006,47(3):328-335.
    [153]. Ti-Pei Li, Jin-Lu Qu, Hua Feng, Li-Ming Song, Guo-Qiang Ding, Li Chen.Timescale Analysis of Spectral Lags [J].Chinese Journal of Astronomy and Astrophysics,2004,(4):583-598.
    [154].金晶,李惕培.黑洞双星高能X射线时间延迟的研究[J].北京天文学会2008年学术年会论文集,2008(11):87-91.
    [155].乔黎,刘建业,熊智,郑广楼.基于X射线脉冲星的深空探测器自主导航方案[J].中国空间科学技术,2007,(6):1-6.
    [156].帅平,李明,陈绍龙,吴一帆,张春青.基于X射线脉冲星的导航卫星自主导航[J].中国空间科学技术,2008,(2):1-7.
    [157].李济生.人造卫星精密轨道确定[M].北京:解放军出版社,1994.17-26
    [158]. Sheikh, S. I.,Pines D. J. .Recursive Estimation of Spacecraft Position and Velocity Using Xray Pulsar Time of Arrival Measurements[J].Navigation: Journal of the Institute of Navigation,2006,53(3):149-166.
    [159]. Qiao Li,Liu Jianye,Zheng Guanglou,He Liang,Xiong Zhi.The algorithn and simulation for satellite navigation using X-ray pulsars[C] . Second International Conference on Space Information Technology,Proc. of SPIE Vol.6795,67953X,(2007).
    [160]. Qiao Li,Liu Jianye,Zheng Guanglou,He Liang,Xiong Zhi.Novel Celestial Navigation for Satellite Using X-ray Pulsars[J].Transaction of Nanjing University of Aeronautics & Astronautics,2008,25(2):101-105.
    [161].王安国.基于X射线脉冲星的空间定位误差仿真研究[J].科技导报,2008,26(20):55-59.
    [162].费保俊.相对论在现代导航中的应用[M].北京:国防工业出版社,2007.172-197.
    [163].郑广楼,刘建业,乔黎,熊智.单脉冲星自主导航系统可观测性分析[J].应用科学学报,2008,26(5):506-510.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700