基于X射线脉冲星的定时与自主定位理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脉冲星是一类具有超核密度、强引力场、强电磁场的快速自转的中子星,被广泛用于天体演化、引力波探测等前沿课题的研究。其最重要的观测特征是在射电、红外、可见光、紫外、χ射线和γ射线频段具有极其稳定的周期性脉冲辐射,辐射信号的长期稳定度可与原子钟相当,用于精确定时和导航的潜力巨大。相比于卫星导航系统和地基探测网的昂贵维护成本,有限作用区域,脆弱抗击毁能力,脉冲星可为近地空间、深空领域的人造卫星、飞船、探测器等提供时间、姿态、位置和速度信息,有望实现自主、安全、高精度、高性价比的三维导航服务,这不仅具有重大军事意义,也适合人类深空探测的导航需求。相对于射电脉冲星,以X射线脉冲星作为导航源有助于探测器的小型化和信号检测。因此,近几年来,基于X射线脉冲星的导航技术引起了各国的极大关注。然而,该新型技术目前仍处于理论探索和可行性验证阶段,系统的真正实现尚面临众多挑战,尤其在国内,实质性的研究工作才刚刚起步。基于此,本论文从利用X射线脉冲星信号实现航天器定位功能的过程和系统框架着眼,涉及以下紧密联系、不可分割的几个方面:X射线探测器选择以及X射线光子探测、到达时间(TOA)测量、星源信息库建立、空间光行时方程求解、导航算法实现等,对其中的一些关键技术进行了理论分析和仿真,对所需的数学原理进行了必要的探索和推导。由于高精度的脉冲到达时刻信息是脉冲星导航的基础,因此,本文重点研究信号的TOA估计与其定时性能分析,以及可行的定位算法。
     论文的研究工作主要包含以下几方面:
     1、从深空探测需求、卫星导航的局限性、天文导航的优势出发,讨论了研究脉冲导航技术的必要性,分析了脉冲星导航的特点和优势,特别展望了脉冲星导航在行星际自主编队航天器设计中的应用前景,总结了国内外研究现状,简述了该技术目前面临的若干难题。
     2、比较了多种x射线探测器的性能,并参考了各国X射线观测卫星上使用的探测设备,提出以硅微条探测器和量热器作为探测器原型用于X射线脉冲星导航的观点,并据此设想了一个包含有编码盘、准直器等辅助设备的综合探测器系统,探讨了在空间核辐射环境下,探测器微电子器件的防护问题。该部分工作对探测器的选择和复合探测器的设计具有一定的参考价值。
     3、从X射线脉冲星导航的需求和特殊性出发,提出了应纳入星载数据库框架的脉冲星特征参数,包括位置、距离、流量、周期、有效脉冲比、脉冲轮廓等,并对上百颗X射线脉冲星的流量、周期变化率等特征进行统计分析,探讨了毫秒级X射线脉冲星在导航中的优势,依据周期变化率参数推荐了性能较好的15颗X射线脉冲星,为数据库的构建打下了一定基础。
     4、提出了基于非齐次泊松模型的X射线脉冲TOA的最大似然估计,给出了其低信噪比下的近似表达,并利用B1921-24和Crab两颗脉冲星,分别在不同观测时间和不同信噪比的条件下进行了仿真,验证了该方法的可行性和有效性。另外,系统探讨了基于脉冲轮廓特征的TOA精度分析,并利用拟合的具有解析形式的高斯脉冲、双高斯脉冲、指数型脉冲等进行了对比研究。理论分析和仿真结果表明,在相同的流量和占空比假设下,不同的形状特征得到的TOA估计性能不同。为了精确化距离估计误差,作者认为为每颗脉冲星建立解析的轮廓模板有一定意义。
     5、基于二阶循环平稳过程,提出了一种称为最大相关方差搜索法的射电脉冲星周期估计方法,若不考虑探测器的光子接收过程,该方法完全可推广到X射线脉冲星的周期估计。分析和仿真表明,新方法运算速度快,对数据量要求不高,效果明显,对于微弱脉冲星信号的实时周期估计具有参考价值。同时,提出了一种标准轮廓生成的新方法,不需要事先设计模板脉冲,在低信噪比以及累积脉冲个数较少的情况下,可以得到高品质的标准脉冲轮廓。
     6、深入讨论了脉冲星信号的时间测量步骤,推导了观测时间向太阳系质心传递的高阶广义相对论修正模型,修正项包含Roemer延迟、Shapiro延迟效应等。在特定空间点,数值分析了简化模型中各项时延的贡献。
     7、发展了一种基于定时模型的位置误差修正迭代法,给出了线性化形式,并对误差源进行了讨论。另外,改进了绝对定位中的一种模糊度解析方法,假设已知航天器的粗略位置信息和足够稳定的星钟时间,通过4颗并逐步加入更多的大周期脉冲星求解相位观测方程,利用定时或定位精度作为阈值,可由最大似然法估计出一个最可能的整周数取值集合。定位仿真结果表明了算法的可行性和有效性。
Pulsars are a unique class of neutron stars that spin rapidly and stably, being of super-nuclear density, strong electro-magnitic field and strong gravitational field. They have been broadly used in the study on celestial bodies evolution, gravitational wave detection and many other frontiers. The most attractive observation characteristic of pulsars is their pulsed emission with a highly stable repetition rate in the radio, infrared and higher energy regions of the electromagnetic spectrum. The period between pulse peaks is equal to the spin period of the pulsar, whose timing stability rivals that of conventional atomic clocks, thus having tremendous potential in timing and navigation. Compared to the satellite navigation system and the earth-based tracking network that have restrictions of huge maintenance cost, limited coverage area and vulnerable anti-destroy ability, pulsars can determine time, attitude, position and velocity information for satellites, spacecrafts and explorers flying in near-ground space and deep-space, and demonstrate the potentiality of providing 3D navigation service with autonomous, safe, precise and high price-performance ratio properties, whcih not only is of important value in military, but can suit the demand in deep space detection. For X-ray pulsars are advantageous when considering the detector size and signal detection compared to radio pulsars, in the last few years, the X-ray pulsar-based navigation (XNAV) technology is having been paid close attention by many countries. However, the new technology is still on the stage of theory exploration and feasibility validation with many challenges to be handled. Especially, the substantive research has just started in China. Based on the background, the thesis commences on the system framework and the process of using X-ray pulsars to implement vehicle positioning, involving the following aspects:selection of X-ray detectors and detection of X-ray photons, measurement of time of arrival (TOA), establishment of pulsar resources database, derivation of light-time equations, design of navigation algorithms and so on. Some of key technologies are analysed in theory and simulation, and several required mathematics principles are explored and deduced appropriately. Since the precise TOAs information of received pulses is the foundation of the pulsar navigation, the thesis places emphasis on the research about TOA estimation and its accuracy analysis, and feasible positioning algorithms.
     The main work presented in the dissertation can be summarized as follows:
     1. Beginning from the needs of deep space explore, the limits of satellite navigation system and the advantages of the celestial navigation, the necessities of the pulsar navigation are discussed. The specialties and merits of this technology are analysed and especially, the application prospect of the autonomous formation flyer orbiting Mars or other target bodies is expected. Meanwhile, the development of XNAV is reviewed and some of challenges existed are described.
     2. Through comparing the performances of several kinds of X-ray detector and refering to the style of instruments on X-ray observation satellites owned by different countries, the view that silicon-microstrip detector and calorimeter should be taken as detector prototype for XNAV is proposed. Based on this consideration, an integrated detector system with the coded-aperture mask and collimator is conceived and the protection technologies for microelectronic devices under nuclear radiation environment are discussed. All of these works are of reference value for detector selection and composite detector design.
     3. Starting from the demands and particularities of XNAV, Many characteristic parameters of pulsars including position, distance, flux, period, pulse profile and so on that should be bright into onboard database are proposed, among which, flux and 1st period derivative of more over 100 X-ray pulsars are analysed statistically. Based on the analysis,15 pulsars are recommended as navigation resources for their good performance when considering comprehensively both the period stability and the high flux. Additionally, the navigation advantages of X-ray pulsars with period on the order of several milliseconds are discussed for reason of their excellent timing ability. This work may help to establish the database in engineering effectively.
     4. The ML estimate for pulse TOA based on nonhomogeneous stationary poission process is proposed and its approximate expression under low SNR is presented. The feasibility and effectiveness are verified using pulsar B1921-24 and Crab respectively on two conditions of defferent observation time and different SNRs. Moreover, the estimation of TOA accuracy considering the specific shape of the pulse is proposed, and a comparative study among different types of pulse which is in analytical form got by fitting the observed pulses, including the gaussian pulse, the double-gaussian pulse and the exponential pulse, is performed. Theoretical research and simulation experiment results show that the error of TOA measurement depends tightly on the shape of pulses. So to establish an analytical profile template for one pulsar is necessary to ensure the accuracy estimation of TOA more exact, thus improving range estimate.
     5. A novel method called maximum correction variance search algorithm to estimate the period of radio pulsar signal is proposed based on the second-order cyclostationary process, which is totally applicable to X-ray pulsars if the receiving process for photons is ignored. Analysis and simulation results indicate that the method is of low computation complexity, loose demand for data quantity but obvious effect, which can be popularized in real-time period estimate for weak pulsar signal. Meanwhile, a new profile cumulation method using Wavelet-Modulus-Maxima correlation information is proposed, which don't need to estimate one approximate pulse template and can get a standard profile with high quality even under the condition of low SNR and less pulses cumulated.
     6. The steps of TOA measurement for pulsars are discussed in a deepgoing way and the time transfer model to Solar System Barycentre is provided with high-order general relativistic corrections including Roemer time delay, Shapiro time delay and other delay effects, whose numerical contributions to the simplified light-time model are computed and evaluated for some space position.
     7. An iterative error correction method for spacecraft position is developed based on pulsar timing model and the linear form of the position offset equation is evolved. Modeling errors and other factors influencing the positioning error are also discussed. Additionally, An improved method for the ambiguity resolution in absolute positioning was put forward when the internal clock of the spacecraft can be considered stable enough to be a valid reference and a previous coarse knowledge of the spacecraft position is acquired. Taking four pulsars with larger period as the initial estimation set, additional pulsars are substituted in observation equations one by one. Using known variance of TOA or range estimate as the threshold, the technique can eliminate a great number of possible ambiguity points, and finally find the 3D location of the spacecraft by MLE. Simulation results of positioning for single point and satellite trajectory demonstrate its feasibility and effectiveness.
引文
【1】 Sheikh, S. I.. The Use of Variable Celestial X-ray Sources for Spacecraft Navigation [D]. Ph.D. Dissertation, University of Maryland,2005
    [2]Catherine L.T.,James S.B..李海涛译.深空导航无线电跟踪测量技术[M],北京:清华大学出版社,2005
    [3]平劲松,王广利,简念川.卫星VLBI精密定轨对测月学的贡献——从Smart-1到嫦娥-1和SELENE-1[C],第八次月球探测与利用大会,北京:中国国防科学工业委员会,2006
    【4】 Jordan, J. F.. Navigation of Spacecraft on Deep Space Missions[J]. Journal ofNavigation,1987,40: 19-29
    [5]李大光.世界各国的深空探测.http://arm.cpst.net.cn/gfbk/2008_10/225421931.html#,2008-11-18
    【6】 Catherine L. Thornton James S. Border. Radiometric Tracking Techniques for Deep-Space Navigation[M], JPL Publication 00-11, Jet Propulsion Laboratory, Pasadena, California,2000
    [7]李黎.基于X射线脉冲星的航天器自主导航方法研究:[硕士学位论文][D].长沙:国防科学技术大学,2006
    【8】 Folta, D. C., Gramlin, C. J., Long, A. C., et al. Autonomous Navigation Using.Celestial Objects[C]. American Astronautical Society (AAS) Astrodynamics Specialist Conference, Girdwood, Alaska,1999:2161-2177
    【9】 David Collies,Carl Kukkonen,Miniature. Low-Cost Highly Autonomous Spacecraft-A Focus for the New Millennium[C].46th International Astronautical Congress, Oslo, Narway,1995
    [10]张艳.基于星间观测的星座自主导航方法研究:[博士论文][D].长沙:国防科学技术大学,2005
    【11】 Lair J L.,Ducbon P.. Satellite Navigation by Stellar Refraction[J]. Acta Astronautica.1988,17(10): 1069-1079
    【12】 White R L,Tbunnan S W, Barnes F A.. Autonomous Satellite Navigation Using Observation of Starlight Ahnospberic Refraction[C]. Proceedings of 51th Annual Meeting of the Institute of Navigation. Colorado Springs, Colorado,1995:83—89
    【13】 Joseph H, Taylor J R. Millisecond Pulsars:Nature's Most Stable Clocks[J]. Proceedings of the IEEE, 1991,79(7):1054-1062
    【14】 Mysid. Image:Pulsar schematic.svg. http://zh.wikipedia.org/wiki/Image:Pulsar_schematic.svg, 2008-11-23
    【15】 Lyne, A.G., F. Graham-Smith. Pulsar Astronomy[M]. New York, NY:Cambridge, University Press, 1998
    【16】 Tony T., DARPA.http://govinfo.library.unt.edu/moontomars/docs/050304SlidesTether.pdf,2007-3-1
    【17】 S.I.Sheikh.Darryll J. Pines, Paul S.Ray.The Use of X-ray Pulsars for Spacecraft Navigation[C]. American Astronautical Society and American Institute of Aeronautics and Astronautics 14th Space Flight Mechanics Meeting, Maui, Hl,2004.
    【18】 Matsakis,D.N.,Taylor.J.H.,Eubanks,T..A Statistic for Describing Pulsar and Clock Stabilities[J]. Astronomy and Astrophysics,1997,326:924-928.
    【19】 Department of Defense and Department of Transportation.2001 Federal Radionavigation Systems. www.navcen.uscg.gov/pubs/frp2001/FRS2001.pdf,2006-7-13.
    【20】 Department of Defense:Command Control Communications and Intelligence. Global Positioning System Standard Positioning Service Performance Standard.2001. www.navtechgps.com/pdf/1725.pdf, 2008-11-23
    【21】 Weeks, C. J., Bowers, M. J.. Analytical Models of Doppler Data Signatures[J]. Journal of Guidance, Control, and Dynamics,1995,18(6):1287-1291.
    [22]杨廷高,仲崇霞.脉冲星时稳定度及可能应用[J].时间频率学报,2004,27(2):129-137
    【23】 Larson, W. J., Wertz, J. R. Eds.. Space Mission Analysis and Design(3rd Edition)[M]. Boston, MA:Microcosm Press and Kluwer Academic Publishers (Jointly),1999.
    [24]李捷,陈义庆.航天器自主导航技术的新发展[J].航天控制,1997年15(2):11-17
    【25】G Shorshi.IY Bar-Itzhack. Satellite Autonomous Navigation Based on Magnetic Field Measurements[J]. Journal of Guidance Control and Dymamics.1995,18(4):843-850
    【26】 Elfes A.. Sonar based real-world mapping navigation[C]. IEEE J. Robotics Automation,1987,3(3): 249-265.
    【27】 E.S.Davis. The GRACE Mission:Technical Challenges[C]. the 50th International Astronautical Congress, Amsterdam, The Netherlands,1999.
    【28】C. A. Beichman, N. J. Woolf, C. A. Lindensmith. The Terrestrial Planet Finder (TPF):A NASA Origins Program to Search for Habitable Planets[R]. JPL Publication 99-3, Jet Propulsion Laboratory, Pasadena, California,1999.
    【29】 Downs, G. S.. Interplanetary Navigation Using Pulsating Radio Sources[R]. NASA Technical Reports N74-34150,1974.
    【30】 Wallace,K.. Radio Stars,What They are and The Prospects for their Use in Navigation Systems[J]. Journal of Navigation,1988,41(3):358-374.
    【31】Chester, T. J., Butman, S. A.. Navigation Using X-ray Pulsars[R]. NASA Technical Reports N81-27129, 1981:22-25
    【32】 Wood, K. S., Fritz, G. G., Hertz, P. L.. USA Experiment on the ARGOS Satellite:A Low-cost Instrument for Timing Xray Binaries[C], EUV, X-Ray, and Gamma-Ray Instrumentation for Astronomy V. International Society of Optical Engineering (SPIE) Proceedings,1994,2280:19-30.
    【33】 Wood, K.S.. Navigation Studies Utilizing The NRL-801 Experiment and the ARGOS Satellite[C]. Small Satellite Technology and Applications Ⅲ, International Society of Optical Engineering (SPIE) Proceedings,1993,1940:105-116.
    【34】 Ray. P. S., Wood, K. S., Fritz. G.,et al. The USA X-ray Timing Experiment[C]. X-ray Astronomy: Stellar Endpoints, AGN, and the Diffuse X-ray Background, American Institute of Physics (AIP)
    Proceedings, Bologna, Italy,2001,599:336-345.
    【35】 Wood, K. S., Determan, J. R., Ray, P. S., et al. Using the Unconventional Stellar Aspect (USA) Experiment on ARGOS to Determine Atmospheric Parameters by X-ray Occultation[C]. Optical Spectroscopic Techniques, Remote Sensing, and Instrumentation for Atmospheric and Space Research IV, International Society of Optical Engineering (SPIE) Proceedings,2002,4485:258-265.
    【36】Wood, K. S., Meekins, J. F., Yentis, D. J., et al. The HEAO A-1 X-ray source catalog[J]. Astrophysical Journal Supplement Series,1984,56:507-649.
    【37】 Wood, K. S., Fritz, G., Hertz, P.,et al. The USA Experiment on the ARGOS Satellite:A Low Cost Instrument for Timing X-RayBinaries[C],The Evolution of X-ray Binaries, American Institute of Physics (AIP) Proceedings,1994,308:561-564.
    【38】 Hanson, J. E.. Principles of X-ray Navigation[D]. Ph.D Dissertation, Department of Aeronautics and Astronautics, Stanford University,1996.
    【39】 P. S. Ray, K. S. Wood, M. T. Wolff, M. N. Lovellette,et al.Absolute Timing of the Crab Pulsar:X-ray, Radio, and Optical Observations[C],201st AAS Meeting, Bulletin of the American Astronomical Society,2002,34:1298
    【40】 Taylor Dinerman. X-ray pulsar navigation:the deep space solution? http://www.thespacereview.com/article/762/1,2007-1-3
    【41】 Dennis.W.Woodfork, John F.Raquet, Robert A.Racca. Use of X-Ray Pulsar for Aiding GPS Satellite Orbit Determination [C]. ION 61 st Annual Meeting. Cambridge, MA,2005
    [42]钱其宇.美国军方关注脉冲星导航网络.http://www.dsti.net/News/21311.htm,2008-11-11
    【43】 P.S. Ray, K.S. Wood, B.F. Phlips. Spacecraft Navigation Using X-ray Pulsars, http://www.nrl.navy.mil/Review06/images/FA5.pdf,2008-10-23
    【44】 Pines, Darryll J.. X-ray Source-based Navigation for Autonomous Position Determination Program. https://safe.sysplan.com/xnav/3_Overview.pdf,2007-10-2
    【45】 Pines.D.J.X-ray Source-based Navigation for Autonomous Position Determination Program[R]. DARPA,571-218-4339,USA
    【46】Josep Sala, Andreu Urruela,Xavier Viollares et.al. Feasibility Study for a Spacecraft Navigatio Relying on Pulsar timing Information[R]. ARIADNA Study 03/4202,2004
    【47】 Sheikh, S. I., Darryll J. Pines, Paul S. Ray, et al. The Use of X-ray Pulsars for Spacecraft Navigation[C].14th AAS/AIAA Space Flight Mechanics Conference, Maui, Hawaii,2004.
    【48】 SUNEEL I. SHEIKH, DARRYLL J. PINES. Recursive Estimation of Spacecraft Position and Velocity Using X-ray Pulsar Time of Arrival Measurements[J]. NAVIGATION:Journal of The Institute of Navigation,2006,53, (3):149-166
    【49】 Suneel I Sheikh, Darryll J Pines. Spacecraft Navigation Using X-ray Pulsars[J]. Journal of Guidance Control, and Dynamics,2005,29(1):49-61
    【50】 Ashby, N., Golshan, A. R..Minimum Uncertainties inPosition and Velocity Determination Using X-ray Photons From Millisecond Pulsars[C]. Institute of Navigation National Technical Meeting, San Diego, CA,2008.
    【51】 Golshan, A. R., Sheikh, S. I.. On Pulse Phase Estimation andTracking of Variable Celestial X-Ray Sources[C]. Institute of Navigation 63rd Annual Meeting, Cambridge, MA,2007:23-25,
    【52】 Graven, P., Collins, J., Sheikh, S.,et al. XNAV for Deep Space Navigation[C]. Proceedings of 31st Annual AAS Guidance and Control Conference, Breckenridge, Colorado,2008.
    【53】John Hanson, Suneel Sheikh, Paul Graven,et al. Noise Analysis for X-ray Navigation Systems[C]. the 2008 IEEE-ION_PLANS Symposium, Monterey,Caliefornia,2008
    【54】 Graven, P., Collins, J., Sheikh, S.,et al. XNAV Beyond the Moon[C]. Institute of Navigation 63rd Annual Meeting, Cambridge, MA,2007.
    【55】 Suneel I. Sheikh, Ronald W. Hellings, Richard A. Matzner. High-Order Pulsar Timing For Navigation[C]. Institute of Navigation 63rd Annual Meeting, Cambridge, MA,2007:432—443
    【56】 Paul S. Ray, Suneel 1. Sheikh, Paul H. Graven, et al. Deep Space Navigation Using Celestial X-ray Sources[C]. ION NTM 2008, San Diego, CA,2008:101—109
    【57】 Suneel I. Sheikh, A. Robert Golshan, Darryll J. Pines,et al. ABSOLUTE AND RELATIVE POSITION DETERMINATION USING VARIABLE CELESTIAL X-RAY SOURCES[C].30th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE, Breckenridge, Colorado,2007.
    【58】 Suneel I. Sheikh, Paul S. Ray, U.S. Kathryn Weiner, et al. Relative Navigation of Spacecraft Utilizing Bright, Aperiodic Celestial Sources[C]. Institute of Navigation 63rd Annual Meeting, Cambridge, MA,2007:444-453
    【59】 Dennis W.Woodfork. the Use of X-Ray Pulsar for Aiding GPS Satellite Orbit Determination[D]. Ph.D Dissertation, Air Force Institute of Technology,2005
    [60]乔黎,刘建业,熊智等.基于射线脉冲星的深空探测器自主导航方案[J].中国空间科学技术,2007,6:1-5
    [61]费保俊,孙维瑾等.XNAV中的相对论效应(Ⅰ)—引力频移和多普勒频移[J].装甲兵工程学院学报,2006,20(4):91-95
    [62]费保俊,张民等.XNAV中的相对论效应(Ⅱ)—光线弯曲和引力延缓[J].装甲兵工程学院学报,2006.,20(5):90-93
    [63]费保俊,孙维瑾,季诚响等.单脉冲星自主导航的可行性分析[J].装甲兵工程学院学报,2007.21(3):82-88
    [64]帅平,陈绍龙,吴一帆等.X射线脉冲星导航技术及应用前景分析[J].中国航天,2006(10):27.
    [65]杨廷高,南仁东,金乘进等.脉冲星在空间飞行器定位中的应用[J].天文学进展,2007,25(3):249-261
    [66]熊凯,魏春岭,刘良栋.基于脉冲星的空间飞行器自主导航技术研究[J].航天控制,2007,
    25(4):36-45
    [67]黄翔宇,崔平远,崔祜涛.深空自主导航系统的可观性分析[J].宇航学报,2006,27(3):332-337
    [68]谢振华,许录平,倪广仁等.基于一维选择线谱的脉冲星辐射脉冲信号辨识[J].红外与毫米波学报,26(3):187-190
    [69]综合脉冲星时算法及脉冲星时应用中国科学院研究生院(国家授时中心)仲崇霞;2007
    [70]X射线天文卫星.维基百科,http://zh.wikipedia.org/wiki/X射线天文卫星,2007-6-20
    [71]NASA和日本将联合开展X射线天文观测卫星项目.http://www.cnsa.gov.cn/n615708/n620172/n677078/n751579/59810.html,2007-1-23
    【72】 Astro-E2 Project Home Page.http://www.astro.isas.jaxa.jp/astroe/index.html.en,2008-3-16
    [73]科学家观测到迄今距地球最近的中子星.http://www.wzast.org.cn/html/n/index.asp?id=844, 2008-5-20
    【74】 Constellation-X Home Page. http://ixo.gsfc.nasa.gov/,2008-4-23
    【75】 Parmar, A.N., Hasinger, G., Arnaud, M. et al. XEUS-the X-ray evolving universe spectroscopy mission[J]. Proceedings of SPIE,2003,4581:30-313
    [76]孙胜,李辉,韩崇昭.基于TDOA定位技术的仿真研究[J].无线通信技术,2002,(4):40~43
    【77】 Misra, Pratap, Per Enge. Global Positioning System:Signals, Measurements.and Performance[M]. Lincoln, Massachusetts:Ganga-Jamuna Press,2001
    【78】 Kenneth Fisher, John Raquet, Meir Pachter. Cooperative Estimation Algorithms Using TDOA Measurements Cooperative Systems, in Lecture Notes in Economics and Mathematical Systems[M], Springer Berlin Heidelberg,2007:57-66
    【79】 McEllroy, Jonathan A. Navigation Using Signals of Opportunity in the AM Transmission Band[D], Ph.D AIR FORCE INST OF TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGINEERING, 2006
    [80]邓平.蜂窝网络移动台定位技术研究:[博士学位论文][D].成都:西南交通大学,2002
    【81】V. M. KASPI. High-precision timing of millsecond puisars and precision astrometry[C]. Astronomical and astrophysical objectives of sub-milliarcsecond optical astrometry proceedings of the 166th Symposium of the International Astronomical Union, Hague, Netherlands,1994:163-171
    【82】 Haugan, M.P.. Post-Newtonian Arrival-time Analysis for a Pulsar in a Binary System[J]. Astrophys. J., 1985,296:1-12
    【83】 Blandford, R., Teukolsky, S.A.. Arrival-time analysis for a pulsar in a binary system[J]. Astrophys. J., 1976,205,580-591
    【84】 Kaspi, V.M., Taylor, J.H., Ryba, M., et al. High-Precision Timing of Millisecond Pulsars.Ⅲ. Long-Term Monitoring of PSRs B1855+09 and B1937+21[J]. Astrophys. J.,1994,428:713-728,
    【85】 Lommen, A.N.. Precision Multi-Telescope Timing of Millisecond Pulsars:New Limits onthe Gravitational Wave Background and Other Results from the Pulsar Timing Array[D]. Ph.D Thesis, University of California at Berkeley, Berkeley, CA, U.S.A.,1995
    【86】 Downs G S, Reichley P E.. Techniques for Measuring Arrival Times of Pulsar Signals I:DSN Observations from 1968 to 1980[R]. California:Jet Propulsion Laboratory California Institute of Technology,1980:48-55
    【87】 Bell,J.F.. Radio Pulsar Timing[J]. Advances in Space Research,1998,21, (1):137-147.
    【88】 Joseph H. Taylor, Jr.. Binary Pulsars and Relativistic Gravity[J]. J. Astrophys. Astr.1995,16:307-325
    【89】 M. Kramer, A. G. Lyne, M. Burgay. The Double Pulsar:A New Testbed for Relativistic Gravity[J]. Binary Radio Pulsars ASP Conference Series,2005,328:59-65
    【90】 Stairs, I.H., Thorsett, S.E., Taylor, J.H., et al. Studies of the Relativistic Binary Pulsar PSR B1534+12: I. Timing Analysis[J], Astrophys. J.,2002,581,501-508
    【91】 J.F. BELL, M. BAILES. A NEW METHOD FOR OBTAINING BINARY PULSAR DISTANCES AND ITS IMPLICATIONSFOR TESTS OF GENERAL RELATIVITY[J]. THE ASTROPHYSICAL JOURNAL,1996,456:L33-L35
    【92】 Taylor, J.H., Wolszczan, A., Damour, T., et al. Experimental constraints on strong-field relativistic gravity[J]. Nature,1992,355,132-136
    【93】T. Damour, N. Deruelle. General relativitic celestial mechanics of binary system Ⅰ. The post-Newtonian motion[J]. Ann. Inst. Henri Poincare,1985,43:107-132
    【94】 T. Damour, N. Deruelle. General relativitic celestial mechanics of binary system Ⅱ. The post-Newtonian timing formula[J], Ann. Inst. Henri Poincare,1986,44:263-292
    【95】 Martin, C. F., Torrence, M. H., and Misner, C. W.. Relativistic Effects on an Earth-Orbiting Satellite in the Barycenter Coordinate System[J]. Journal of Geophysical Research,1985,90(B 11):9403-9410.
    【96】 Richter, G. W., Matzner, R. A.. Second-order contributions to gravitational deflection of light in the parameterized post-Newtonian formalism[J]. Physical Review D,1982,26, (6):1219-1224.
    【97】Richter, G. W., and Matzner, R. A.. Second-order contributions to gravitational deflection of light in the parameterized post-Newtonian formalism. Ⅱ. Photon orbits and deflections in three dimensions[J]. Physical Review D,1982,26(10):2549-2556.
    【98】 Richter, G. W., Matzner, R. A.. Second-order contributions to relativistic time delay in the parameterized post-Newtonian formalism[J]. Physical Review D,1983,28(12):3007-3012.
    【99】Richter, G. W., Matzner, R. A.. Gravitational deflection of light at 11/2 PPN order[J]. Astrophysics and Space Science,1981,79:119-127.
    【100】 Shapiro,1.1.. Fourth Test of General Relativity[J]. Physical Review Letters,1964,13(26):789-791.
    【101】 Daniel A. Hemberger. Improving Pulsar Timing through Interstellar Scatter Correction[D]. Ph.D, Department of Physics& Astronomy, Oberlin College,2007
    【102】 NASA HEASARC, HEAsoft:NASA's HEASARC Software URL:http://heasarc.gsfc.nasa.gov/docs/software/lheasoft/.2006-12-8
    【103】 Taylor, J. H., Manchester, R., Nice, D. J.. TEMPO Software Package, URL:http://pulsar.princeton.edu/tempo/.2006-4-8
    【104】 http://www.pulsarastronomy.net/wiki/Software/PSRTime
    【105】 Hobbs, G. B., Edwards, R. T., Manchester, R. N.. TEMP02, a new pulsar-timing package-Ⅰ. An overview[J]. Monthly Notices of the Royal Astronomical Society,2006,369:655-672.
    【106】Edwards, R. T., Hobbs, G. B., and Manchester, R. N.. TEMPO2, a new pulsar timing package-Ⅱ. The timing model and precision estimates[J]. Monthly Notices of the Royal Astronomical Society,2006, 372,:1549-1574.
    [107]吴鑫基张晋王娜等.乌鲁木齐天文站脉冲星观测研究新进展[J].紫金山天文台台刊,2003,22(1):13-15
    [108]倪广仁,柯熙政,杨廷高等.毫秒(ms)脉冲星计时观[J].云南天文台台刊,2003.03
    [109]杨廷高,潘炼德,倪广仁等.毫秒脉冲星定时研究进展[J].天文学进展,2002,20(2):167-174
    【110】 Nan Rendong. Five hundred meter aperture spherical radio telescope (FAST)[J]. Science in China Series G:Physics Mechanics and Astronomy,2006,49:129-148
    [111]李惕碚,吴枚.空间硬X射线调制望远镜[J].物理,2008,37(9):648-651
    [112]卢方军.我国开始建造空间硬X射线调制望远镜[J].科学通报,2007,52(6):654
    [113]中国科协学术协会主编.控制科学与工程学科发展研究报告2007(简本)[M].北京:中国科学技术出版社,2007
    【114】 GCharpak, F.Sauli. High-resolution Electronic Particle Detectors[J]. Annual review of Nuclear Science,1984,34:285-350.
    【115】 E. Mathieson, Induced charge distributions in proportional detectors, http://www.inst.bnl.gov/programs/gasnobledet/publications/Mathieson's_Book.pdf,2008-1-5
    【116】 G. C. Smith, B. Yu, J. Fischer, et al.. High Rate, High Resolution, Two-Dimensional Gas Proportional Detectors For X-ray Synchrotron Radiation Experiments[J]. Nucl. Instrum.& Meth A.,1992, 323:78-85.
    【117】 x-ray_detectors, http://imagine.gsfc.nasa.gov/docs/science/how_12/xray_detectors.html,2008-6-24
    【118】 Peter Verhoeve.Photon Counting Low Temperature Detectors for Visible to Gamma Ray Astrophysics[J].J Low Temp Phys 2008,151:675-683
    [119]刘立业,马吉增.气体闪烁正比计数器:GSPC[J].核电子学与探测技术,2005,25(6):664-650
    【120】 Ota N, Murakami T, SugizakiM, et al.. Thick and Large Area PIN Diodes for Hard X—ray Astronomy[J]. Nuclear Instruments andMethods in Physics Research Section A,1999,436:291-296
    【121】 FedotovMG. CCD Detectors for X-ray Synchrotron Radiation Application [J]. Nucl Instrum Meth A, 2000,448:192-195.
    【122】 Soltau H, Kemmer J, Meidinger N, et al.. Fabrication, Test and Performance of Very Large X-ray CCDs Designed for Astrophysical Applications [J]. Nucl Instrum Meth A,2000,439:547-559
    [123]周又元,王绶琯.X射线天体物理学[M].北京:科学出版社,1999,10:90-92
    【124】 Wiza, Joseph. Microchannel plate detectors[J], Nuclear Instruments and Methods.1979.162:587-601
    【125】 Albert Lim. The 7 classes of X-ray Detectors, http://www.astro.com.sg/articles/The_7_Classes_of_X-Ray_Detectors.php2000
    【126】 Da Rocha J.GV.; Lanceros-Mendez, S.3-D Modeling of Scintillator-Based X-ray Detectors [J]. Sensors Journal,2006, IEEE 6 (5):1236-1242
    【127】 Dae-Hwan Kim; Sang-Sik Kang et.al.. High-resolution phosphors as X-ray detectors for synchrotron radiation experiments Ji-Koon Park[J]. Nuclear Science Symposium Conference Record,2004 IEEE Volume 7, Issue,16-22 Oct.2004:4690-4694 Vol.7
    【128】 Williams, B.F.,Tietjen, J.J. Current status of negative electron affinity devices[J]. Proceedings of the IEEE,1971,59,(10):1489-1497
    【129】 Williams, B. F. Negative Electron Affinity Materials in Photomultipliers[J]. Nuclear Science, IEEE Transactions,1972,19(3):39-44
    [130]唐道润,江少恩,伍登学.用于激光等离子体测量的X光量热计[J].强激光与粒子束,2005,17(5):715-718
    【131】 Marcel P B, Norman H R B, WouterM B T, et al. Development of an Array of Transition Edge Sensors for App lication in X-ray Astronomy[J]. N ucl Instrum Meth A,2004,520:443-445
    【132】 Bergonzo P, Tromson D, Mer C, et al. Particle and Radiation DetectorsBased on Diamond[J]. Phys S tatus Solidi A,2001,185 (1):67-181.
    [133]罗立强.非常规X射线能量探测技术[J].岩矿测试,2006,25(1):49:54
    【134】 Ronald A. Remillard. X-ray detectors for astrophysics[J].Nuclear Instruments and Methods in Physics Research A,2004,531:285-291
    [135]李致远.半导体器件辐射效应及抗辐射加固[J].现代电子技术,2006,(19):138-141
    [136]李冬梅,王志华,高文焕等.FPGA的空间辐射效应及加固技术[J].2000,(8):4-6
    [137]张承模,马宇倩,王焕玉等.神舟二号飞船船载X射线探测器标定及在轨性能[J]..核电子学与探测技术,2005,25(1):1-12.
    [138]杭恒荣,张南,于敏.搭载在神州二号飞船留轨舱上的超软射线探测器一观测结果简介[J].天文学报,2003,44(3):270-278
    [139]美科学家首次提出脉冲星旋转现象解释.http://www.dogstar.net/sys/show.php?articleid=1666, 2007-10-2
    【140】 Hewish A., Bell S.J., Pilkington J.D.H., et al.. Observation of a Rapidly Pulsating Radio Source[J], Nat,1968,217:709-713
    【141】 Manchester R. N., Hobbs G. B., Teoh A., et al. The Australia Telescope National Facility Pulsar Catalogue[J]. AJ,2005,129:1993-2006
    【142】 Manchester R. N. Kramer, M., Possenti A.,et al.. The mean pulse profile of PSR J0737-3039A[J].
    ApJ,2005,621:L49-L52
    【143】 M. Kramer, J. F. Bell, R. N. Manchester, et al., The Parkes Multibeam Pulsar Survey III:Young Pulsars & the discovery and timing of 200 pulsars [J], MNRAS,2003,342:1299-1324.
    【144】M. Burgay, N. D'Amico, A. Possenti et al., An increased estimate of the merger rate of double neutron stars from observations of a highly relativistic system, Nature 2003,426:531-533
    【145】 Hobbs G. FAULKNER, A., STAIRS, I. H.,et al., Discovery of 180 pulsars and parameters for 281 previously known pulsars [J], MNRAS.2004,352,1439-1472
    【146】 Faulkner A. J. KRAMER, M., LYNE. A.G., et al., The Parkes Multibeam Pulsar Survey. V. Finding binary and millisecond pulsars[J]. MNRAS,2004,355,147-158
    【147】 V.M. Kaspia, F.P. Gavriila. (Anomalous) X-ray Pulsars[J], Nuclear Physics B (Proc. Suppl.) 2004, 132:456-465
    【148】 Becker,W. Trumper, J. The X-ray Luminosity of Rotation-Powered Neutron Stars[J], A&A,1997, 236:682-691
    【149】 Bhattacharya D., van den Heuvel E. P. J., Formation and evolution of binary and millisecond radio pulsais[J]. Phys. Rep.,1991,203:1-124
    【150】 Aidan Wade Hotan.High-Precision Observations of Relativistic Binary and Millisecond Pulsars[D], Ph.D Disertation. Melbourne:Swinburne University of Technology,2006,27-29
    【151】 WALLACE H. T., The X-Ray Universe, www.slac.stanford.edu/pubs/beamline/25/2/25-2-tucker.pdf, 2007-11-24
    【152】 Moyer T D. Formulation for observed and Computed Values of Deep Space Network Data Types[R].California:JPL Publication 00-7,2000,8-9
    【153] Backer D C, Hellings R W. Pulsar Timing and General Relativity[J]. Ann.Rev.Astron.Ap,1986,24: 537-575;
    【154】 Lorimer D R, Kramer M. Handbook of Pulsar Astronomy[M]. Cambridge:Cambridge University Press,2005,205
    【155】 Lyne, A. G., Jordan, C. A., Roberts, M. E., Jodrell Bank Crab Pulsar Timing Results,[online], URL: http://www.jb.man.ac.uk/-pulsar/crab.html [cited 13 August 2007].
    【156】 Matsakis D. N., Taylor J. H.,Eubanks T. M., A Statistic for Describing Pulsar and Clock Stabilities[J].1997,A&A,326-924
    【157】 Alexander E. Rodin, Algorithm of Ensemble Pulsar Time[J]. Chin. J. Astron. Astrophys.2006,6, Suppl.2:157-161。
    【158】 Reichley, P., Downs, G., and Morris, G., Use of Pulsar Signals as Clocks[J], NASA Jet Propulsion Laboratory Quarterly Technical Review,1971,1(2):80-86.
    【159】 Guinot B., Petit G.. Atomic Time and the Rotation of Pulsars [J]. A&A,1991,248,292-296
    【160】 Taylor, J. H., Pulsar Timing and Relativistic Gravity[J].Philosophical Transactions of the Royal Society of London,1992,341:117-134.
    【161】 Steven M. Kay. Fundamentals of Statistical Signal Processing:Estimation Theory[J], Upper Saddle River, NJ:Prentice Hall PTR,1993
    【162】 D Andrea A, Mengali U, Reggiannini R. The modified Cramer-Rao bound and its application to synchronization problems[J]. IEEE Transactions on Communications,1994,42 (234):1391-1399
    【163】 Fraser, G. W., X-ray Detectors in Astronomy[M],Cambridge University Press, Cambridge UK,1989.
    【164】 Kramer M, Xilouris K M, Camilo F, et al. Profile instbilities of the millisecond pulsar J1022+1001[J].ApJ,1999,520:324-334
    【165】 Kramer M. Determination of the geometry of PSR B1913+16 by geodetic precession[J], ApJ,1998, 509:856-860
    【166】 H. L. Hurd, N. L. Gerr. Graphical methods for determining the presence of periodic correlation[J]. J. Times Ser. Anal.,1991,12(4):337-350
    【167】 Keh-Shin Lii, Murray Rosenblatt. Estimation For Almost Periodic Processes[J].The Annals of Statistics,2006,34(3):1115-1139,
    【168】 William Allen Gardner. Representation and estimation of cyclostationary Processes[J]. IEEE Trans. on IT.,1973,19(3):376
    [169]杨宗凯.小波去噪及其在信号检测中的应用[J].华中理工大学学报.1997.25(2):1-4
    [170]朱晓明,廖福成,唐远炎.基于小波分析的脉冲星信号消噪处理[J].天文学报,2006,47(3):328-335
    【169】 Willem van Straten. High-Precision Timing and Polarimetry of PSR J0437-4715[D].Swinburne University of Technology,2003
    【171】Nordtvedt, K., Jr., Will, C. M..Conservation Laws and Preferred Frames in Relativistic Gravity. Part Ⅱ. Experimental Evidence to Rule Out Preferred-Frame Theories of Gravity[J]. Astrophysical Journal, 1972,177:775-792
    【172】 Lorimer, D. R.. Binary and Millisecond Pulsars at the New Millennium[J]. Living Reviews in Relativity,2001,4:5.
    【173】 Thomas, J. B.. Reformulation of the Relativistic Conversion Between Coordinate Time and Atomic Time,Astronomical Journal,1975,80(5):05-411
    【174】 Moyer, T. D.. Transformation from Proper Time on Earth to Coordinate Time in Solar System Barycentric Space-Time Frame of Reference-Part One CelestialMechanics[J].1981,23:33-56.
    【175】 Hellings R W. Relativistic Effects in Astronomical Timing Measurements[J].Astronomical Journal, 1986,91(3):650-659
    【176】 Ashby, N.. Relativity in the Global Positioning System[J]. Living Reviews in Relativity,2003,6:1-45.
    【177】 T.D. Moyer. Mathematical Formulation of the Double-Precision Orbit Determination Program[R]. Jet Propulsion Laboratory Tech. Rept., No.32-1527, Pasadena,1971
    【178】 Fairhead,Bretagnon, An analytical formula for the time transformation TB-TT[J]. Astrophys,
    1990,229:240-247,
    【179】 Hirayama, Th., H. Kinoshita, M.-K. Fujimoto, et al. Analytical Expression of TDB-TDT0[J]. Proceedings of the International Association of Geodesy (IAG) Symposia,1987,1:91-100
    【180】 Fukushima, T.. Time Ephemeris[J]. Astron. Astrophys.,1995,294:895-906,.
    【181】 Vallado, D. A., Fundamentals of Astrodynamics and Applications[M].Space Technology Library, Kluwer Academic Publishers, Boston MA,2001
    【182】 Battin, R. H., An Introduction to the Mathematics and Methods of Astrodynamics[M], American Institute of Aeronautics and Astronautics, Washington,DC,1999
    【183】 Parkinson, B. W., Spilker, J. J. J. Global Positioning System:Theory and Applications, Volume 1. American Institute of Aeronautics and Astronautics[M], Washington, DC,1996
    【184】 Artist's concept of general relativity experiment. http://saturn.jpl.nasa.gov/news/press-releases-03/20031002-pr-a.cfm,2007-5-23
    【185】 Chakrabarty, D., and Morgan. E. H., The two-hour orbit of a binary millisecond X-ray pulsar[J],Nature,1998,394:346-348.
    【186】 AAVSO, Types of Variable Stars, [online database],The American Association of Variable Star Observers, URL:http://www.aavso.org/vstar/types.shtml [cited 7 March 2007].
    【187】 CDS, SIMBAD Astronomical Database[online database]. Centre de Donnees astronomiques de Strasbourg, URL:http://simbad.harvard.edu/cgibin/[cited 2007].
    【188】 Camilo, F., Lorimer, D. R., Bhat, N. D. R., et al. Discovery of a 136 Millisecond Radio and Xray Pulsar in Supernova Remnant G54.1+0.3[J]. Astrophysical Journal,2002,574:L71-L74
    【189】 Campana, S., Ravasio, M., Israel, G. L., et al. XMM Newton Observation of the 5.25 Millisecond Transient Pulsar XTE J1807-294 in Outburst[J]. Astrophysical Journal,2003.594:L39-L42
    【190】 Caraveo, P. A., Mignani, R. P.. A new HST measurement of the Crab Pulsar proper motion[J]. Astronomy and Astrophysics,1999,344:367-370.
    【191】 Baade, W., Zwicky, F.. Cosmic Rays from Super-novae[J]. Proceedings of the National Academy of Science,1934,20(5):259-263
    【192】Irwin I. Shapiro, Gordon H. Pettengill, Michael E. Ash. Fourth Test of General Relativity:Preliminary Results[J]. Physical Review Letters 1968,20:1265-1269
    【193】 Wikipedia.Shapiro delay.http://en.wikipedia.org/wiki/Shapiro_delay,2008-9-13
    【194】 Wertz, J. R.. Spacecraft Attitude Determination and Control[M]. Boston MA:Kluwer Academic Publishers,1978
    【195】 Petit G, Thomas C. An Ensemble Pulsar Time[C]. PROC.24th PTTI metting, McLean,1992:73;
    【196】 Wood, K. S., Kowalski, M., Lovellette, M. N., et al. The Unconventional Stellar Aspect (USA) Experiment on ARGOS[C]. American Institute of Aeronautics and Astronautics (AIAA) Space Conference and Exposition, AIAA Paper 2001-4664, Albuquerque NM,2001;
    【197】 Nelson, R.A.. Relativistic Time Transfer in the Solar System[C].2007 IEEE International Frequency Control Symposium, Joint with the 21st European Frequency and Time Forum.2007:1278-1283
    【198】 Steen M.Kay. Fundamentals of Statistical Signal Processing Volume LEstemation Theory[M]. N.J.: Prentice Hall PTR,1993:133

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700