挤压态AZ31镁合金室温变形行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
20世纪晚期开始,人们就一直致力于降低能源消耗和环境污染。随着自然资源短缺的加重,大范围的生产和使用轻金属合金,从而减轻重量、提高效率、降低成本,已经成为一种必然的趋势。目前,镁合金作为最轻的金属结构材料在多种技术应用上都取得了引人注目的成就,尤其在汽车、航空和电子产品领域得到了广泛的应用。但是,由于镁合金是密排六方结构,可开动的滑移系比较少,使得镁合金的塑性较差,降低了成型能力,这大大限制了变形镁合金的推广应用。正因为如此,这些年镁合金变形和成型的研究已经成为该领域里的一个重要的课题。
     本论文的工作中,我们首先通过双向双通道变通径(DDE)挤压工艺改善镁合金的组织和性能。论文选取应用比较广泛的AZ31镁合金作为研究对象。采用金相显微分析(OM)、X射线衍射分析、扫描电镜(SEM)、透射电镜(TEM)等手段,对挤压态AZ31镁合金的性能及其随后的拉伸、压缩过程中的变形行为、失效行为、退火再结晶行为进行了系统的研究。结果表明:
     DDE挤压工艺可以细化镁合金的晶粒,改善镁合金的力学性能。随着挤压温度的升高,晶粒发生长大,组织变得不均匀,力学性能变差。400℃挤压过程中沿挤压方向形成了基面{0002}纤维织构。
     对400℃挤压态镁合金进行室温拉伸、压缩变形,变形过程中发生了孪生,随着变形量的增加,组织中孪晶的数量增加,孪晶形态和孪生模式也发生了变化,厚透镜片状的{10—12}<101—1>拉伸孪晶在变形初期形成,薄片状的{10—11}<10—12>压缩孪晶在变形后期形成。相同变形量下,压缩时产生的孪晶更多,这是挤压过程中形成的基面{0002}纤维织构引起的。变形后的试样在退火过程中发生了静态再结晶,变形过程中形成的孪晶为再结晶的发生和晶粒的细化起到了关键的作用。
     400℃挤压态镁合金在室温拉伸、压缩过程中出现了明显的拉伸-压缩屈服不对称现象。晶粒尺寸、Al元素含量和织构是影响拉-压不对称性的关键因素。晶粒尺寸越小、Al元素含量越高、织构越分散,镁合金的拉-压不对称性越弱。对挤压态镁合金进行热处理,经历固溶处理的试样的拉-压不对称性最弱,这是晶粒尺寸、织构、Al元素三方面综合作用的结果。
     均匀态AZ31镁合金拉伸破坏实验过程中发生穿晶断裂,微观断口分析显示其断裂机理为解理断裂。400℃挤压态AZ31镁合金拉伸断裂机理为准解理断裂。经热处理后的挤压态镁合金在拉伸过程中出现颈缩现象,断裂均属于延性断裂,断裂机理均为微孔型断裂。不同热处理状态试样断口中的韧窝数量、深浅、形貌有所差异,经历固溶处理的试样的塑性较好,固溶+时效态的最好,这是因为Al的固溶引起了“固溶软化”,降低了柱面滑移的临界分切应力(CRSS),使得柱面滑移容易开动,改变了变形的模式,第二相的析出也为改善镁合金的塑性起到了关键的作用。
The continuous fighting against energy consumption and environment degradation, together with increasing shortage of natural resources, is making it indispensable to produce and employ a broad range of light-weight metallic alloys where weight savings directly lower costs and increase efficiencies. To date, magnesium alloys as the lightest structural alloys have been very attractive in a variety of technical applications, especially in automotive, aircraft industries, and electronic sectors. One of the key technology issues hindering the wide use of Mg alloy as a structural material is its poor formability and restricted ductility, owing primarily to its hexagonal close packed (HCP) crystal structure and consequent limitation on number of available slip systems. Therefore, the works on formability and ductility have been the most key research focuses in this Mg alloys field.
     In this work, we first processed the Mg bars by duo-direction extrusion(DDE), and Magnesium alloy AZ31 was selected as the material for investigation. The mechanical properties of extruded AZ31 and its deformation, failure, static-recrystallization behaviors during and after tension and compression were widely investigated, by the means of Optical microscopy (OM), X-ray diffraction, Scanning electron microscope (SEM), Transmission electron microscopy (TEM). The main results are as follows:
     For Magnesium alloy AZ31, the grains were refined effectively and the mechanical properties were improved by DDE. With increasing extrusion temperature, grains grew up; microstructures became uneven and mechanical properties were deteriorated. At 400℃, the basal plane {0002} fiber texture was formed along the extrusion direction.
     Samples extruded at 400℃were tensed and compressed at room temperature and deformation twinning occurred during this process. With increasing strain, the number of twins increased and the twin morphology and mode changed that the thick-lenticular shape{10—12}<101—1> tension twins were generated at onset of plastic deformation and narrow-band {10—11}<101—2> compression twins were formed at a late or final stage of deformation. Under the same strain, compression produced more twins because of the basal plane {0002} fiber texture parallel to the extusion direction. The static-recrystallization took place during annealing. Twins formed during deformation have played an important role for the static-recrystallization and grain refinement.
     There is an obvious tension/compression asymmetry of magnesium alloy extruded at 400℃during tension and compression at room temperature. Grain size, Al element content and texture must be responsible for this. The smaller the grain size, the higher the Al element content and the more dispersed texture, the weaker tension/compression asymmetry. After heat treatment, solutioned and solution-aged samples acquired the weaker tension/compression asymmetry, which is the combined result of these three aspects.
     The tensile failure of homogeneous AZ31 is transgranular fracture and microscopic appearance analysis showed that the mechanism was cleavage fracture. Specimen extruded at 400℃was quasi-cleavage fracture. Necking phenomenon occurred during tensile test of heat treatment samples. The failures belonged to ductile fracture and fracture mechanisms were all micropore aggregation fracture. The differences between them is the volume, depth, morphology of dimples; solution-aged sample exhibited the best ductibility because of the“solution softening”, which can reduce the critical resolved shear stress (CRSS) in prismatic slip, making prismatic slip easily activated and changing the mode of deformation. The precipitation of the second phase also played an important role for this.
引文
[1]刘正,张奎,曾小勤.镁基轻质合金理论基础及其应用[M].北京:机械工业出版社, 2002.
    [2]中南矿业学院物理化学教研室编.物理化学(上册) [M].北京:冶金工业出版社, 1983.
    [3] Robert E. Brown, 53rd Annual Word Magnesium Conference[C]. Light Metal Age, August, 1996:50-60.
    [4] Robert E.Brown, 48th Annual Magnesium Conference[C], Metal Age, 1991(7-8):6-13.
    [5]张津,章宗和,曾苏民等.镁合金及应用[M].北京:化学工业出版社,2004.
    [6] Elektron, Magnesium Alloys Handbook[M], Magnesium Elektron Ltd, 1953.
    [7]陈振华等编著.镁合金[M].北京:化学工业出版社, 2004.
    [8] Aghion E, Bronfin B. Magnesium Alloys Development toward the 21st Century[J]. Material Science Forum, 2000, 350-351: 19-28.
    [9] D. Eliezer, E. Aghion, F. H. Froes. Magnesium Science, Technology and Applications[J]. Advanced Performance Materials, 1998, (5):201-212.
    [10] F. H. Froes, E. Aghion, D. Eliezer.The science, technology, and applications of magnesium[J]. JOM, 1998, 50(9):30-34.
    [11] B. L. Mordike, T. Ebert. Magnesium Properties-applications-potential. Materials Science and Engineering A[J]. 2001, 302:37-45.
    [12]中国镁协网站[EB/OL]. www.chinesemagesium.org.
    [13]罗思东.镁合金在汽车上的开发与应用[J].汽车工艺与材料, 2004 (6): 38-41.
    [14]李元元,张卫文,刘英等.镁合金的发展动态与前景展望[J].特种铸造及有色合金, 2004 (1): 14-17.
    [15] Polmear I J. Magnesium alloys and applications[J]. Material Science & Technology, 1994, 10(1):1-16.
    [16] Cahn R W,师昌绪,柯俊.非铁合金的结构与性能[M].北京:科学出版社, 1999:101.
    [17] F. H. Froes, D. Eliezer, E. Aghion. Proceedings of the second Israeli international conference on magnesium science & technology [N]. Dead Sea, Israel, 2000:43.
    [18]曾正明主编.实用工程材料技术手册[M].北京:机械工业出版社,2000.
    [19]张士宏,许沂,王忠堂等.镁合金成形加工技术[J].世界科技研究与发展, 2001, 23 (6):899.
    [20]周海涛,马春江,曾小勤等.变形镁合金材料的研究进展[J].材料导报, 2003, 17(11):16-18.
    [21]余琨,黎文献,王日初等.变形镁合金的研究、开发及应用[J].中国有色金属学报, 2003, 13(2):277-288.
    [22]余琨,黎文献,李松瑞.变形镁合金材料的研究进展[J].轻合金加工技术, 2001, 29(7):6-11.
    [23]陈振华,夏伟军,严红革等.变形镁合金[M].北京:化学工业出版社, 2004, 1-371.
    [24]陈振华等编著.变形镁合金[M].北京:化学工业出版社, 2005.
    [25] M. Mbuchi, H. Iwaski, K. Yanase, et al. Low temperature superplasticity in an AZ91 Magnesium alloy processed by ECAE[J]. Scripta Materialia, 1997, 36(6):681.
    [26] S. Komura, P. B. Berbon, M. Furukawa, et al. High strain rate superplasticity in an Al2Mg alloy containing scandium[J]. Scripta Materialia, 1998, 38(12):1851.
    [27] Z. Horita, M. Furukawa, M. Nemoto, et al. Superplastic forming at high strain rates after severe plastic deformation[J]. Acta Materialia, 2000, 48(14):3633.
    [28] Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishilawa. Low temperature superplasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion[J]. Scripta Materialia, 2002, 46:851.
    [29] Y. Takeshi, S. Ken and K. Yoshihito. The Microstructures and Mechanical Properties of Hot-Processed Magnesium Casting Alloys[J]. Materials Science Forum, 2006, 503-504 (1):775-780.
    [30] V. M. Segal, V. I. Reznikov. Plastic working of metals by simple shear[J]. Russian Metallugy, 1981, (1): 99-105.
    [31] T. Mukai, H. Watanabe. Ductility enhancement In Magnesium alloy AZ31 by controlling its grain structure[J]. Scripta Materialia, 2001, 45 (1): 89-94.
    [32] R. Z. Valiev, A. V. Korznikov, R. Mulyklov. Structure and properties of ultrafine-grained materials produced by severe plastic deformation[J]. Material Science and Engineering A, 1993, 168 (2): 141-148.
    [33]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社, 2002.
    [34]毛卫民,张新民.晶体材料织构定量分析[M].北京:冶金工业出版社, 1993.
    [35]张信钰.金属和合金的织构[M].北京:科学出版社, 1976.
    [36] Y. N. Wang, J. C. Huang. Texture analysis in hexagonal materials[J]. Materials Chemistry and Physics, 2003, 81(1):11.
    [37] M. T. Prado, J. A. Valle, O. A. Ruano. Effect of sheet thickness on the microstructure evolution of an Mg alloy during large strain hot rolling[J]. Scripta Materialia. 2004, 50(5):667-671.
    [38] P. Yang, Y. Yu, L. Chen, W. Mao. Experimental determination and theoretical prediction oftwin orientations in magnesium alloy AZ31[J]. Scripta Materialia. 2004, 50 (8):1163-1168.
    [39] S. R. Kalidindi. Incorporation of deformation twinning in crystal plasticity models[J]. Journal of the Mechanics and Physics of Solids. 1998, 46:267.
    [40] M. Hilpert, A. Styczynski, J. Kiese, et al. Magnesium alloys and their application[J]. Hamburg: Werkstoff-informations gesellshaft, 1998:319.
    [41] T. Mukai, H. Watanabe, K. Ishikawa, K. Higashi. Guide for Enhancement of Room Temperature Ductility in Mg Alloys at High Strain Rates[J]. Materials Science Forum. 2003, (419-422):171.
    [42] J. W. Christian, S. Mahajan. Deformation twinning[J]. Progress in Materials Science. 1995, 39:1.
    [43] S. Myagchilov, P. R. Dawson. Evolution of texture in aggregates of crystals exhibiting both slip and twinning[J]. Modelling and Simulation in Materials Science and Engineering, 1999, 7: 975.
    [44] L. Wagner, M. Hilpert, J. Wendt. On methods for improving the fatigue performance of the wrought magnesium alloys AZ31 and AZ80[J]. Materials Science Forum, 2003, (419-422): 93.
    [45] S. R. Kalidindi. Modelling anisoptropic strain hardening and deformation textures in low stacking fault energy materials[J]. International Journal of Plasticity, 2001, 17: 837.
    [46] R. Poss. Sheet metal production of magnesium[J]. Materials Science Forum, 2003, 419-422: 327.
    [47] P. V. Houtte. Simulation of the rolling and shear texture of brass by the Taylor theory adapted for mechanical twinning[J]. Acta Metallurgica et Meterialia, 1978, 26: 591.
    [48] G. I. Taylor. Plastic strain in metals[J]. J.Inst.Met., 1938, 62:307.
    [49]陈振华,严红革,陈吉华等.镁合金[M].北京:化学工业出版社, 2004, 202-324, 446-477.
    [50]中国机械工程学会热处理专业学会.热处理手册第1卷工艺基础[M]. 3.北京:机械工业出版社, 2001, 486-493.
    [51]潘金生,仝健民,田民波.材料科学基础[M].北京:清华大学出版社, 2002, 95-103.
    [52]林肇琦.有色金属材料学[M].沈阳:东北工学院出版社, 1986, 83.
    [53]庞磊,张兴国,任政等. AZ31电磁连铸锭的热处理[J].特种铸造及有色合金, 2009, 29(1):45-47.
    [54] Y. Chino, K. Kimura, M. Mbuchi. Deformation characteristics at room temperature under biaxial tensile stress in textured AZ31 Mg alloys sheets[J]. Acta Materialia, 2009, 57:1476-1485.
    [55] J. Bohlen, F. Chmelik, P. Dobron, et al. Acoustic emission during tensile testing ofmagnesium AZ alloys[J].Journal of Alloys and Compounds, 2004, 378:214-219.
    [56] A. Staroselsky, L. Anand. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B[J]. International Journal of Plasticity, 2003, 19:1843-1864.
    [57] A. Jager, P. Lukac, V. Gartnerova, et al. Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures[J]. Journal of Alloys and Compounds, 2004, 378:184-187.
    [58] Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Mater ,2001, 49:1199.
    [59] A. Couret, D. Cailiard. Prismatic slip in beryllium I: the controlling mechanism at the peak temperature[J]. Philosophical Magazine A. 1989, 59(4):783.
    [60] A. Galiyev, O. Sitdikov, R. Kaibyshev. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions. 2003, 44(4):26.
    [61] A. Couret, D. Cailiard. Prismatic glide in divalent hcp metals[J]. Philosophical Magazine A. 1991, 63(5):1045.
    [62] A. Couret, D. Cailiard. An in situ study of prismatic glide in magnesium-I, the rate controlling mechanism[J]. Acta Metallurgic. 1985, 33(8):1447.
    [63] W. Puschl. Models for dislocation cross-slip in close-packed crystal structures: a critical review[J]. Progress in Materials Science. 2002, 47:415.
    [64] V. Vrrek, M. Igarashi. Core structure of 1/3 <11—20> screw dislocations on basal and prismatic planes in hcp metals: an atomistic study[J]. Philosophical Magazine A. 1991, 63(5):1059.
    [65] J. W. Christian, S. Mahajan. Deformation twinning[M]. Progrss in Materials Science, 1995, 39:1.
    [66] H. Yoshinaga, T. Obara, S. Morozumi: Twinning deformation in magnesium compressed along the C-axis[J] Materials Science and Engineering, 1973, 12:255-264.
    [67] Y. Chino, K. Kimura, M. Mabuchi. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy[J]. Materials Science and Engineering A, 2008, 486:481–488.
    [68] M. H. Yoo. Slip, twinning and fracture in hexagonal close-packed metals[J]. Metallurgical Transaction. 1981, 12A:409.
    [69] Y. N. Wang, J. C. Huang. The role of twinning and untwinning in yielding behavior in hot-extruded Mg–Al–Zn alloy[J]. Acta Materialia. 2007, 55:897-905.
    [70] J. Koike. Enhanced Deformation Mechanisms by Anisotropic Plasticity in Polycrystalline Mg Alloys at Room Temperature[J]. Metallurgical and Materials Transactions A. 2005, 36A:1689-1696.
    [71] E. A. Ball, P. B. Prangnell. Tensile-compressive yield asymmetries in high strength wroughtmagnesium alloys[J]. Scripta Metallurgica et Materialia, 1994, 31(2):111-116.
    [72] S. Kleiner, P. J. Uggowitzer. Mechanical anisotropy of extruded Mg–6% Al–1% Zn alloy[J]. Materials Science and Engineering A[J]. 2004, 379:258-263.
    [73] R. E. Reed-Hill, W. D. Robertson. Additional modes of deformation twinning in magnesium[J]. Acta Metallurgica, 1957, 5:717–727.
    [74] H. Yoshinaga, R. Horiuchi. Deformation Mechanisms in Magnesium Single Crystals Compressed in the Direction Parallel to Hexagonal Axis[J]. Materials Transactions, 1963, 4: 1–8.
    [75] J. Bohlen, P. Dobron, J. Swiostek, et al. On the in?uence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression[J]. Materials Science and Engineering A, 2007, 462:302-306.
    [76]崔中圻.金属学与热处理[M].哈尔滨:哈尔滨工业大学出版社, 2002.
    [77]毛卫民,赵新兵.金属的再结晶与晶粒长大[M].北京:冶金工业出版社, 1994.
    [78]庄权华. St15深冲钢板的再结晶规律研究与应用.东北大学,硕士论文, 2003.
    [79]刘楚明,刘子娟,朱秀荣等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报, 2006, 16(1):1-12.
    [80]上海交通大学《金属断口分析》编写组.金属断口分析[M].北京:国防工业出版社, 1979, 4-150.
    [81]廖景娱,梁思祖,梁耀能.金属构件失效分析[M].北京:化学工业出版社, 2003, 50-69.
    [82]束德林.工程材料力学性能[M].北京:机械工业出版社, 2003, 24.
    [83]孙智,江利,应鹏展.失效分析——基础与应用[M].北京:机械工业出版社, 2005, 81-119.
    [84]钟群鹏,赵子华.断口学[M].北京:高等教育出版社, 2006, 1-240.
    [85]王国凡,赵中魁,周琦等.材料成形与失效[M].北京:化学工业出版社, 2002, 200-271.
    [86] J. P. Hirth, J. Lothe. Theory of Dislocation[M]. 2. New York:John Wiley and SonsInc., 1982, 5-80.
    [87] J. Koike, D. Ando, T. Miyamura. Role of Twinning on Fracture in Mg Alloys, 100th Eastern Forum of Science and Technology, Study and Application of Advanced Mg Alloy. Shanghai, August, 2007.
    [88] Hidetoshi Somekawa, Toshiji Mukai. Effect of texture on fracture toughness in extruded Magnesium alloy AZ31[J]. Scripta Materialia, 2005, 53:541-545.
    [89] Manuel Marya, G. Louis Hector, Ravi Verma, et al. Microstructural effects of Magnesium alloy AZ31 on its tensile deformation and failure behaviors[J].Materials Science and Engineering A,2006, 418:341-356.
    [90] LüY Z, Wang Q D, Ding W J, et al. Fracture behavior of AZ91 magnesium alloy[J]. Materials Letters, 2000, 44:265-268.
    [91] Yan C, Mai Y W. Effect of constraint on void growth near a blunt crack tip[J]. International Journal of Fracture, 1998, 92:287-304.
    [92] Yan C, Mai Y W. Effect of crack depth and specimen width on fracture toughness of a carbon steel in ductile-brittle transition region[J]. International Journal of Pressure Vessels and Piping, 2000, 77:313-319.
    [93] Yan C, Mai Y W, Wu S X. Finite element analysis and experimental evaluation of ductile-brittle transition in compact tensile specimen[J]. International Journal of Fracture, 1997, 87:345-362.
    [94] Yan C, Ye L, Mai Y W. Effect of constraint on tensile behavior of an AZ91 magnesium alloy[J]. Materials Letters, 2004, 58:3219-3221.
    [95] Weiler J P, Wood J T, Klassen R J, et al. Relationship between interal porosity and fracture strength of die-cast magnesium AM60B alloy[J]. Materials Science and Engineering A. 2005, 395:315-322.
    [96] Gokhale A M, Patel G R. Origins of variability in the mechanical properties of AM60 magnesium alloy castings[J]. Magnesium Technology, 2001, (2):195-199.
    [97] K. U. Kainer. Magnesium alloys and technology [M]. Cambridge: Wiley-VCH, 2003.
    [98] A. A. Luo. Magnesium: current and potential automotive applications[J]. JOM (JMet). 2002, 54(2):42-48.
    [99] A. A. Luo. Wrought magnesium alloys and manufacturing processes for automotive applications[J]. SAE Trans– J Mater Manuf. 2005, 4:11-21.
    [100] L. Jin, D. Lin, D. Mao, et al. Mechanical properties and microstructure of AZ31 Mg alloy processed by two-step equal channel angular extrusion[J]. Materials Letters, 2005, 59: 2267-2270.
    [101] Y. Yoshida, L. Cisar, S. Kamado, et al. Effect of microstructural factors on tensile properties of an ECAE-processed Magnesium alloy AZ31[J]. Materials Transactions, 2003, 44:468-475.
    [102] W. J. Kim, J. B. Lee, W. Y. Kim, et al. Microstructure and mechanical properties of Mg–Al–Zn alloy sheets severely deformed by asymmetrical rolling[J]. Scripta Materialia, 2007, 56:309-312.
    [103] A. Yamashita, Z. Horita and T. G. Langdon: Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation[J]. Materials Science and Engineering A, 2001, 300:142-147.
    [104] W. J. Kim, Y. K. Sa. Micro-extrusion of ECAP processed magnesium alloy for production ofhigh strength magnesium micro-gears[J]. Scripta Material, 2006, 54:1391-1395.
    [105] M. H. Yoo, S. R. Agnew, J. R. Morris, et al. Non-basal slip systems in hcp metals and alloys: source mechanisms[J]. Materials Science and Engineering A, 2001, 87:319-321.
    [106] N. Ono, R. Rowak. Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium[J]. Material Letters, 2003, 58:39-45.
    [107] J. Koike, R. Ohyama, T. Kobayashi, et al. Grain-boundary sliding in Magnesium alloy AZ31s at room temperature to 523 K[J]. Materials Transactions, 2003, 44:445-451.
    [108] E. Tenckhoff. Deformation mechanisms, texture and anisotropy in zirconium and zircaloy, ASTM. Philadelphia, 1988.
    [109] L. Wu, A. Jain A, D. W. Brown, G. M. Stoica et al. Twinning-detwinning behavior during the strain-controlled low-cycle fatigue testing of a wrought magnesium alloy, ZK60A[J]. Acta Materialia, 2008, 56:688-695.
    [110] L. Wu, S. R. Agnew, D. W. Brown, et al. Internal stress relaxation and load redistribution during the twinning-detwinning-dominated cyclic deformation of a wrought magnesium alloy, ZK60A[J]. Acta Materialia, 2008, 56:3699-3707
    [111] M. A. Gharghouri, G. C. Weatherly, J. D. Embury, The interaction of twins and precipitates in a Mg-7.7 at.% Al alloy[J]. Philosophical Magazine A 1998, 78(5):1137-1149.
    [112]吕宜振. Mg-Al-Zn合金组织、性能、变形和断裂行为研究[D].上海:上海交通大学, 2001, 1-128.
    [113] M. T. Perez-Prado, O. A. Ruano, Texture evolution during annealing of magnesium AZ31 alloy[J]. Scripta Materialia, 2002, 46:149-155.
    [114] S. Mishra, C. Darmann, K. Lucke. On the development of the goss texture in iron-3% silicon[J]. Acta Metallurgica, 1984, 32:2185-2201.
    [115]朱敦伦,周汉民,强颖怀编著.机械零件失效分析[M].徐州:中国矿业大学出版社, 1993.
    [116] A. Akthar, E. Teghtsoonian. Solid solution strengthening of magnesium single crystals—ii the effect of solute on the ease of prismatic slip[J]. Acta Metallurgica, 1969, 17:1351-1356.
    [117] C. H. Caceres, D. M. Rovera. Solid solution strengthening in concentrated Mg–Al alloys[J]. Journal of Light Metals, 2001, 1:151-156.
    [118] David Broek. Elementary engineering fracture mechanics[M].3. Hague: Martinus Nijhoff Publishers, 1982, 46-49.
    [119] David Broek. The role of inclusions in ductile fracture and fracture toughness[J]. Engineering Fracture Mechanics, 1973, 5(2):55-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700