星系团中央区域热气体二维温度结构探测和热力学成分研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本论文中,利用新一代X射线天文卫星的高空间和高能量分辨能力,我们分析了星系团中央区域气体的二维温度结构特征和热力学成分,从而为解决星系团气体加热机制等重要前沿课题提供了观测约束。同时,进一步定量评估了探测到的二维温度结构以及其对应的气体加热对测量星系团总引力质量轮廓所造成的影响。
     (一)使用高质量Chandra观测数据,我们分析了红移为0.1左右的九个星系团中央400h7?11 kpc区域的二维气体温度分布。应用小波变换和傅里叶功率谱方法,我们探测到了尺度为100h?711 kpc左右的显著二维温度结构。这些二维温度结构的气体温度比周围气体温度高约2 ? 3 keV,所对应的能量超出为1058?60 erg。考虑到星系团气体中典型的湍流速度为200 ? 400 km s?1,这些二维温度结构的有效热传导时标约为108 ?109年,比气体冷却时间小一个量级。因此,可以排除非均匀辐射冷却造成这些温度结构的可能性。通过计算由中央AGN爆发所导致的气泡状结构上升时标,我们推测中央AGN反馈加热[1]有可能是形成这些二维温度结构的主要机制。
     为了进一步定量估计星系团中央区域的二维温度结构对总引力质量分布的X射线测量造成的偏离,我们分析了一个包含65个X射线亮星系团样本的二维温度分布和总引力质量轮廓。在流体静力学假定下,利用传统角向平均方法得到的星系团中央区域总引力质量轮廓显著偏离于扣除探测到的二维温度结构后的总引力质量轮廓,最大偏离为10?75%。这反映了目前利用X射线方法测量星系团中央区域暗物质分布的精度上限。同时这一工作也为将来精确计算星系团质量轮廓提供了条件。
     (二)为了更全面地研究星系团中央区域气体的热力学状态及其成分,我们分析了一个邻近的典型cD星系团A1795的高质量Chandra、XMM-Newton和Suzaku观测数据。我们发现在中央80h?711 kpc区域内主要存在两相星系团气体成分,其低温成分和高温成分的特征温度分别为2.0 ? 2.4 keV和5.0 ? 5.7 keV。同时,我们探测到了一个较弱的0.8 keV成分,对应中央cD星系内气体。通过对比二维辐射量度(emission measure)比值和金属丰度分布,我们发现在半径为50 ? 100h7?11kpc区域内低温成分含有较高的金属丰度。采用cD corona模型[2],我们解释了观测得到的两相气体温度、密度和辐射量度分布。在此模型中,因受到星系团磁场的约束气体低温成分分布于星系团中央区域,且与周围高温成分保持基本绝热。另外,由于此模型预言的加热源尺度和星系团中央射电瓣尺度一致(≈10h7?11kpc),我们推测中央星系AGN反馈能防止低温高密度成分过快冷却,使其保持热力学稳定态.
In this dissertation, by analyzing the high quality data achieved from Chan-dra, XMM-Newton, and Suzaku satellites, we investigate the 2-D gas temperaturesubstructures and thermal conditions in the central regions of galaxy clusters,which pose constrains on the gas heating processes that dominates the thermalevolution history of intracluster medium (ICM). We further study the systematicbiases on the measurements of gravitating mass distributions induced by the 2-Dgas temperature substructures.
     (1) By analyzing the high quality Chandra data of nine intermediate-redshift(z≈0.1) galaxy clusters, we find that the single-phase ICM dominates the central400h?711 kpc regions. By calculating the 2-D gas temperature maps, we reveal theprevailing existence of temperature substructures on~100h?711 kpc scales in thecentral regions of nine intermediate-redshift (z≈0.1) galaxy clusters. Eachsubstructure contains a clump of hot plasma whose temperature is about 2 ? 3keV higher than the environment, corresponding to an excess thermal energyof~1058?60 erg per clump. Since if there were no significant non-gravitationalheating sources, these substructures would have perished in 108?9 yrs due tothermal conduction and turbulent ?ows, whose velocity is found to range fromabout 200 to 400 km s?1, we conclude that the substructures cannot be createdand sustained by inhomogeneous radiative cooling. By calculating the risingtime of AGN-induced buoyant bubbles, we speculate that the intermittent AGNoutbursts (≥1060 erg per burst), which result in buoyant bubbles that rise andheat the ICM simultaneously, may have played a crucial role in the forming ofthe high temperature substructures.
     In order to estimate the biases on X-ray measurements of gravitating mass distributions induced by the 2-D high temperature substructures in cluster’s cen-tral region, we analyze the temperature maps and mass profiles of an extendedsample consisting of 65 galaxy clusters. We find that such temperature sub-structures can bias the azimuthally-averaged mass profiles by 10 ? 75%, whichsets an upper limit on the precision of current dark matter mass measurements.We propose that the temperature maps can be used to identify substructuresnot in hydrostatic equilibrium, and help improve the accuracies of X-ray massmeasurements.
     (3) Based on a detailed analysis of the high-quality Chandra, XMM-Newton,and Suzaku data of the X-ray bright cluster of galaxies Abell 1795, we report aclear preference for a two-phase ICM model, which consists of a cool (Tc≈2.0 ? 2.4 keV) and a hot (Th≈5.0 ? 5.7 keV) component that coexist anddominate the X-ray emission in the central 80h?711 kpc. A third weak emissioncomponent (T3≈0.8 keV) is also detected in the central region and is ascribedto the inter-stellar medium (ISM) of the cD galaxy. By analyzing the emissionmeasure ratio and gas metal abundance maps created from the Chandra data,we also detect a possible correlation between the spatial distributions of the coolphase gas and metal-rich gas in the 50 ? 100h7?11 kpc region. We employ the cDcorona model to explain the origin of the coexistence of the hot and cool phaseICM, by comparing model predictions with measured gas temperature, density,and emission measure distributions. In this model, we ascribe the cool phasecomponent to the gas constrained in the magnetic loops, which are surroundedby intruding hot ICM (i.e., the hot phase) and have been polluted by the metalssynthesized in the cD galaxy. And we find that AGN feedback energy released inthe innermost 10h7?11 kpc can serve as the heating source to prevent the cool phasegas from cooling down to temperatures much lower than the observed values.
引文
[1] McNamara B.R. and Nulsen P.E.J.,“Heating Hot Atmospheres with ActiveGalactic Nuclei”, ARAA, 2007, 45, 117–175, 0709.2152.
    [2] Makishima K., Ezawa H., Fukuzawa Y., et al.,“X-Ray Probing of theCentral Regions of Clusters of Galaxies”, PASJ, 2001, 53, 401–420, arXiv:astro-ph/0104079.
    [3] Giacconi R., Kellogg E., Gorenstein P., et al.,“An X-Ray Scan of theGalactic Plane from UHURU”, ApJL, 1971, 165, L27+.
    [4] Forman W., Kellogg E., Gursky H., et al.,“Observations of the ExtendedX-Ray Sources in the Perseus and Coma Clusters from UHURU”, ApJ,1972, 178, 309–316.
    [5] Gursky H. and Schwartz D.A.,“Extragalactic X-ray sources”, ARAA, 1977,15, 541–568.
    [6] Mitchell R.J., Culhane J.L., Davison P.J.N., et al.,“Ariel 5 observations ofthe X-ray spectrum of the Perseus Cluster”, MNRAS, 1976, 175, 29P–34P.
    [7] Serlemitsos P.J., Smith B.W., Boldt E.A., et al.,“X-radiation from clustersof galaxies - Spectral evidence for a hot evolved gas”, ApJL, 1977, 211,L63–L66.
    [8] Sarazin C.L., X-ray emission from clusters of galaxies, 1988.
    [9] Voigt L.M. and Fabian A.C.,“Thermal conduction and reduced cool-ing ?ows in galaxy clusters”, MNRAS, 2004, 347, 1130–1149, arXiv:astro-ph/0308352.
    [10] Ponman T.J., Cannon D.B., and Navarro J.F.,“The thermal imprint ofgalaxy formation on X-ray clusters”, Nature, 1999, 397, 135–137, arXiv:astro-ph/9810359.
    [11] Navarro J.F., Frenk C.S., and White S.D.M.,“The Structure of Cold DarkMatter Halos”, ApJ, 1996, 462, 563–+, arXiv:astro-ph/9508025.
    [12] Mushotzky R.F.,“X-ray emission from clusters of galaxies.”, PhysScr,1984, 7, 157–162.
    [13] Mohr J.J. and Evrard A.E.,“An X-Ray Size-Temperature Relation forGalaxy Clusters: Observation and Simulation”, ApJ, 1997, 491, 38–+,arXiv:astro-ph/9707184.
    [14] Edge A.C. and Stewart G.C.,“EXOSAT observations of clusters of galaxies.I - The X-ray data. II - X-ray to optical correlations”, MNRAS, 1991, 252,414–441.
    [15] Fabian A.C., Crawford C.S., Edge A.C., et al.,“Cooling ?ows and the X-rayluminosity-temperature relation for clusters”, MNRAS, 1994, 267, 779–+.
    [16] Evrard A.E., Metzler C.A., and Navarro J.F.,“Mass Estimates of X-RayClusters”, ApJ, 1996, 469, 494–+, arXiv:astro-ph/9510058.
    [17] Xu H., Jin G., and Wu X.,“The Mass-Temperature Relation of 22 NearbyClusters”, ApJ, 2001, 553, 78–83, arXiv:astro-ph/0101564.
    [18] Ponman T.J., Sanderson A.J.R., and Finoguenov A.,“The Birmingham-CfA cluster scaling project - III. Entropy and similarity in galaxy systems”,MNRAS, 2003, 343, 331–342, arXiv:astro-ph/0304048.
    [19] Tozzi P. and Norman C.,“The Evolution of X-Ray Clusters and theEntropy of the Intracluster Medium”, ApJ, 2001, 546, 63–84, arXiv:astro-ph/0003289.
    [20] Arnaud M., Pointecouteau E., and Pratt G.W.,“The structural and scalingproperties of nearby galaxy clusters. II. The M-T relation”, A&A, 2005,441, 893–903, arXiv:astro-ph/0502210.
    [21] Kotov O. and Vikhlinin A.,“Chandra Sample of Galaxy Clusters at z =0.4-0.55: Evolution in the Mass-Temperature Relation”, ApJ, 2006, 641,752–755, arXiv:astro-ph/0511044.
    [22] Kaiser N.,“Evolution of clusters of galaxies”, ApJ, 1991, 383, 104–111.
    [23] Kau?mann G., White S.D.M., and Guiderdoni B.,“The Formation andEvolution of Galaxies Within Merging Dark Matter Haloes”, MNRAS,1993, 264, 201–+.
    [24] Ikebe Y.,“X-Ray Statistical Properties of the Central Cool Componentin Clusters of Galaxies”, M. Gilfanov, R. Sunyeav, & E. Churazov (ed.),Lighthouses of the Universe: The Most Luminous Celestial Objects andTheir Use for Cosmology, 2002, 81–+.
    [25] Tamura T., Kaastra J., Peterson J., et al.,“X-ray spectroscopy of thecluster of galaxies Abell 1795 with XMM-Newton”, Arxiv preprint astro-ph/0010362, 2001.
    [26] Canizares C.R., Markert T.H., and Donahue M.E.,“X-ray emission linesfrom cooling ?ows”, A. C. Fabian (ed.), NATO ASIC Proc. 229: CoolingFlows in Clusters and Galaxies, 1988, 63–72.
    [27] Mushotzky R.F. and Szymkowiak A.E.,“Einstein Observatory solid statedetector observations of cooling ?ows in clusters of galaxies”, A. C. Fabian(ed.), NATO ASIC Proc. 229: Cooling Flows in Clusters and Galaxies,1988, 53–62.
    [28] Fabian A.C.,“Cooling Flows in Clusters of Galaxies”, ARAA, 1994, 32,277–318.
    [29] Allen S.W., Schmidt R.W., and Fabian A.C.,“The X-ray virial relationsfor relaxed lensing clusters observed with Chandra”, MNRAS, 2001, 328,L37–L41, arXiv:astro-ph/0110610.
    [30] Vikhlinin A., Kravtsov A., Forman W., et al.,“Chandra Sample of NearbyRelaxed Galaxy Clusters: Mass, Gas Fraction, and Mass-Temperature Re-lation”, ApJ, 2006, 640, 691–709, arXiv:astro-ph/0507092.
    [31] Fukazawa Y., Ohashi T., Fabian A.C., et al.,“Metal concentration and X-ray cool spectral component in the central region of the Centaurus clusterof galaxies”, PASJ, 1994, 46, L55–L58.
    [32] Fukazawa Y., Makishima K., Tamura T., et al.,“ASCA Measurements ofSilicon and Iron Abundances in the Intracluster Medium”, PASJ, 1998, 50,187–193, arXiv:astro-ph/9802126.
    [33] Takahashi I., Kawaharada M., Makishima K., et al.,“X-ray Diagnostics ofThermal Conditions of the Hot Plasmas in the Centaurus Cluster”, ApJ,2009, 701, 377–395, 0907.1468.
    [34] Peterson J.R., Paerels F.B.S., Kaastra J.S., et al.,“X-ray imaging-spectroscopy of Abell 1835”, A&A, 2001, 365, L104–L109, arXiv:astro-ph/0010658.
    [35] Fabian A.C., Sanders J.S., Taylor G.B., et al.,“A very deep Chandra ob-servation of the Perseus cluster: shocks, ripples and conduction”, MNRAS,2006, 366, 417–428, arXiv:astro-ph/0510476.
    [36] McNamara B.R., Nulsen P.E.J., Wise M.W., et al.,“The heating of gas ina galaxy cluster by X-ray cavities and large-scale shock fronts”, Nature,2005, 433, 45–47.
    [37] Wise M.W., McNamara B.R., and Murray S.S.,“The Insignificance ofGlobal Reheating in the A1068 Cluster: X-Ray Analysis”, ApJ, 2004, 601,184–196, arXiv:astro-ph/0310033.
    [38] Wu K.K.S., Fabian A.C., and Nulsen P.E.J.,“The e?ect of supernova heat-ing on cluster properties and constraints on galaxy formation models”,MNRAS, 1998, 301, L20–L24, arXiv:astro-ph/9810008.
    [39] Ra?erty D.A., McNamara B.R., Nulsen P.E.J., et al.,“The Feedback-regulated Growth of Black Holes and Bulges through Gas Accretion andStarbursts in Cluster Central Dominant Galaxies”, ApJ, 2006, 652, 216–231, arXiv:astro-ph/0605323.
    [40] Forman W., Nulsen P., Heinz S., et al.,“Re?ections of Active GalacticNucleus Outbursts in the Gaseous Atmosphere of M87”, ApJ, 2005, 635,894–906, arXiv:astro-ph/0312576.
    [41] Fabian A.C., Sanders J.S., Taylor G.B., et al.,“A deep Chandra observationof the Centaurus cluster: bubbles, filaments and edges”, MNRAS, 2005,360, L20–L24, arXiv:astro-ph/0503154.
    [42] Blanton E.L., Sarazin C.L., and McNamara B.R.,“Chandra Observationof the Cooling Flow Cluster Abell 2052”, ApJ, 2003, 585, 227–243, arXiv:astro-ph/0211027.
    [43] Nulsen P.E.J., McNamara B.R., Wise M.W., et al.,“The Cluster-ScaleAGN Outburst in Hydra A”, ApJ, 2005, 628, 629–636, arXiv:astro-ph/0408315.
    [44] Shibata R., Matsushita K., Yamasaki N.Y., et al.,“Temperature Map of theVirgo Cluster of Galaxies Observed with ASCA”, ApJ, 2001, 549, 228–243,arXiv:astro-ph/0010380.
    [45] Schuecker P., Finoguenov A., Miniati F., et al.,“Probing turbulence inthe Coma galaxy cluster”, A&A, 2004, 426, 387–397, arXiv:astro-ph/0404132.
    [46] Fujita Y., Matsumoto T., and Wada K.,“Strong Turbulence in the CoolCores of Galaxy Clusters: Can Tsunamis Solve the Cooling Flow Prob-lem?”, ApJL, 2004, 612, L9–L12, arXiv:astro-ph/0407368.
    [47] Carilli C.L. and Taylor G.B.,“Cluster Magnetic Fields”, ARAA, 2002, 40,319–348, arXiv:astro-ph/0110655.
    [48] Kronberg P.P.,“The Strength and Origins of Magnetic Fields In and Be-yond Clusters”, S. Bowyer & C.-Y. Hwang (ed.), Astronomical Society ofthe Pacific Conference Series, volume 301 of Astronomical Society of thePacific Conference Series, 2003, 169–+.
    [49] Govoni F. and Feretti L.,“Magnetic Fields in Clusters of Galaxies”, In-ternational Journal of Modern Physics D, 2004, 13, 1549–1594, arXiv:astro-ph/0410182.
    [50] Clarke T.E., Kronberg P.P., and B¨ohringer H.,“A New Radio-X-Ray Probeof Galaxy Cluster Magnetic Fields”, ApJL, 2001, 547, L111–L114, arXiv:astro-ph/0011281.
    [51] Guo F. and Mathews W.G.,“Simulating X-ray Supercavities and TheirImpact on Galaxy Clusters”, ArXiv e-prints, 2009, 0911.3709.
    [52] Clowe D., Gonzalez A., and Markevitch M.,“Weak-Lensing Mass Re-construction of the Interacting Cluster 1E 0657-558: Direct Evidencefor the Existence of Dark Matter”, ApJ, 2004, 604, 596–603, arXiv:astro-ph/0312273.
    [53] Markevitch M., Gonzalez A.H., Clowe D., et al.,“Direct Constraints onthe Dark Matter Self-Interaction Cross Section from the Merging GalaxyCluster 1E 0657-56”, ApJ, 2004, 606, 819–824, arXiv:astro-ph/0309303.
    [54] Jenkins A., Frenk C.S., White S.D.M., et al.,“The mass function of darkmatter haloes”, MNRAS, 2001, 321, 372–384, arXiv:astro-ph/0005260.
    [55] Pope E.C.D., Pavlovski G., Kaiser C.R., et al.,“Heating rate profilesin galaxy clusters”, MNRAS, 2006, 367, 1121–1131, arXiv:astro-ph/0601096.
    [56] Zhang Y., Reiprich T.H., Finoguenov A., et al.,“X-Ray Substructure Stud-ies of Four Galaxy Clusters Using XMM-Newton Data”, ApJ, 2009, 699,1178–1195, 0904.3655.
    [57] Anders E. and Grevesse N.,“Abundances of the elements - Meteoritic andsolar”, GCA, 1989, 53, 197–214.
    [58] Kushino A., Ishisaki Y., Morita U., et al.,“Study of the X-Ray BackgroundSpectrum and Its Large-Scale Fluctuation with ASCA”, PASJ, 2002, 54,327–352, arXiv:astro-ph/0204224.
    [59] Marshall F.E., Boldt E.A., Holt S.S., et al.,“The di?use X-ray backgroundspectrum from 3 to 50 keV”, ApJ, 1980, 235, 4–10.
    [60] Snowden S.L., Egger R., Finkbeiner D.P., et al.,“Progress on Establishingthe Spatial Distribution of Material Responsible for the 1 4 keV Soft X-RayDi?use Background Local and Halo Components”, ApJ, 1998, 493, 715–+.
    [61] Wargelin B.J., Markevitch M., Juda M., et al.,“Chandra Observationsof the“Dark”Moon and Geocoronal Solar Wind Charge Transfer”, ApJ,2004, 607, 596–610, arXiv:astro-ph/0402247.
    [62] Gu J., Xu H., Gu L., et al.,“A High-Abundance Arc in the Compact Groupof Galaxies HCG 62: An AGN- or Merger-Induced Metal Out?ow?”, ApJ,2007, 659, 275–282, arXiv:astro-ph/0701119.
    [63] Wang Y., Xu H., Zhang Z., et al.,“Chandra Observation of the Cluster ofGalaxies MS 0839.9+2938 at z = 0.194: The Central Excess Iron and TypeIa Supernova Enrichment”, ApJ, 2005, 631, 197–207, arXiv:astro-ph/0506260.
    [64] Humphrey P.J. and Buote D.A.,“A Chandra Survey of Early-Type Galax-ies. I. Metal Enrichment in the Interstellar Medium”, ApJ, 2006, 639,136–156, arXiv:astro-ph/0504008.
    [65] Zhang Z., Xu H., Wang Y., et al.,“Probing the Mass Distributions in NGC1407 and Its Associated Group with the X-Ray Imaging Spectroscopic andOptical Photometric and Line-Strength Indices Data”, ApJ, 2007, 656,805–817, arXiv:astro-ph/0610934.
    [66] Abell G.O., Corwin Jr. H.G., and Olowin R.P.,“A catalog of rich clustersof galaxies”, ApJS, 1989, 70, 1–138.
    [67] Rood H.J. and Sastry G.N.,“”Tuning Fork”Classification of Rich Clustersof Galaxies”, PASP, 1971, 83, 313–+.
    [68] Takizawa M., Sarazin C.L., Blanton E.L., et al.,“Chandra Observations ofthe Central Region of A3112”, ApJ, 2003, 595, 142–150, arXiv:astro-ph/0306157.
    [69] Struble M.F. and Rood H.J.,“A catalog of morphological properties of the2712 Abell clusters”, ApJS, 1987, 63, 555–613.
    [70] Schombert J.M., West M.J., Zucker J.R., et al.,“The binary-rich clusterAbell 2244”, AJ, 1989, 98, 1999–2017.
    [71] Sun M., Jones C., Murray S.S., et al.,“Chandra Observations of the GalaxyCluster A478: The Interaction of Hot Gas and Radio Plasma in the Core,and an Improved Determination of the Compton y-Parameter”, ApJ, 2003,587, 619–624, arXiv:astro-ph/0210054.
    [72] McNamara B.R., Wise M.W., and Murray S.S.,“The Insignificance ofGlobal Reheating in the A1068 Cluster: Multiwavelength Analysis”, ApJ,2004, 601, 173–183, arXiv:astro-ph/0310035.
    [73] Sanders J.S., Fabian A.C., and Taylor G.B.,“A Chandra observation ofthe disturbed cluster core of Abell 2204”, MNRAS, 2005, 356, 1022–1028,arXiv:astro-ph/0406094.
    [74] Donahue M., Voit G.M., O’Dea C.P., et al.,“Two Clusters of Galaxies withRadio-quiet Cooling Cores”, ApJL, 2005, 630, L13–L16, arXiv:astro-ph/0508587.
    [75] Govoni F., Markevitch M., Vikhlinin A., et al.,“Chandra TemperatureMaps for Galaxy Clusters with Radio Halos”, ApJ, 2004, 605, 695–708,arXiv:astro-ph/0401421.
    [76] Ikebe Y., Ezawa H., Fukazawa Y., et al.,“Discovery of a hierarchical dis-tribution of dark matter in the Fornax cluster of galaxies”, Nature, 1996,379, 427–429.
    [77] Dickey J.M. and Lockman F.J.,“H I in the Galaxy”, ARAA, 1990, 28,215–261.
    [78] Pizzolato F., Molendi S., Ghizzardi S., et al.,“Smaug: A New Techniquefor the Deprojection of Galaxy Clusters”, ApJ, 2003, 592, 62–78, arXiv:astro-ph/0304016.
    [79] Sanderson A.J.R., Ponman T.J., and O’Sullivan E.,“A statistically selectedChandra sample of 20 galaxy clusters - I. Temperature and cooling timeprofiles”, MNRAS, 2006, 372, 1496–1508, arXiv:astro-ph/0608423.
    [80] Burns J.O.,“The radio properties of cD galaxies in Abell clusters. I - anX-ray selected sample”, AJ, 1990, 99, 14–30.
    [81] Matsushita K., B¨ohringer H., Takahashi I., et al.,“The abundance pat-tern of O, Mg, Si, and Fe in the intracluster medium of the Centau-rus cluster observed with XMM-Newton”, A&A, 2007, 462, 953–963,arXiv:astro-ph/0610293.
    [82] Takahashi S. and Yamashita K.,“XMM-Newton Observation of the Clusterof Galaxies Abell 1650”, PASJ, 2003, 55, 1105–1113, arXiv:astro-ph/0401178.
    [83] Pointecouteau E., Arnaud M., Kaastra J., et al.,“XMM-Newton observa-tion of the relaxed cluster A478: Gas and dark matter distribution from0.01R200 to 0.5R200”, A&A, 2004, 423, 33–47, arXiv:astro-ph/0403596.
    [84] Sanderson A.J.R., Finoguenov A., and Mohr J.J.,“Possible AGN ShockHeating in the Cool-Core Galaxy Cluster Abell 478”, ApJ, 2005, 630,191–205, arXiv:astro-ph/0412316.
    [85] Gu L., Xu H., Gu J., et al.,“A Chandra Study of Temperature Substruc-tures in Intermediate-Redshift Galaxy Clusters”, ApJ, 2009, 700, 1161–1172, 0905.3933.
    [86] Vikhlinin A., Forman W., and Jones C.,“Another Collision for the ComaCluster”, ApJL, 1997, 474, L7+, arXiv:astro-ph/9610151.
    [87] Starck J. and Pierre M.,“Structure detection in low intensity X-ray im-ages”, A&AS, 1998, 128, 397–407, arXiv:astro-ph/9707305.
    [88] Bourdin H. and Mazzotta P.,“Temperature structure of the intergalacticmedium within seven nearby and bright clusters of galaxies observed withXMM-Newton”, A&A, 2008, 479, 307–320, 0802.1866.
    [89] Shensa M.,“Wedding the a trous and Mallat algorithms”, IEEE Trans.Signal Process, 1992, 40(10), 2464–2482.
    [90] Starck J., Murtagh F., and Bijaoui A.,“Multiresolution and AstronomicalImage Processing”, R. A. Shaw, H. E. Payne, & J. J. E. Hayes (ed.), Astro-nomical Data Analysis Software and Systems IV, volume 77 of AstronomicalSociety of the Pacific Conference Series, 1995, 279–+.
    [91] Slezak E., Durret F., and Gerbal D.,“A wavelet analysis search for sub-structures in eleven X-ray clusters of galaxies”, AJ, 1994, 108, 1996–2008.
    [92] Starck J.L., Donoho D.L., and Cand`es E.J.,“Astronomical image repre-sentation by the curvelet transform”, A&A, 2003, 398, 785–800.
    [93] Rosati P., della Ceca R., Burg R., et al.,“A first determination of thesurface density of galaxy clusters at very low x-ray ?uxes”, ApJL, 1995,445, L11–L14, arXiv:astro-ph/9503064.
    [94] Grebenev S.A., Forman W., Jones C., et al.,“Wavelet transform analysisof the small-scale X-ray structure of the cluster Abell 1367”, ApJ, 1995,445, 607–623.
    [95] Damiani F., Maggio A., Micela G., et al.,“A Method Based on WaveletTransforms for Source Detection in Photon-counting Detector Images. II.Application to ROSAT PSPC Images”, ApJ, 1997, 483, 370–+.
    [96] Van Cittert P. and Physik Z.,“69 (1931)”, View Record in Scopus—CitedBy in Scopus (107), 298.
    [97] Biviano A., Durret F., Gerbal D., et al.,“Unveiling hidden structures inthe Coma cluster.”, A&A, 1996, 311, 95–112, arXiv:astro-ph/9512111.
    [98] Bourdin H., Sauvageot J., Slezak E., et al.,“Temperature map computationfor X-ray clusters of galaxies”, A&A, 2004, 414, 429–443.
    [99] Torrence C. and Compo G.,“A practical guide to wavelet analysis”, Bul-letin of the American Meteorological Society, 1998, 79(1), 61–78.
    [100] Narayan R. and Medvedev M.V.,“Thermal Conduction in Clusters ofGalaxies”, ApJL, 2001, 562, L129–L132, arXiv:astro-ph/0110567.
    [101] Maron J., Chandran B.D., and Blackman E.,“Divergence of Neighbor-ing Magnetic-Field Lines and Fast-Particle Di?usion in Strong Magne-tohydrodynamic Turbulence, with Application to Thermal Conductionin Galaxy Clusters”, Physical Review Letters, 2004, 92(4), 045001–+,arXiv:astro-ph/0303217.
    [102] Dennis T.J. and Chandran B.D.G.,“Turbulent Heating of Galaxy-ClusterPlasmas”, ApJ, 2005, 622, 205–216.
    [103] Bauer F.E., Fabian A.C., Sanders J.S., et al.,“The prevalence of coolingcores in clusters of galaxies at z? 0.15-0.4”, MNRAS, 2005, 359, 1481–1490,arXiv:astro-ph/0503232.
    [104] Kim W. and Narayan R.,“Thermal Instability in Clusters of Galaxies withConduction”, ApJ, 2003, 596, 889–902, arXiv:astro-ph/0303097.
    [105] Zakamska N.L. and Narayan R.,“Models of Galaxy Clusters with ThermalConduction”, ApJ, 2003, 582, 162–169, arXiv:astro-ph/0207127.
    [106] Rebusco P., Churazov E., B¨ohringer H., et al.,“E?ect of turbulent di?u-sion on iron abundance profiles”, MNRAS, 2006, 372, 1840–1850, arXiv:astro-ph/0608491.
    [107] Quilis V., Bower R.G., and Balogh M.L.,“Bubbles, feedback and the intr-acluster medium: three-dimensional hydrodynamic simulations”, MNRAS,2001, 328, 1091–1097, arXiv:astro-ph/0109022.
    [108] Dalla Vecchia C., Bower R.G., Theuns T., et al.,“Quenching cluster cooling?ows with recurrent hot plasma bubbles”, MNRAS, 2004, 355, 995–1004,arXiv:astro-ph/0402441.
    [109] Vernaleo J.C. and Reynolds C.S.,“AGN Feedback and Cooling Flows:Problems with Simple Hydrodynamic Models”, ApJ, 2006, 645, 83–94,arXiv:astro-ph/0511501.
    [110] Churazov E., Bru¨ggen M., Kaiser C.R., et al.,“Evolution of Buoyant Bub-bles in M87”, ApJ, 2001, 554, 261–273, arXiv:astro-ph/0008215.
    [111] Gardini A.,“Buoyant bubbles in a cooling intracluster medium. I. Hydro-dynamic bubbles”, A&A, 2007, 464, 143–154, arXiv:astro-ph/0611444.
    [112] El-Zant A.A., Kim W., and Kamionkowski M.,“Dynamical-friction galaxy-gas coupling and cluster cooling ?ows”, MNRAS, 2004, 354, 169–175,arXiv:astro-ph/0403696.
    [113] Markevitch M. and Vikhlinin A.,“Shocks and cold fronts in galaxy clus-ters”, PhysRep, 2007, 443, 1–53, arXiv:astro-ph/0701821.
    [114] Poole G.B., Fardal M.A., Babul A., et al.,“The impact of mergers onrelaxed X-ray clusters - I. Dynamical evolution and emergent transientstructures”, MNRAS, 2006, 373, 881–905, arXiv:astro-ph/0608560.
    [115] Sharon K., Gal-Yam A., Maoz D., et al.,“Supernovae in Low-RedshiftGalaxy Clusters: The Type Ia Supernova Rate”, ApJ, 2007, 660, 1165–1175, arXiv:astro-ph/0610228.
    [116] Spitzer L., Physical processes in the interstellar medium, 1978.
    [117] Thornton K., Gaudlitz M., Janka H., et al.,“Energy Input and Mass Re-distribution by Supernovae in the Interstellar Medium”, ApJ, 1998, 500,95–+, arXiv:astro-ph/9706175.
    [118] Petrosian V., Bykov A., and Rephaeli Y.,“Nonthermal Radiation Mecha-nisms”, Space Science Reviews, 2008, 134, 191–206, 0801.1016.
    [119] Eilek J.A.,“Plasma physics in clusters of galaxies”, Physics of Plasmas,2003, 10, 1539–1548, arXiv:astro-ph/0301447.
    [120] Sarazin C.L.,“The Energy Spectrum of Primary Cosmic-Ray Electronsin Clusters of Galaxies and Inverse Compton Emission”, ApJ, 1999, 520,529–547, arXiv:astro-ph/9901061.
    [121] Owers M.S., Nulsen P.E.J., Couch W.J., et al.,“Abell 1201: The Anatomyof a Cold Front Cluster from Combined Optical and X-Ray Data”, ApJ,2009, 692, 702–722, 0810.4650.
    [122] Sanders J.S., Fabian A.C., and Taylor G.B.,“Giant cavities, cooling andmetallicity substructure in Abell 2204”, MNRAS, 2009, 393, 71–82, 0811.0743.
    [123] Markevitch M., Vikhlinin A., and Mazzotta P.,“Nonhydrostatic Gas in theCore of the Relaxed Galaxy Cluster A1795”, ApJL, 2001, 562, L153–L156,arXiv:astro-ph/0108520.
    [124] Wang Y., Xu H., Gu L., et al.,“A Joint Chandra and XMM-Newton Viewof Abell 3158: Massive O?-Centre Cool Gas Clump As A Robust Diagnosticof Merger Stage”, ArXiv e-prints, 2010, 1001.0093.
    [125] Nagai D., Vikhlinin A., and Kravtsov A.V.,“Testing X-Ray Measurementsof Galaxy Clusters with Cosmological Simulations”, ApJ, 2007, 655, 98–108, arXiv:astro-ph/0609247.
    [126] Xu H., Makishima K., Fukazawa Y., et al.,“Discovery of the Central ExcessBrightness in Hard X-Rays in the Cluster of Galaxies Abell 1795”, ApJ,1998, 500, 738–+, arXiv:astro-ph/9806279.
    [127] Johnstone R.M., Naylor T., and Fabian A.C.,“Discovery of structure inthe envelope of the cD galaxy in the cluster Abell 1795”, MNRAS, 1991,248, 18P–20P.
    [128] Ettori S., Fabian A.C., Allen S.W., et al.,“Deep inside the core of Abell1795: the Chandra view”, MNRAS, 2002, 331, 635–648, arXiv:astro-ph/0111586.
    [129] Kaastra J.S., Tamura T., Peterson J.R., et al.,“Spatially resolved X-rayspectroscopy of cooling clusters of galaxies”, A&A, 2004, 413, 415–439,arXiv:astro-ph/0309763.
    [130] Nevalainen J., Markevitch M., and Lumb D.,“XMM-Newton EPIC Back-ground Modeling for Extended Sources”, ApJ, 2005, 629, 172–191, arXiv:astro-ph/0504362.
    [131] Fujimoto R., Mitsuda K., Mccammon D., et al.,“Evidence for Solar-Wind Charge-Exchange X-Ray Emission from the Earth’s Magnetosheath”,PASJ, 2007, 59, 133–140.
    [132] Gastaldello F., Buote D.A., Humphrey P.J., et al.,“Probing the DarkMatter and Gas Fraction in Relaxed Galaxy Groups with X-Ray Ob-servations from Chandra and XMM-Newton”, ApJ, 2007, 669, 158–183,arXiv:astro-ph/0610134.
    [133] Nakazawa K., Sarazin C.L., Kawaharada M., et al.,“Hard X-Ray Propertiesof the Merging Cluster Abell 3667 as Observed with Suzaku”, PASJ, 2009,61, 339–, 0812.1438.
    [134] Snowden S.L., Mushotzky R.F., Kuntz K.D., et al.,“A catalog of galaxyclusters observed by XMM-Newton”, A&A, 2008, 478, 615–658, 0710.2241.
    [135] Bautz M.W., Miller E.D., Sanders J.S., et al.,“Suzaku Observations ofAbell 1795: Cluster Emission to r200”, PASJ, 2009, 61, 1117–, 0906.3515.
    [136] Markevitch M.,“On the discrepancy between Chandra and XMM tem-perature profiles for A1835”, ArXiv Astrophysics e-prints, 2002, arXiv:astro-ph/0205333.
    [137] Sanders J.S. and Fabian A.C.,“Spatially resolved X-ray spectroscopy ofthe core of the Centaurus cluster”, MNRAS, 2002, 331, 273–283, arXiv:astro-ph/0109336.
    [138] O’Sullivan E., Ponman T.J., and Collins R.S.,“X-ray scaling propertiesof early-type galaxies”, MNRAS, 2003, 340, 1375–1399, arXiv:astro-ph/0301153.
    [139] Ikebe Y., Makishima K., Fukazawa Y., et al.,“Two-Phase IntraclusterMedium in the Centaurus Cluster of Galaxies”, ApJ, 1999, 525, 58–79,arXiv:astro-ph/9905194.
    [140] Ishisaki Y., Maeda Y., Fujimoto R., et al.,“Monte-Carlo Simulator andAncillary Response Generator of Suzaku XRT/XIS System for SpatiallyExtended Source Analysis”, Arxiv preprint astro-ph/0610118, 2007.
    [141] Reiprich T.H., Hudson D.S., Zhang Y., et al.,“Suzaku measurement ofAbell 2204’s intracluster gas temperature profile out to 1800 kpc”, A&A,2009, 501, 899–905, 0806.2920.
    [142] Nevalainen J., Bonamente M., and Kaastra J.,“Revisiting the Soft X-RayExcess Emission in Clusters of Galaxies Observed with XMM-Newton”,ApJ, 2007, 656, 733–738, arXiv:astro-ph/0610461.
    [143] B??rzan L., Rafferty D.A., McNamara B.R., et al.,“A Systematic Study ofRadio-induced X-Ray Cavities in Clusters, Groups, and Galaxies”, ApJ,2004, 607, 800–809, arXiv:astro-ph/0402348.
    [144] Ota N., Fukazawa Y., Fabian A.C., et al.,“Suzaku Observations of theCentaurus Cluster: Absence of Bulk Motions in the Intracluster Medium”,PASJ, 2007, 59, 351–359, arXiv:astro-ph/0609560.
    [145] Simionescu A., Werner N., Finoguenov A., et al.,“Metal-rich multi-phasegas in M 87. AGN-driven metal transport, magnetic-field supported multi-temperature gas, and constraints on non-thermal emission observed withXMM-Newton”, A&A, 2008, 482, 97–112, 0709.4499.
    [146] Spitzer L., Physics of Fully Ionized Gases, 1962.
    [147] Aschwanden M.J., Poland A.I., and Rabin D.M.,“The New Solar Corona”,ARAA, 2001, 39, 175–210.
    [148] Aschwanden M.J. and Schrijver C.J.,“Analytical Approximations to Hy-drostatic Solutions and Scaling Laws of Coronal Loops”, ApJS, 2002, 142,269–283.
    [149] Ge J.P. and Owen F.N.,“Faraday rotation in cooling flow clusters of galax-ies. I - Radio and X-ray observations of Abell 1795”, AJ, 1993, 105, 778–787.
    [150] Taylor G.B., Fabian A.C., and Allen S.W.,“Magnetic fields in the Centau-rus cluster”, MNRAS, 2002, 334, 769–776, arXiv:astro-ph/0109337.
    [151] Rosner R., Tucker W.H., and Vaiana G.S.,“Dynamics of the quiescentsolar corona”, ApJ, 1978, 220, 643–645.
    [152] Jetha N.N., Ponman T.J., Hardcastle M.J., et al.,“Active galactic nucleiheating in the centres of galaxy groups: a statistical study”, MNRAS, 2007,376, 193–204.
    [153] Sun M., Voit G.M., Donahue M., et al.,“Chandra Studies of the X-Ray GasProperties of Galaxy Groups”, ApJ, 2009, 693, 1142–1172, 0805.2320.
    [154] Edge A.C., Stewart G.C., Fabian A.C., et al.,“An X-Ray Flux-LimitedSample of Clusters of Galaxies - Evidence for Evolution of the LuminosityFunction”, MNRAS, 1990, 245, 559–+.
    [155] Ebeling H., Edge A.C., Bohringer H., et al.,“The ROSAT Brightest ClusterSample - I. The compilation of the sample and the cluster log N-log Sdistribution”, MNRAS, 1998, 301, 881–914, arXiv:astro-ph/9812394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700