星系团与黑洞高能天体物理过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文研究了星系团和超大质量黑洞中的若干重要的高能天体过程。星系团中维里化的高温电离气体中的电子与宇宙微波背景辐射(CMB)光子发生Compton散射,从而改变CMB的能谱,这种被称为Sunyaev-Zel’dovich(SZ)效应的物理过程是研究宇宙学和星系团结构与演化的独特工具。我们研究了星系团中的磁场对于SZ效应的一种修正机制,称之为磁SZ效应。与经典SZ效应相比,磁SZ效应信号更强,空间分布更陡。结合X射线辐射和SZ谱观测,磁SZ效应可以限制星系团中的磁场强度,如A2163团中心磁场为~30μG。我们分析了WMAP卫星三年数据,对一个星系团样本找到了10σ显著性的SZ效应信号。SZ信号与X射线观测的共同数据拟合显示星系团内热气体(ICM)的分布在维里半径处存在外边界,这可能是星系团外缘存在维里化激波的证据。我们还确认了星系团中重子占总物质的比例低于宇宙均值。磁SZ效应和星系团ICM外部边界的存在将影响利用SZ效应测量宇宙学参数的系统误差。
     星系团是研究暗物质性质的天然实验室。我们分析了暗物质-重子粒子碰撞解释“冷流”星系团中心缺乏过冷气体的加热机制。星系团的观测数据给出单位质量暗物质粒子-质子碰撞截面上限为σxp/mx<~2×10?25 cm2 GeV?1。ICM能量平衡方程的稳定性分析证明了暗物质-重子粒子碰撞不是“冷流”星系团中心的主要加热机制。我们计算了21个有X射线图像和能谱高分辨率观测数据的星系团中暗物质的等效“温度”(速度弥散)分布,发现部分星系团的暗物质“温度”低于团内气体的温度,证明星系团中存在对气体的非引力加热机制。
     星系中心超大质量黑洞的形成问题对于研究星系形成与演化和宇宙再电离具有重要意义。我们首次提出了宇宙早期超大质量黑洞通过对自相互作用暗物质和重子物质的两阶段吸积快速形成的机制,从而解释了类星体SDSS1148+5251的形成,并预言了中心有大质量黑洞的暗星系的存在。我们建立了类星体HE0450-2958的动力学模型,解释了其中心黑洞与伴星系星爆活动的形成过程,证明这是一个由星系高速交会触发的类星体。
The thesis studies several important high energy astrophysical processes in galaxyclusters and super-massive black holes (SMBHs).
     Electrons in the fully ionized intracluster medium (ICM) hot gas will change theenergy spectrum of cosmic microwave background by Compton scattering. This so-called Sunyaev-Zel’dovich effect (SZE) is a unique tool for the study of cosmologyand structure and evolution of galaxy clusters. We explore the modification mech-anism of intracluster magnetic fields on the classical SZE. Such magnetic SZ effect(MSZE) tends to enhance the SZE signal with a steeper radial profile. By applyingthe MSZE model to spectral observations of SZE signals and X-ray emissions fromthe galaxy clusters, the intracluster magnetic field can be constrained, i.e., a~30μGcentral magnetic field is predicted for the galaxy cluster A2163. We analyze the three-year data of WMAP satellite, find SZE signal of 10σsignificance in a sample of galaxyclusters. Combined SZ and X-ray data fitting require the outer edge of ICM distribu-tion at cluster virial radius, which could be the evidence of virilization shock aroundthe clusters. We confirm the previous results that the baryons fraction in clusters islower than the cosmic mean value. The existence of the MSZE and an outer edge ofICM distribution bear important systematic uncertainty for cluster-based estimation ofcosmological parameters.
     Galaxy clusters are the astrophysical laboratory for the study of dark mat-ter. The collision between dark matter particles (DMPs) and baryons is a possi-ble heating source accounting for the absence of over-cooling gas in the central re-gions of“cooling ?ow”clusters. We examine this mechanism in a sample of clus-ters and derive the upper limit for the collisional cross section per DMP mass asσxp/mx~< 2×10?25 cm2 GeV?1. The stability analysis on the energy equilibriumequation of ICM demonstrates that the DMPs-baryons collision cannot be the domi-nant heating source in the center of“cooling ?ow”clusters. We calculate the equiva- lent“temperature”(velocity dispersion) profiles of dark matter in a sample of 21 galaxyclusters with X-ray observations of high spatial and spectral resolution. The dark mat-ter is found to be cooler than the ICM in part of clusters, indicating the existence ofnon-gravitational heating mechanism for ICM.
     The formation problem of SMBHs in the center of galaxies are crucial for thestudy of galaxy formation and evolution, and cosmic reionization. We proposed theSMBHs quick formation mechanism by two-phase accretion of self-interacting darkmatter and baryons in the early universe, thus explain the formation of quasar SDSS1148+5251, and predict the existence of massive black holes dwelling in the centerof dark galaxies. We also model the dynamics of quasar system HE 0450-2958 andexplain the processes of its SMBH formation and star-burst in the companion galaxy,show that the quasar is triggered by the strong interaction in the high-speed encounterwith the companion galaxy.
引文
[1] Bahcall N A. Clusters and Superclusters of Galaxies, in Formation of structure in theuniverse, eds. A. Dekel, J. P. Ostriker. Cambridge Univ. Press, 1999. 135–171
    [2] Zwicky F. Die Rotverschiebung von extragalaktischen Nebeln. Helvetica Physica Acta,1933, 6:110–127
    [3] Zwicky F. On the masses of nebulae and of clusters of nebulae. ApJ, 1937, 86:217–246
    [4] Bahcall N A, Cen R. Galaxy clusters and cold dark matter - A low-density unbiased uni-verse? ApJ, 1992, 398:L81–L84
    [5] Zel’dovich Y B, Sunyaev R A. The Interaction of Matter and Radiation in a Hot-ModelUniverse. Astrophysics and Space Science, 1969, 4:301–316
    [6] Sunyaev R A, Zel’dovich I B. Microwave background radiation as a probe of the contem-porary structure and history of the universe. ARAA, 1980, 18:537–560
    [7] Rephaeli Y. Comptonization Of The Cosmic Microwave Background: The Sunyaev-Zel’dovich Effect. ARAA, 1995, 33:541–580
    [8] Rybicki G B, Lightman A P. Radiative Processes in Astrophysics. Wiley, 1979
    [9] Carlstrom J E, Holder G P, Reese E D. Cosmology with the Sunyaev-Zel’dovich Effect.ARAA, 2002, 40:643–680
    [10] Reese E D. Measuring the Hubble Constant with the Sunyaev-Zel’dovich Effect, in Mea-suring and Modeling the Universe, ed. W. L. Freedman. Cambridge Univ. Press, 2004.138
    [11] Bonamente M, Joy M K, LaRoque S J, et al. Determination of the Cosmic DistanceScale from Sunyaev-Zel’dovich Effect and Chandra X-Ray Measurements of High-RedshiftGalaxy Clusters. ApJ, 2006, 647:25–54
    [12] Freedman W L, Madore B F, Gibson B K, et al. Final Results from the Hubble SpaceTelescope Key Project to Measure the Hubble Constant. ApJ, 2001, 553:47–72
    [13] Sandage A, Tammann G A, Saha A, et al. The Hubble Constant: A Summary of the HubbleSpace Telescope Program for the Luminosity Calibration of Type Ia Supernovae by Meansof Cepheids. ApJ, 2006, 653:843–860
    [14] Cooray A. Non-Gaussian aspects of thermal and kinetic Sunyaev-Zel’dovich effects. Phys.Rev. D, 2001, 64:063514
    [15] Puy D, Grenacher L, Jetzer P, et al. Asphericity of galaxy clusters and the Sunyaev-Zel’dovich effect. A&A, 2000, 363:415–424
    [16] Cooray A, Chen X. Kinetic Sunyaev-Zel’dovich Effect from Halo Rotation. ApJ, 2002,573:43–50
    [17] Chluba J, Mannheim K. Kinetic Sunyaev-Zel’dovich effect from galaxy cluster rotation.A&A, 2002, 396:419–427
    [18] Sandoval-Villalbazo A, Maartens R. Brillouin scattering and the CMB. General Relativityand Gravitation, 2005, 37:1137–1143
    [19] Majumdar S, Nath B B, Chiba M. Sunyaev-Zel’dovich distortion from early galactic winds.MNRAS, 2001, 324:537–546
    [20] Schlickeiser R. Cooling-?ow modification of the Sunyaev-Zel’dovich effect in clusters ofgalaxies. A&A, 1991, 248:L23–L26
    [21] En?lin T A, Lieu R, Biermann P L. Non-thermal origin of the EUV and HEX excessemission of the Coma cluster - the nature of the energetic electrons. A&A, 1999, 344:409–420
    [22] Blasi P. Stochastic Acceleration and Nonthermal Radiation in Clusters of Galaxies. ApJ,2000, 532:L9–L12
    [23] Clarke T E, Kronberg P P, Bo¨hringer H. A New Radio-X-Ray Probe of Galaxy ClusterMagnetic Fields. ApJ, 2001, 547:L111–L114
    [24] Carilli C L, Taylor G B. Cluster Magnetic Fields. ARAA, 2002, 40:319–348
    [25] Eilek J A, Owen F N. Magnetic Fields in Cluster Cores: Faraday Rotation in A400 andA2634. ApJ, 2002, 567:202–220
    [26] Taylor J E, Navarro J F. The Phase-Space Density Profiles of Cold Dark Matter Halos. ApJ,2001, 563:483–488
    [27] Vikhlinin A, Markevitch M, Murray S S. Chandra Estimate of the Magnetic Field Strengthnear the Cold Front in A3667. ApJ, 2001, 549:L47–L50
    [28] Loeb A, Mao S. Evidence from gravitational lensing for a nonthermal pressure support inthe cluster of galaxies Abell 2218. ApJ, 1994, 435:L109–L112
    [29] Dolag K, Schindler S. The effect of magnetic fields on the mass determination of clustersof galaxies. A&A, 2000, 364:491
    [30] Koch P M, Jetzer P, Puy D. The in?uence of magnetic fields on the Sunyaev-Zel’dovicheffect in clusters of galaxies. New Astronomy, 2003, 8:1–14
    [31] Nicholson D R. Introduction to Plasma Theory. Wiley, 1983
    [32] Parker E N. Dynamical Instability in an Anisotropic Ionized Gas of Low Density. PhysicalReview, 1958, 109:1874–1876
    [33] Hasegawa A. Plasma Instability and Nonlinear Effects. Springer, 1975
    [34] Dolag K, Schindler S, Govoni F, et al. Correlation of the magnetic field and the intra-clustergas density in galaxy clusters. A&A, 2001, 378:777–786
    [35] Haug E. On the use of nonrelativistic bremsstrahlung cross sections in astrophysics. A&A,1997, 326:417–418
    [36] Birkinshaw M. The Sunyaev-Zel’dovich effect. Physics Reports, 1999, 310:97–195
    [37] Sarazin C. X-Ray Emission from Clusters of Galaxies. Cambridge Univ. Press, 1988
    [38] Elbaz D, Arnaud M, Bo¨hringer H. The gas distribution and binding mass in the A 2163cluster. A&A, 1995, 293:337–346
    [39] Markevitch M, Mushotzky R, Inoue H, et al. Abell 2163: Temperature, Mass, and Hydro-static Equilibrium. ApJ, 1996, 456:437–444
    [40] Markevitch M, Vikhlinin A. Merger Shocks in Galaxy Clusters A665 and A2163 and TheirRelation to Radio Halos. ApJ, 2001, 563:95–102
    [41] LaRoque S J, Carlstrom J E, Reese E D, et al. The Sunyaev-Zel’dovich Effect Spectrum ofAbell 2163. astro-ph/0204134, 2002.
    [42] Desert F X, Benoit A, Gaertner S, et al. Observations of the Sunyaev-Zel’dovich effect athigh angular resolution towards the galaxy clusters A665, A2163 and CL0016+16. NewAstronomy, 1998, 3:655–669
    [43] Holzapfel W L, Arnaud M, Ade P A R, et al. Measurement of the Hubble Constant fromX-Ray and 2.1 Millimeter Observations of Abell 2163. ApJ, 1997, 480:449–465
    [44] Feretti L, Fusco-Femiano R, Giovannini G, et al. The giant radio halo in Abell 2163. A&A,2001, 373:106–112
    [45] Colafrancesco S, Marchegiani P, Palladino E. The non-thermal Sunyaev-Zel’dovich effectin clusters of galaxies. A&A, 2003, 397:27–52
    [46] Arnaud M, Aghanim N, Gastaud R, et al. XMM-Newton observation of the Coma Galaxycluster. The temperature structure in the central region. A&A, 2001, 365:L67–L73
    [47] De Petris M, D’Alba L, Lamagna L, et al. MITO Measurements of the Sunyaev-Zel’dovichEffect in the Coma Cluster of Galaxies. ApJ, 2002, 574:L119–L122
    [48] Fusco-Femiano R, dal Fiume D, Feretti L, et al. Hard X-Ray Radiation in the Coma ClusterSpectrum. ApJ, 1999, 513:L21–24
    [49] Hu J, Lou Y Q. Magnetic Sunyaev-Zel’dovich Effect in Galaxy Clusters. Proceedings ofBeyond the Milky Way: Progress in Extragalactic X-Ray Astronomy with Chandra andXMM-Newton, Shanghai, China, 2003
    [50] Blasi P, Olinto A V, Stebbins A. The Effect of a Nonthermal Tail on the Sunyaev-Zel’dovichEffect in Clusters of Galaxies. ApJ, 2000, 535:L71–L74
    [51] Zhang P. The effect of cluster magnetic field on the Sunyaev-Zel’dovich power spectrum.MNRAS, 2004, 348:1348–1354
    [52] Kogut A, Spergel D N, Barnes C, et al. First-Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Temperature-Polarization Correlation. ApJS, 2003, 148:161–173
    [53] Bennett C L, Halpern M, Hinshaw G, et al. First-Year Wilkinson Microwave AnisotropyProbe (WMAP) Observations: Preliminary Maps and Basic Results. ApJS, 2003, 148:1–27
    [54] Bennett C L, Hill R S, Hinshaw G, et al. First-Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Foreground Emission. ApJS, 2003, 148:97–117
    [55] Spergel D N, Verde L, Peiris H V, et al. First-Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Determination of Cosmological Parameters. ApJS, 2003, 148:175–194
    [56] Spergel D, Bean R, Dore′ O, et al. Wilkinson Microwave Anisotropy Probe (WMAP) ThreeYear Results: Implications for Cosmology. astro-ph/0603449, 2006.
    [57] Hinshaw G, Nolta M R, Bennett C L, et al. Three-Year Wilkinson Microwave AnisotropyProbe (WMAP) Observations: Temperature Analysis. astro-ph/0603451, 2006.
    [58] Page L, Hinshaw G, Komatsu E, et al. Three Year Wilkinson Microwave Anisotropy Probe(WMAP) Observations: Polarization Analysis. astro-ph/0603450, 2006.
    [59] Fosalba P, Gaztan?ga E, Castander F J. ApJ, 2003, 597:L89–L92
    [60] Fosalba P, Gaztan?ga E. Measurement of the gravitational potential evolution from the cross-correlation between WMAP and the APM Galaxy Survey. MNRAS, 2004, 350:L37–L41
    [61] Myers A D, Shanks T, Outram P J, et al. Evidence for an extended Sunyaev-Zel’dovicheffect in WMAP data. MNRAS, 2004, 347:L67–L72
    [62] Afshordi N, Loh Y S, Strauss M A. Cross-correlation of the cosmic microwave backgroundwith the 2MASS galaxy survey: Signatures of dark energy, hot gas, and point sources. Phys.Rev. D, 2004, 69:083524
    [63] Herna′ndez-Monteagudo C, Genova-Santos R, Atrio-Barandela F. The Effect of Hot Gasin the First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Data. ApJ, 2004,613:L89–L92
    [64] Herna′ndez-Monteagudo C, Mart′?n J A. On the presence of thermal Sunyaev-Zel’dovichinduced signal in the first-year WMAP temperature maps. MNRAS, 2004, 347:403–410
    [65] Afshordi N, Lin Y T, Sanderson A J R. Wilkinson Microwave Anisotropy Probe Constraintson the Intracluster Medium. ApJ, 2005, 629:1–14
    [66] Afshordi N, Lin Y T, Nagai D, et al. Missing Thermal Energy of the Intracluster Medium.astro-ph/0612700, 2006.
    [67] Bonamente M, Lieu R, Joy M K, et al. The Soft X-Ray Emission in a Large Sample ofGalaxy Clusters with the ROSAT Position Sensitive Proportional Counter. ApJ, 2002,576:688–707
    [68] Lieu R, Mittaz J P D, Zhang S N. The Sunyaev-Zel’dovich Effect in a Sample of 31 Clusters:A Comparison between the X-Ray Predicted and WMAP Observed Cosmic MicrowaveBackground Temperature Decrement. ApJ, 2006, 648:176–199
    [69] Jarosik N, Barnes C, Greason M R, et al. Three-Year Wilkinson Microwave AnisotropyProbe (WMAP) Observations: Beam Profiles, Data Processing, Radiometer Characteriza-tion and Systematic Error Limits. astro-ph/0603452, 2006.
    [70] Bielby S T. Anomalous SZ Contribution to 3 Year WMAP Data. astro-ph/0703470, 2007.
    [71] Peebles P J E. Principles of Physical Cosmology. Princeton University Press, 1993
    [72] Evrard A E. Formation and evolution of X-ray clusters - A hydrodynamic simulation of theintracluster medium. ApJ, 1990, 363:349–366
    [73] Ostriker J P, Bode P, Babul A. A Simple and Accurate Model for Intracluster Gas. ApJ,2005, 634:964–976
    [74] Bertschinger E. Self-similar secondary infall and accretion in an Einstein-de Sitter universe.ApJS, 1985, 58:39–65
    [75] Bryan G L, Norman M L. Statistical Properties of X-Ray Clusters: Analytic and NumericalComparisons. ApJ, 1998, 495:80–99
    [76] Frenk C S, White S D M, Bode P, et al. The Santa Barbara Cluster Comparison Project: AComparison of Cosmological Hydrodynamics Solutions. ApJ, 1999, 525:554–582
    [77] Miniati F, Ryu D, Kang H, et al. Properties of Cosmic Shock Waves in Large-Scale StructureFormation. ApJ, 2000, 542:608–621
    [78] Verde L, Haiman Z, Spergel D N. Are Clusters Standard Candles? Galaxy Cluster ScalingRelations with the Sunyaev-Zel’dovich Effect. ApJ, 2002, 581:5–19
    [79] Rees M J, Ostriker J P. Cooling, dynamics and fragmentation of massive gas clouds - Cluesto the masses and radii of galaxies and clusters. MNRAS, 1977, 179:541–559
    [80] Bagchi J, En?lin T A, Miniati F, et al. Evidence for shock acceleration and intergalacticmagnetic fields in a large-scale filament of galaxies ZwCl 2341.1+0000. New Astronomy,2002, 7:249–277
    [81] Loeb A, Waxman E. Cosmic γ-ray background from structure formation in the intergalacticmedium. Nature, 2000, 405:156–158
    [82] En?lin T A, Biermann P L, Klein U, et al. Cluster radio relics as a tracer of shock waves ofthe large-scale structure formation. A&A, 1998, 332:395–409
    [83] En?lin T A, Bru¨ggen M. On the formation of cluster radio relics. MNRAS, 2002, 331:1011–1019
    [84] Molendi S. Clusters outskirts at X-ray wavelengths: current status and future prospects.astro-ph/0405223, 2004.
    [85] Keshet U, Waxman E, Loeb A. Imprint of Intergalactic Shocks on the Radio Sky. ApJ,2004, 617:281–302
    [86] Kocsis B, Haiman Z, Frei Z. Can Virialization Shocks Be Detected around Galaxy Clustersthrough the Sunyaev-Zel’dovich Effect? ApJ, 2005, 623:632–649
    [87] Bagchi J, Durret F, Lima Neto G B, et al. Giant Ringlike Radio Structures Around GalaxyCluster Abell 3376. Science, 2006, 314:791–794
    [88] LaRoque S J, Bonamente M, Carlstrom J E, et al. X-Ray and Sunyaev-Zel’dovich EffectMeasurements of the Gas Mass Fraction in Galaxy Clusters. ApJ, 2006, 652:917–936
    [89] Vikhlinin A, Kravtsov A, Forman W, et al. Chandra Sample of Nearby Relaxed GalaxyClusters: Mass, Gas Fraction, and Mass-Temperature Relation. ApJ, 2006, 640:691–709
    [90] Biviano A, Salucci P. The radial profiles of the different mass components in galaxy clusters.A&A, 2006, 452:75–81
    [91] Ettori S. Are we missing baryons in galaxy clusters? MNRAS, 2003, 344:L13–L16
    [92] Cao L, Zuo W, Chu Y Q. Constrain Intergalactic Medium from the SZ Effect Map. Mod.Phys. Lett. A, 2006, 21:2233–2239
    [93] Cen R, Ostriker J P. Where Are the Baryons? ApJ, 1999, 514:1–6
    [94] Nevalainen J, Lieu R, Bonamente M, et al. Soft X-Ray Excess Emission in Clusters ofGalaxies Observed with XMM-Newton. ApJ, 2003, 584:716–728
    [95] Kaastra J S, Lieu R, Tamura T, et al. XMM-Newton confirmation of soft X-ray excessemission in clusters of galaxies - The discovery of O VII emission from an extended warmbaryonic component. A&A, 2003, 397:445–462
    [96] Mittaz J, Lieu R, Cen R, et al. Warm-hot Intergalactic Medium Emission and the ClusterSoft Excess: A Model Comparison. ApJ, 2004, 617:860–866
    [97] Cheng L M, Borgani S, Tozzi P, et al. Simulating the soft X-ray excess in clusters ofgalaxies. A&A, 2005, 431:405–413
    [98] Binney J. On the origin of the galaxy luminosity funcion. MNRAS, 2004, 347:1093–1096
    [99] Oort J H. The force exerted by the stellar system in the direction perpendicular to thegalactic plane and some related problems. Bulletin of the Astronomical Institutes of theNetherlands, 1932, 6:249–287
    [100] Smith S. The Mass of the Virgo Cluster. ApJ, 1936, 83:23–30
    [101] Rubin V C. The rotation of spiral galaxies. Science, 1983, 220:1339–1344
    [102] Ostriker J P, Peebles P J E. A Numerical Study of the Stability of Flattened Galaxies: or,can Cold Galaxies Survive? ApJ, 1973, 186:467–480
    [103] Spergel D N, Steinhardt P J. Observational Evidence for Self-Interacting Cold Dark Matter.Phys. Rev. Lett., 2000, 84:3760
    [104] Ostriker J P, Steinhardt P. New Light on Dark Matter. ApJ, 2003, 300:1909–1913
    [105] Akerib D S, Alvaro-Dean J, Armel-Funkhouser M S, et al. First Results from the Cryo-genic Dark Matter Search in the Soudan Underground Laboratory. Phys. Rev. Lett., 2004,93:211301
    [106] Starkman G D, Gould A, Esmailzadeh R, et al. Opening the window on strongly interactingdark matter. Phys. Rev. D, 1990, 41:3594–3603
    [107] Wandelt B D, Dave′ R, Farrar G R, et al. Self-Interacting Dark Matter, in Sources andDetection of Dark Matter and Dark Energy in the Universe, ed. D. B. Cline. Springer, 2001.263
    [108] Cyburt R H, Fields B D, Pavlidou V, et al. Constraining strong baryon–dark-matter inter-actions with primordial nucleosynthesis and cosmic. Phys. Rev. D, 2002, 65:123503
    [109] Chen X D, Hannestad S, Scherrer R J. Cosmic microwave background and large scalestructure limits on the interaction between dark matter and baryons. Phys. Rev. D., 2002,65:123515
    [110] Jones C, Forman W. The structure of clusters of galaxies observed with Einstein. ApJ,1984, 276:38–55
    [111] Peterson J R a. X-ray imaging-spectroscopy of Abell 1835. A&A, 2001, 365:L104–L109
    [112] Kaastra J S, Ferrigno C, Tamura T, et al. XMM-Newton observations of the cluster ofgalaxies Se′rsic 159-03. A&A, 2001, 365:L99–L103
    [113] Tamura T, Kaastra J S, Peterson J R, et al. X-ray spectroscopy of the cluster of galaxiesAbell 1795 with XMM-Newton. A&A, 2001, 365:L87–L92
    [114] Cowie L L, Binney J. Radiative regulation of gas ?ow within clusters of galaxies - A modelfor cluster X-ray sources. ApJ, 1977, 215:723–732
    [115] Fabian A C, Nulsen P E J. Subsonic accretion of cooling gas in clusters of galaxies. MN-RAS, 1977, 180:479–484
    [116] Mathews W G, Bregman J N. Radiative accretion ?ow onto giant galaxies in clusters. ApJ,1978, 224:308–319
    [117] Stewart G C, Fabian A C, Jones C, et al. The prevalence of cooling ?ows in clusters ofgalaxies. ApJ, 1984, 285:1–6
    [118] Fabian A C. Cooling Flows in Clusters of Galaxies. ARAA, 1994, 32:277–318
    [119] Narayan R, Medvedev M V. Thermal Conduction in Clusters of Galaxies. ApJ, 2001,562:L129–L132
    [120] Churazov E, Sunyaev R, Forman W, et al. Cooling ?ows as a calorimeter of active galacticnucleus mechanical power. MNRAS, 2002, 332:729–734
    [121] Pringle J E. A mechanism for heating the emission-line nebulae in cooling ?ows. MNRAS,1989, 239:479–485
    [122] Fabian A C, Sanders J S, Allen S W, et al. A deep Chandra observation of the Perseuscluster: shocks and ripples. MNRAS, 2003, 344:L43–L47
    [123] Fabian A C, Sanders J S, Crawford C S, et al. The relationship between the optical Hα fila-ments and the X-ray emission in the core of the Perseus cluster. MNRAS, 2003, 344:L48–L52
    [124] Fujita Y, Suzuki T K, Wada K. Tsunamis in Galaxy Clusters: Heating of Cool Cores byAcoustic Waves. ApJ, 2004, 600:650–656
    [125] Feng H, Zhang S N, Lou Y Q, et al. X-Ray Triple Rings around the M87 Jets in the CentralVirgo Cluster. ApJ, 2004, 607:L95–L98
    [126] Qin B, Wu X P. Constraints on the Interaction between Dark Matter and Baryons fromCooling Flow Clusters. Phys. Rev. Lett., 2001, 87:061301
    [127] Kneib J P. A Wide-Field Hubble Space Telescope Study of the Cluster Cl 0024+1654 atz = 0.4. II. The Cluster Mass Distribution. ApJ, 2003, 598:804–817
    [128] Zhang Y Y, Bo¨hringer H, Mellier Y, et al. XMM-Newton study of the lensing cluster ofgalaxies CL 0024+17. A&A, 2005, 429:85–99
    [129] Czoske O, Moore B, Kneib J P, et al. A wide-field spectroscopic survey of the cluster ofgalaxies Cl0024+1654. II. A high-speed collision? A&A, 2002, 386:31–41
    [130] Chuzhoy L, Nusser A. Consequences of Short-Range Interactions between Dark Matterand Protons in Galaxy Clusters. ApJ, 2006, 645:950–954
    [131] Binney J, Tremaine S. Galactic Dynamics. Princeton University Press, 1987
    [132] Subramanian K, Cen R, Ostriker J P. The Structure of Dark Matter Halos in HierarchicalClustering Theories. ApJ, 2000, 538:528–542
    [133] Field G B. Thermal Instability. ApJ, 1965, 142:531–567
    [134] Malagoli A, Rosner R, Fryxell B. Numerical Simulations of Thermal Instabilities in Strati-fied Gases. MNRAS, 1990, 247:367–376
    [135] Fabian A C, Nulsen P E J, Canizares C R. Cooling ?ows in clusters of galaxies. Nature,1984, 310:733
    [136] Hu J, Lou Y Q. Magnetic Sunyaev-Zel’dovich Effect in Galaxy Clusters. ApJ, 2004,606:L1–L4
    [137] Metzler C A, Evrard A E. A simulation of the intracluster medium with feedback fromcluster galaxies. ApJ, 1994, 437:564–583
    [138] Navarro J. F. W S D W. Simulations of X-ray clusters. MNRAS, 1995, 275:720–740
    [139] Navarro J. F. W S D W. The Structure of Cold Dark Matter Halos. ApJ, 1996, 462:563–575
    [140] Navarro J F, Frenk C S, White S D M. A Universal Density Profile from HierarchicalClustering. ApJ, 1997, 490:493–508
    [141] Col′?n P, Klypin A A, Kravtsov A. Velocity Bias in a Λ Cold Dark Matter Model. ApJ,2000, 539:561–569
    [142] Subramanian K. Self-Similar Collapse and the Structure of Dark Matter Halos: A FluidApproach. ApJ, 2000, 538:517–527
    [143] White D A, Jones C, Forman M. An investigation of cooling ?ows and general clusterproperties from an X-ray image deprojection analysis of 207 clusters of galaxies. MNRAS,1997, 292:419–467
    [144] Pointecouteau E, Arnaud M, Kaastra J, et al. XMM-Newton observation of the relaxedcluster A478. A&A, 2004, 423:33–47
    [145] Ikebe Y, Bo¨hringer H, Kitayama T. X-Ray Measurement of Dark Matter “Temperature” inA1795. ApJ, 2004, 611:175–185
    [146] Pratt G W, Arnaud M. Entropy scaling in galaxy clusters: Insights from an XMM-Newtonobservation of the poor cluster A1983. A&A, 2003, 408:1–16
    [147] Pratt G W, Arnaud M. XMM-Newton observations of three poor clusters: Similarity in darkmatter and entropy profiles down to low mass. A&A, 2005, 429:791–806
    [148] Chen Y, Ikebe Y, Bo¨hringer H. X-ray spectroscopy of the cluster of galaxies PKS 0745-191with XMM-Newton. A&A, 2003, 407:41–50
    [149] Pointecouteau E, Arnaud M, Pratt G W. The structural and scaling properties of nearbygalaxy clusters. I. The universal mass profile. A&A, 2005, 435:1–7
    [150] Allen S W, Fabian A C, Kneib J P. A combined X-ray and gravitational lensing study of themassive cooling-?ow cluster PKS 0745-191. MNRAS, 1996, 279:615–635
    [151] Allen S W. Resolving the discrepancy between X-ray and gravitational lensing mass mea-surements for clusters of galaxies. MNRAS, 1998, 296:392–406
    [152] Wu X P. A combined analysis of cluster mass estimates from strong lensing, X-ray mea-surement and the universal density profile. MNRAS, 2000, 316:299–306
    [153] Voit G M. Tracing cosmic evolution with clusters of galaxies. Rev. Mod. Phys., 2005,77:207–258
    [154] Kaiser N. Evolution and clustering of rich clusters. MNRAS, 1986, 222:323–345
    [155] Wu X, Xue Y, Fang L. The LX ?T and LX ?σ Relationships for Galaxy Clusters Revisited.ApJ, 1999, 524:22–30
    [156] Ponman T J, Cannon D B, Navarro J F. The thermal imprint of galaxy formation on X-rayclusters. Nature, 1999, 397:135–137
    [157] Tozzi P, Norman C. The Evolution of X-Ray Clusters and the Entropy of the IntraclusterMedium. ApJ, 2001, 546:63–84
    [158] Dolag K, Bartelmann v, Perrotta F, et al. Numerical study of halo concentrations in dark-energy cosmologies. A&A, 2004, 416:853–864
    [159] Zhao H. Analytical models for galactic nuclei. MNRAS, 1996, 278:488–496
    [160] Jing Y P, Suto Y. The Density Profiles of the Dark Matter Halo Are Not Universal. ApJ,2000, 529:L69–L72
    [161] Suto Y. Density profiles and clustering of dark halos and clusters of galaxies. astro-ph/0207202, 2002.
    [162] Moore B, Quinn T, Governato F, et al. Cold collapse and the core catastrophe. MNRAS,1999, 310:1147–1152
    [163] Peres C B, Fabian A C, Edge A C, et al. A ROSAT study of the cores of clusters of galaxies- I. Cooling ?ows in an X-ray ?ux-limited sample. MNRAS, 1998, 298:416–432
    [164] Broadhurst T, Ben′?tez N, Coe D, et al. Strong-Lensing Analysis of A1689 from DeepAdvanced Camera Images. ApJ, 2005, 621:53–88
    [165] Xue S J, Wu X P. Chandra X-Ray Observatory Observation of A1689: New Determinationof Mass Distribution and Comparison to Lensing Measurements. ApJ, 2002, 576:152–158
    [166] Kaastra J S, Tamura T, Peterson J R, et al. Spatially resolved X-ray spectroscopy of coolingclusters of galaxies. A&A, 2004, 413:415–439
    [167] Allen S W, Fabian A C. The spatial distributions of cooling gas and intrinsic X-ray-absorbing material in cooling ?ows. MNRAS, 1997, 286:583–603
    [168] Jia S M, Chen Y, Lu F J, et al. The analysis of Abell 1835 using a deprojection technique.A&A, 2004, 423:65–73
    [169] Allen S W, Schmidt P R W, Fabian A C. The X-ray virial relations for relaxed lensingclusters observed with Chandra. MNRAS, 2001, 328:L37–L41
    [170] Maughan J L R L D E H G P. XMM-Newton observations of the relaxed, high-redshiftgalaxy cluster ClJ0046.3+8530 at z=0.62. MNRAS, 2004, 354:1–9
    [171] Maughan B J, Jones L R, Ebeling H, et al. An XMM-Newton observation of the massive,relaxed galaxy cluster ClJ1226.9+3332 at z=0.89. MNRAS, 2004, 351:1193–1203
    [172] Arnaud M, Majerowicz S, Lumb D, et al. XMM-Newton observation of the distant (z = 0.6)galaxy cluster RX J1120.1+4318. A&A, 2002, 390:27–38
    [173] Fujita Y, Reiprich T H. Can Supermassive Black Holes Sufficiently Heat Cool Cores ofGalaxy Clusters? ApJ, 2004, 612:797–804
    [174] Forman W, Nulsen P, Heinz S, et al. Re?ections of Active Galactic Nucleus Outbursts inthe Gaseous Atmosphere of M87. ApJ, 2005, 635:894–906
    [175] Kormendy J, Richstone D. Inward Bound - The Search For Supermassive Black Holes InGalactic Nuclei. ARA&A, 1995, 33:581–624
    [176] Haehnelt M G. Joint Formation of Supermassive Black Holes and Galaxies, in Coevolutionof Black Holes and Galaxies, ed. L. C. Ho. Cambridge Univ. Press, 2004. 405
    [177] Magorrian J, Tremaine S, Richstone D, et al. The Demography of Massive Dark Objects inGalaxy Centers. AJ, 1998, 115:2285–2305
    [178] Laor A. On the Linearity of the Black Hole-Bulge Mass Relation in Active and in NearbyGalaxies. ApJ, 2001, 553:677–682
    [179] Ha¨ring N, Rix H. On the Black Hole Mass-Bulge Mass Relation. ApJ, 2004, 604:L89–L92
    [180] Gebhardt K, Bender R, Bower G, et al. A Relationship between Nuclear Black Hole Massand Galaxy Velocity Dispersion. ApJ, 2000, 539:L13–L16
    [181] Ferrarese L, Merritt D. A Fundamental Relation between Supermassive Black Holes andTheir Host Galaxies. ApJ, 2000, 539:L9–L12
    [182] Tremaine S, Gebhardt K, Bender R, et al. The Slope of the Black Hole Mass versus VelocityDispersion Correlation. ApJ, 2002, 574:740–753
    [183] Salpeter E E. Accretion of Interstellar Matter by Massive Objects. ApJ, 1964, 140:796–800
    [184] Lynden-Bell D. Galactic Nuclei as Collapsed Old Quasars. Nature, 1969, 223:690–694
    [185] Bardeen J M. Kerr Metric Black Holes. Nature, 1970, 226:64–65
    [186] Silk J, Rees M J. Quasars and galaxy formation. A&A, 1998, 331:L1–L4
    [187] Page M J, Stevens J A, Mittaz J P D, et al. Submillimeter Evidence for the Coeval Growthof Massive Black Holes and Galaxy Bulges. Science, 2001, 294:2516–2518
    [188] King A. Black Holes, Galaxy Formation, and the MBH-σ Relation. ApJ, 2003, 596:L27–L29
    [189] Murray N, Quataert E, Thompson T A. On the Maximum Luminosity of Galaxies and TheirCentral Black Holes: Feedback from Momentum-driven Winds. ApJ, 2005, 618:569–585
    [190] 王永久. 黑洞物理学. 湖南师范大学出版社, 2000
    [191] Rees M. Quasars. The Observatory, 1978, 98:210–223
    [192] Heger A, Woosley S E. The Nucleosynthetic Signature of Population III. ApJ, 2002,567:532–543
    [193] Heger A, Fryer C L, Woosley S E, et al. How Msssive Single Stars End Their Life. ApJ,2003, 591:288–300
    [194] Haislip J B, Nysewander M C, Reichart D E, et al. A photometric redshift of z = 6.39±0.12for GRB 050904. Nature, 2006, 440:181–183
    [195] Frank J, King A A, Raine D L. Accretion power in astrophysics. Cambridge Univ. Press,2002
    [196] Vestergaard M. Early Growth and Efficient Accretion of Massive Black Holes at HighRedshift. ApJ, 2004, 601:676–691
    [197] McLure R J, S. D J. The cosmological evolution of quasar black hole masses. MNRAS,2004, 352:1390–1404
    [198] Yu Q, Tremaine S. Observational constraints on growth of massive black holes. ApJ, 2002,335:965–976
    [199] Elvis M, Risaliti G, Zamorani G. Most Supermassive Black Holes Must Be Rapidly Rotat-ing. ApJ, 2002, 565:L75–L77
    [200] Marconi A, Risaliti G, Gilli R, et al. Local supermassive black holes, relics of active galacticnuclei and the X-ray background. MNRAS, 2004, 351:169–185
    [201] Gammie C F, Shapiro S L, McKinney J C. Black Hole Spin Evolution. ApJ, 2004, 602:312–319
    [202] Shapiro S L. Spin, Accretion, and the Cosmological Growth of Supermassive Black Holes.ApJ, 2005, 620:59–68
    [203] Shakura N I, Sunyaev R A. Black holes in binary systems. observational appearance. A&A,1973, 24:337–355
    [204] Milosavljevic M, Merritt D. The Final Parsec Problem. astro-ph/0212270, 2002.
    [205] Soltan A. Masses of quasars. MNRAS, 1982, 200:115–122
    [206] Grupe D, Mathur S. MBH-σ Relation for a Complete Sample of Soft X-Ray-selected ActiveGalactic Nuclei. ApJ, 2004, 606:L41–L44
    [207] Iye M, Ota K, Kashikawa N, et al. A galaxy at a redshift z = 6.96. Nature, 2006, 443:186–188
    [208] Fan X, Strauss M A, Schneider D P, et al. A Survey of z > 5.7 Quasars in the Sloan DigitalSky Survey. II. Discovery of Three Additional Quasars at z > 6. AJ, 2003, 125:1649–1659
    [209] Willott C J, McLure R J, Jarvis M J. A 3 × 109 Msolar Black Hole in the Quasar SDSSJ1148+5251 at z=6.41. ApJ, 2003, 587:L15–L18
    [210] Volonteri M, Madau P, Quataert E, et al. The distribution and cosmic evolution of massiveblack holes spins. ApJ, 2005, 620:69–77
    [211] Ciotti L, Ostriker J P. Cooling ?ows and quasars. II detailed models of feedback-modulatedaccretion ?ows. ApJ, 2001, 551:131–152
    [212] Shapiro S L. Formation of Supermassive Black Holes: Simulations in General Relativity,in Coevolution of Black Holes and Galaxies, ed. L. C. Ho. Cambridge University Press,2004. 103
    [213] Koushiappas S M, Bullock J S, Dekel A. Massive black hole seeds from low angular mo-mentum material. MNRAS, 2004, 354:292–304
    [214] Yoo J, J. M E. Formation of the Black Holes in the Highest Redshift Quasars. ApJ, 2004,614:L25–L28
    [215] Ruszkowski M, Begelman M C. Eddington Limit and Radiative Transfer in Highly Inho-mogeneous Atmospheres. ApJ, 2003, 586:384–388
    [216] Volonteri M, Rees M J. Rapid Growth of High-Redshift Black Holes. ApJ, 2005, 633:624–629
    [217] Ostriker J P. Collisional Dark Matter and the Origin of Massive Black Holes. Phys. Rev.Lett., 2000, 84:5258
    [218] Hennawi J F, Ostriker J P. Observational Constraints on the Self-interacting Dark MatterScenario and the Growth of Supermassive Black Holes. ApJ, 2002, 572:41–54
    [219] Hu J, Shen Y, Lou Y Q, et al. Forming Supermassive Black Holes by Accreting Dark andBaryonic Matters. MNRAS, 2006, 365:345–351
    [220] Goodman J. Dynamical relaxation in stellar systems: [PhD Thesis]. USA: Princeton Uni-versity, 1983
    [221] Stone J, Pringle J E, Begelman M C. Hydrodynamical non-radiative accretion ?ows in twodimensions. MNRAS, 1999, 310:1002–1016
    [222] Peebles P J E. Fluid Dark Matter. ApJ, 2000, 534:L127–L129
    [223] Bondi H. On spherically symmetrical accretion. MNRAS, 1952, 112:195–204
    [224] Moore B, Gelato S, Jenkins A, et al. Collisional versus Collisionless Dark Matter. ApJ,2000, 535:L21–L24
    [225] Evans N W, An J. Hypervirial models of stellar systems. MNRAS, 2005, 360:492–498
    [226] Barkana R, Loeb A. In the beginning: the first sources of light and the reionization of theuniverse. Phys. Rep., 2001, 349:125–238
    [227] Eisenstein D, Hu W. Power Spectra for Cold Dark Matter and Its Variants. ApJ, 1999,511:5–15
    [228] Yoshida N, Springel V, White S D M, et al. Weakly Self-interacting Dark Matter and theStructure of Dark Halos. ApJ, 2000, 544:L87–L90
    [229] Arabadjis J S, Bautz M W, Garmire G P. Chandra Observations of the Lensing ClusterEMSS 1358+6245: Implications for Self-interacting Dark Matter. ApJ, 2002, 572:66–78
    [230] Markevitch M, Gonzalez A H, Clowe D, et al. Direct Constraints on the Dark MatterSelf-Interaction Cross Section from the Merging Galaxy Cluster 1E 0657-56. ApJ, 2004,606:819–824
    [231] Randall S W, Markevitch M, Clowe D, et al. Constraints on the Self-Interaction Cross-Section of Dark Matter from Numerical Simulations of the Merging Galaxy Cluster 1E0657-56. astro-ph/0704.0261, 2007.
    [232] Firmani C, D’Onghia E, Avila-Reese V, et al. Evidence of self-interacting cold dark matterfrom galactic to galaxy cluster scales. MNRAS, 2000, 315:L29–L32
    [233] Bahcall J N, Wolf R A. Star distribution around a massive black hole in a globular cluster.ApJ, 1976, 209:214–232
    [234] Fabian A C. Obscured Active Galactic Nuclei and Obscured Accretion, in Coevolution ofBlack Holes and Galaxies, ed. L. C. Ho. Cambridge Univ. Press, 2004. 447
    [235] Fan X, Narayanan V K, Lupton R H, et al. A Survey of z > 5.8 Quasars in the SloanDigital Sky Survey. I. Discovery of Three New Quasars and the Spatial Density of LuminousQuasars at z ~ 6. AJ, 2001, 122:2833–2849
    [236] Greene J E, Barth A J, Ho L C. The smallest AGN host galaxies. New Astronomy Review,2006, 50:739–742
    [237] Salvaterra R, Haardt F, Volonteri M. Unresolved X-ray background: clues on galacticnuclear activity at z > 6. MNRAS, 2007, 374:761–768
    [238] Wang J M, Chen Y M, Hu C. Feedback limits rapid growth of seed black holes at highredshift. ApJ, 2006, 637:L85–L88
    [239] Fitchett M J. The in?uence of gravitational wave momentum losses on the centre of massmotion of a Newtonian binary system. MNRAS, 1983, 203:1049–1062
    [240] Favata M, Hughes S A, Holz D E. How Black Holes Get Their Kicks: Gravitational Radia-tion Recoil Revisited. ApJ, 2004, 607:L5–L8
    [241] Blanchet L, Qusailah M S S, Will C M. Gravitational Recoil of Inspiraling Black HoleBinaries to Second Post-Newtonian Order. ApJ, 2005, 635:508–515
    [242] Baker J G, Centrella J, Choi D I, et al. Binary black hole merger dynamics and waveforms.Phys. Rev. D, 2006, 73:104002
    [243] Volonteri M, Rees M J. Quasars at z = 6: the survival of the fittest. ApJ, 2006, 650:669–678
    [244] Hoffman L, Loeb A. Three-body kick to a bright quasars out of its galaxy during a merger.ApJ, 2006, 638:L75–L78
    [245] Barth A J, Ho L C, Rutledge R E, et al. POX 52: A Dwarf Seyfert 1 Galaxy with anIntermediate-Mass Black Hole. ApJ, 2004, 607:90–102
    [246] Peterson B M, Bentz M C, Desroches L B, et al. Multiwavelength Monitoring of the DwarfSeyfert 1 Galaxy NGC 4395. I. A Reverberation-based Measurement of the Black HoleMass. ApJ, 2005, 632:799–808
    [247] de Grijp M H K, Lub J, Miley G K. Warm IRAS sources. I. A. Catalogue of AGN candidatesfrom the point source catalog. A&AS, 1987, 70:95–114
    [248] Low F J, Cutri R M, Huchra J P, et al. Infrared color-selected quasars and Seyfert 1 galaxies.ApJ, 1988, 327:L41–L44
    [249] Hutchings J B, Neff S G. Tidal interactions and infrared-bright QSOs. AJ, 1988, 96:1575–1580
    [250] Boyce P J, Disney M J, Blades J C, et al. The host galaxies of IRAS-selected quasi-stellarobjects. ApJ, 1996, 473:760–762
    [251] Canalizo G, Stockton A. Quasi-Stellar Objects, Ultraluminous Infrared Galaxies, and Merg-ers. ApJ, 2001, 555:719–743
    [252] Magain P, Letawe G, Courbin F, et al. Discovery of a bright quasar without a massive hostgalaxy. Nature, 2005, 437:381–384
    [253] Kim M, Ho L C, Peng C Y, et al. The host galaxy of the quasar HE 0450-2958. ApJ, 2007,658:107–113
    [254] Haehnelt M G, Davies M B, Rees M J. Possible evidence for the ejection of a supermassiveblack hole from an ongoing merger of galaxies. MNRAS, 2005, 366:L22–L25
    [255] Merritt D, Storchi-Bergmann T, Robinson A, et al. The nature of the HE0450-2958 system.MNRAS, 2006, 367:1746–1750
    [256] Zhou X L, Yang F, Lu¨ X R, et al. X-Ray Properties of the Quasar HE 0450-2958. AJ, 2007,133:432–438
    [257] Klamer I, Papadopoulos P, Ekers R, et al. Dressing a naked quasar: star formation and AGNfeedback in HE0450-2958. ApJ in press, astro-ph/0703101, 2007.
    [258] Lynds R, Toomre A. On the interpretation of ring galaxies: the binary ring system II Hz4.ApJ, 1976, 209:382–388
    [259] Kennicutt R C. The star formation law in galactic disk. ApJ, 1989, 344:685–703
    [260] Kennicutt R C. The global schmidt law in star-forming galaxies. ApJ, 1998, 498:541–552
    [261] Ferrarese L. Beyond the bulge: A fundamental relation between supermassive black holesand dark matter halos. ApJ, 2002, 578:90–97
    [262] Sutherland R S, Dopita M A. Cooling functions for low-density astrophysical plasmas.ApJS, 1993, 88:253–327

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700