新型硅酸盐/铬酸盐锂电池正极材料的制备及电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正交结构正硅酸盐聚阴离子型化合物由于其高的理论容量和突出的安全性能等优点成为很有发展潜力的新一代锂离子电池正极材料。本文通过水热辅助溶胶凝胶法,合成了Li_2MnSiO_4/C和Li_2Mn_(0.5)Fe_(0.5)SiO_4/C复合正极材料,测试了其结构和电化学性能。初步研究了其电化学性能差异的原因,并采用非原位FTIR和非原位XRD的实验手段研究了其电化学过程中结构的变化与其容量衰减的原因。
     研究表明,水热辅助溶胶凝胶法所合成Li_2MnSiO_4/C和Li_2Mn_(0.5)Fe_(0.5)SiO_4/C复合材料均具有相同的晶体结构,均属于正交晶系空间群Pmn2_1,并且都具有高的首次放电容量,其首次放电容量分别为205.8 mAhg~(-1)(可逆的嵌脱1.24个锂)和215.6 mAhg~(-1)(可逆的嵌脱1.30个锂)。而此时Li_2Mn_(0.5)Fe_(0.5)SiO_4的Mn的电子交换数≥1.6,也就是说事实上,铁的取代使锰的实际电化学活性得到了很大的提高。GITT计算出的数据得出,Fe取代Mn后,使得Li_2MnSiO_4材料的锂离子扩散系数增加,因此传输改善,也证实了这一点。虽然水热辅助溶胶凝胶法所合成Li_2MnSiO_4/C和Li_2Mn_(0.5)Fe_(0.5)SiO_4/C复合正极材料循环性能均较差,但是Fe取代Mn后,前五圈的循环性能得到改善。
     非原位FTIR数据显示,Li_2MnSiO_4的对应于[SiO_4]的吸收谱带,随循环次数的增加,逐渐向高波数方向偏移。而Li_2Mn_(0.5)Fe_(0.5)SiO_4的[SiO_4]的特征吸收峰在循环过程中没有发生偏移。非原位XRD图数据显示,Li_2MnSiO_4材料在开始充放电后就变为非晶态,而Li_2Fe_(0.5)Mn_(0.5)SiO_4的结构得到部分保持。说明Fe部分取代Mn部分稳定住了材料的晶体结构,还稳定住了材料中的[SiO_4]基团。这表明通过阳离子取代来提高Li_2MnSiO_4框架结构稳定性的可能性。
     锂一次电池和锂离子二次电池在现代生活中发挥着同样重要的作用。CuCrO_4是一种具有多电子交换反应的锂一次电池正极材料,其理论容量高达744mAh/g。本文报道了一种合成CuCrO_4的改进方法,并对材料的结构和电化学性能进行了表征。为了验证可能的放电产物,采用非原位XRD和FTIR的方法研究了其放电机理。实验结果表明,改进的沉淀方法制备的CuCrO_4一次锂电池正极材料,具有放电容量高、倍率性能好等优点。以10mA/g和200mA/g的倍率放电到1V,比容量分别达到706mAh/g和610 mAh/g。该材料的棒状形态和亚微米级的粒子大小,以及单质铜在放电过程中的析出,使该材料倍率放电特性优异。非原位XRD和IR的研究结果揭示了CuCrO_4在放电过程中可能转变为了其他化合物,如Cr~(3+)化合物,并形成反应产物单质Cu和Cu_2O。
Orthosilicates are promising candidates for next generation of lithium ion batteries, due to their high theoretical capacity and excellent safety performance.In this work, Li_2MnSiO_4/C and Li_2Mn_(0.5)Fe_(0.5)SiO_4/C electrode materials were prepared by hydrothermal assisted sol-gel process.The structure character and electrochemical performance of the prepared materials were studied.Structure stability and the reason of the poor cyclic performance of the materials were investigated by ex-intu FTIR and ex-intu XRD.
     The Li_2MnSiO_4/C and Li_2Mn_(0.5)Fe_(0.5)SiO_4/C composite material prepared through hydrothermal assisted sol-gel process were iso-structure and the space group is orthorhombic system Pmn2_1.The Li_2MnSiO_4/C and Li_2Mn_(0.5)Fe_(0.5)SiO_4/C composite material shows a discharge capacity as high as 205.8 mAhg~(-1)(1.24 Li reversible exchange per unit formula) and 215.6 mAhg~(-1)(1.30 Li reversible exchange per unit formula).But more than 1.6 electrons exchange per unit Mn occurred in Li_2Mn_(0.5)Fe_(0.5)SiO_4.Actually,electrochemical performance of Mn was improved after the mixing Fe and Mn.And the GITT data showed the diffusion of lithium in Li_2Mn_(0.5)Fe_(0.5)SiO_4 was improved.The cyclic stability of Li_2MnSiO_4/C and Li_2Mn_(0.5)Fe_(0.5)SiO_4/C composite material were not good.But the cyclic stability in the first five cycles was improved after the mixing Fe and Mn.
     Ex-intu FTIR showed that the characteristic bands of[SiO_4]in Li_2MnSiO_4 shift to high wavenumber with the increasing of cycle numbers.Compared to Li_2MnSiO_4, the characteristic bands in Li_2Mn_(0.5)Fe_(0.5)SiO_4 were not changed.Ex-intu XRD showed that after the first cycle,the crystalline Li_2MnSiO_4 changed to an amorphous state,but the characteristic peaks in Li_2Fe_(0.5)Mn_(0.5)SiO_4 were partly stable.We conclude that after the mixing Fe and Mn,the structure stability of Li_2MnSiO_4 were improved.It proved that a better structure stability probably be obtained by the mixing Fe and Mn.
     Primary lithium batteries and lithium ion batteries play the same important role in modern life.CuCrO_4 was one of multistep reductions cathodes for primary lithium batteries;its theoretical capacity is about 744mAh/g.Here,we report an improved method to synthesize the CuCrO_4.In addition,a possible mechanism of the CuCrO_4 material upon discharging was discussed.A high capacity CuCrO_4 composite cathode material with good rate performance has been successfully prepared through an improved precipitation method.The material delivered high discharge capacities of 706 and 610 mAh/g at 10 and 200 mAg~(-1),respectively.The sub-micron rod-like morphology and discharging product Cu are responsible for its good rate performance. Furthermore,the ex-intu FTIR and ex-intu XRD measurements demonstrated that during the reductions of CuCrO_4 accompanied with the intercalation of lithium ions, the crystalline CuCrO_4 transformed into an amorphous state or decomposed into other amorphous compounds during the first discharge process;and the newly formed discharging products include Cu_2O and Cu.
引文
[1]汪继强,陈立泉.新能源材料.天津:天津大学出版社,2000.
    [2]吴宇平,戴晓兵,马军旗等.锂离子电池—应用与实践[M].北京:化学工业出版社,2004.
    [3]Tarascon J M,Armand M.Issues and challenges facing rechargeable lithium batteries[J].nature,2001,414(6861):359-367.
    [4]Wakihara M,Yamamoto O,editors.Lithium-ion batteries:Fundamentals and Performance.Weinheim:Wiley-VCH,1998.
    [5]Wills A S,Raju N P,Greedan J E.Low-Temperature Structure and Magnetic Properties of the Spinel LiMn_2O_4:A Frustrated Antiferromagnet and Cathode Material[J].Chem.Mat.,1999,11:1510-1518.
    [6]Hewston T.A Survey of first-row ternary oxides LiMO_2(M=Sc-Cu)[J].J.Phys.Chem.Solids,1987,48:97-108.
    [7]施志聪,杨勇.聚阴离子型锂离子电池正极材料研究进展[J].化学进展,2005,17(4):604-613.
    [8]徐保伯,刘务华.锂离子电池的制造及其市场[J].电池,2002,32(4):242-244.
    [9]Majima M,Ujiie S,Yagasaki E.Development of long life lithium ion battery for power storage[J].J Power Sources,2001,101(1):53-59.
    [10]黄可龙,王兆翔,刘素琴.锂离子电池原理和关键技术[M].北京:化学工业出版社,2008.
    [11]Wang Z X,Hu Y S,Chen L Q.12th International Meeting on Lithium Batteries[C].Nara,JAPAN,2004,51-57.
    [12]Padhi A K,Nanjundaswamy K S,Goodenough J B.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J].J.Electrochem.Sot.,1997,144:1188-1194.
    [13]吴宇平,戴晓兵,马车旗等.聚合物锂离子电池[J].2007:137.
    [14]Buchmann I.Batteries in a portable world-a handbook on rechargable natteries for non-engineers[M]:Cadex Electronics Inc.,2001.
    [15]Winter M,Besenhard J O,Novak P.Insertion Electrode Materials for Rechargeable Lithium Batteries[J].Adv.Mater.,1998,10:725-763.
    [16]Wakihara M.Recent developments in lithium ion batteries[J].Mater.Sci.Eng,2001,33:109-134.
    [17]Ohzuku T,Ueda A,Nagayama M.Electrochemistry and Structural Chemistry of LiNiO_2(R3m) for 4 Volt Secondary Lithium Cells[J].J.Electrochem.Soc.,1993,140(7):1862-1870.
    [18]刘汉三,杨勇,张忠如等.锂离子电池正极材料锂镍氧化物研究新进展[J].电化学,2001,7(2):145-154.
    [19]Lundblad A,Bergman B.Synthesis of LiCoO_2 starting from carbonate precursors Ⅱ.Influence of calcination conditions and leaching[J].Solid State Ionics,1997,96:183-193.
    [20]Yoon W-S,Kim K-B.Synthesis of LiCoO_2 using acrylic acid and its electrochemical properties for Li secondary batteries[J].J.Power Sources,1999,81-82:517-523.
    [21]Konstantinov K,Wang G X,Yao J,et al.Stoichiometry-controlled high-performance LiCoO_2electrode materials prepared by a spray solution technique[J].J.Power Sources,2003,119-121:195-200.
    [22]P.N.Kumta,D.Gallet,A.Waghray.Synthesis of LiCoO_2 powders for lithium-ion batteries from precursors derived by rotary evaporation[J].J.Power Sources,1998,72:91-98.
    [23]B.Huang Y I J,Y.M.Chiang.Electrochemical evaluation of LiCoO_2 synthesized by decomposition and intercalation of hydroxides for lithium-ion battery applications[J].J.Applied Electrochemistry,1998,28(12):1365-1369.
    [24]刘亚飞,白厚善.动力电池及其材料的发展动向[J].稀土信息,2003,7:8-12.
    [25]Liu H S,Zhang Z R,Gong Z L.Origin of deterioration for LiNiO_2 cathode material during storage in air[J].Electrochem.Solid State Lett.,2004,7(7):A190-A193.
    [26]Lee Y S,Sun Y K,Nahm K S.Synthesis and characterization of LiNiO_2 cathode material prepared by an adiphic acid-assisted sol-gel method for lithium secondary batteries[J].Solid State Ionics,1999,118(1-2):159-168
    [27]Arai H,Tsuda M,Saito K.et al.Structural and thermal characteristics of nickel dioxide derived from LiNiO_2[J].Journal of Solid State Chemistry,2002,163(1):340-349.
    [28]Li W,Currie J C.Morphology Effects on the Electrochemical Performance of LiNi_(1-x)Co_xO_2[J].J.Electrochem.Soc.,1997,144(8):2773-2779.
    [29]Rossen E,Jones C D W,Dahn J R.Structure and electrochemistry of Li_xMn_yNi_(1-y)O_2[J].Solid State lonics,1992,57(3-4):311-318.
    [30]Ohzuku T,Ueda A,Kouguchi M.Synthesis and Characterization of LiAl_(1/4)Ni_(3/4)O_2 for Lithium Ion Batteries[J].J.Electrockem.Soc.,1995,142(12):4033-4039.
    [31]Ogihara T,Mizutani N.Effect of addition of a foreign element to LiNiO_2 bypolymerized method on its electrochemical properities[J].K Eng.Mater,1999,169-170:217-220.
    [32]Gao Y,Yakovleva M V,Ebner W B.Novel LiNi_(1-x)Ti_(x/2)Mg_(x/2)O_2 Compounds as cathode materials for safer lithium-ion batteries[J].Electrochem.Solid State Lett.,1998,1(3):117-119.
    [33]Kubo K,Arai S,Yamada S.Synthesis and charge-discharge properties of Li_(1+x)Ni_(1-y)Co_yO_(2-z)F_z[J].J.Power Sources,1999,81-82:599-603.
    [34]Kweon H J,Park D G.Surface Modification of LiSr_(0.002)Ni_(0.9)Co_(0.1)O_2 by Overcoating with a Magnesium Oxide[J].Electrochem.Solid-State.Lett.,2000,3(3):128-130.
    [35]A.R.Armstrong,P.G.Bruce.Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries[J].Nature,1996,381:499-500.
    [36]Ohzuku T,Makimura Y,Ariyoshi K.Abstracts of the 41st Battery Symposium[C].Japan,Nagoya,2000,462.
    [37]Yoshio M,Noguchi H,Okada M.Preparation and properties of LiCo_yMn_xNi_(1-x-y)O_2 as a cathode for lithium ion batteries[J].J.Power Sources 2000,90:176-181.
    [38]Ohzuku T,Makimura Y.Layered lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for lithium-ion batteries[J].Chem.Lett,2001,7:642-643.
    [39]Ngala J K,Chernova N A,Ma M.The synthesis,characterization and electrochemical behavior of the layered LiNi_(0.4)Mn_(0.4)Co_(0.2)O_2 compound[J].J.Mater.Chem.,2004,14:214-220.
    [40]Jouanneau S,Dahn J R.Preparation,structure,and thermal stability of new Ni_xCo_(1-2x)Mn_x(OH)_2(0(?)x(?)1/2) phases[J].Chem.Mater.,2003,15:495-499.
    [41]Park S H,Kang S H,Belharouak I,et al.Physical and electrochemical properties of spherical Li_(1+x)(Ni_(1/3)Co_(1/3)Mn_(1/3))_((1-x))O_(-2) cathode materials[J].J.Power Sources,2008,177(1):177-183.
    [42]Kikkawa J,Akita T,Tabuchi M,et al.Fe-rich and Mn-rich nanodomains in Li_(1.2)Mn_(0.4)Fe_(0.4)O_2positive electrode materials for lithium-ion batteries[J].Appl.Phys.Lett.,2007,91(5):3.
    [43]Kang S H,Johnson C S,Vaughey J T,et al.The effects of acid treatment on the electrochemical properties of 0.5 Li_2MnO_3 center dot 0.5 LiNi_(0.44)Co_(0.25)Mn_(0.31)O_2 electrodes in lithium cells[J].J.Electrochem.Soc.,2006,153(6):A1186-A1192.
    [44]Shinova E,Zhecheva E,Stoyanova R.Formation of LiAl_yNi_(1-y)O_2 solid solutions under high and atmospheric pressure[J].J.Solid State Chem.,2006,179(10):3151-3158.
    [45]Johnson C S,Kim J S,Lefief C,et al.The significance of the Li_2MnO_3 component in 'composite' xLi_((2))MnO_((3)) center dot(1-x)LiMn_(0.5)Ni_(0.5)O_2 electrodes[J].Electrochem.Commun.,2004,6(10):1085-1091.
    [46]Guo X J,Li Y X,Zheng M,et al.Structural and electrochemical characterization of xLi[Li_(1/3)Mn_(2/3)]O_2.(1-x)Li[Ni_(1/3)Mn_(1/3)Co_(1/3)]O_2(0(?)x(?)0.9) as cathode materials for lithium ion batteries[J].J Power Sources,2008,184(2):414-419.
    [47]Ammundsen B,Paulsen J,Davidson I,et al.Local structure and first cycle redox mechanism of layered Li_(1.2)Cr_(0.4)Mn_(0.4)O_2 cathode material[J].J.Electrochem.Soc.,2002,149(4):A431-A436.
    [48]Lu Z H,Beaulieu L Y,Donaberger R A,et al.Synthesis,structure,and electrochemical behavior of Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_2[J].J.Electrochem.Soc.,2002,149(6):A778-A791.
    [49]Lu Z H,MacNeil D D,Dahn J R.Layered cathode materials Li[Ni_xLi_(1/3-2x/3))Mn_((2/3-x/3))]O_2 for lithium-ion batteries[J].Electrochem.Solid State Lett.,2001,4(11):A191-A194.
    [50]Wu Y,Manthiram A.High capacity,surface-modified layered Li[Li_((i.x)/3)Mn_((2-x)/3)Ni_(x/3)Co_(x/3)]O_(-2)cathodes with low irreversible capacity loss[J].Electrochem.Solid State Lett.,2006,9(5):A221-A224.
    [51]Wu Y,Manthiram A.Effect of Al~(3+) and F~- doping on the irreversible oxygen loss from layered Li[Li_(0.17)Mn_(0.58)Ni_(0.25)]O~(-2) cathodes[J].Electrochem.Solid State Lett.,2007,10(6):A151-A154.
    [52]Lu Z H,Chen Z H,Dahn J R.Lack of cation clustering in Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_(-2)(0<x<=1/2) and Li[Cr_xLi_((1-x)/3)Mn_((2-2x)/3)]O_(-2)(0<x<1)[J].Chem.Mat.,2003,15(16):3214-3220.
    [53]Thackeray M M,Johnson C S,Vaughey J T,et al.Advances in manganese-oxide 'composite'electrodes for lithium-ion batteries[J].J.Mater.Chem.,2005,15(23):2257-2267.
    [54]Jain G R,Yang J S,Balasubramanian M,et al.Synthesis,electrochemistry,and structural studies of lithium intercalation of a nanocrystalline Li_2MnO_3-like compound[J].Chem.Mat.,2005,17(15):3850-3860.
    [55]Barker J,Pynenburg R,Koksbang R.Determination of thermodynamic,kinetic and interracial properties for the Li/Li_xMn_2O_4 system by electrochemical techniques[J].J.Power Sources,1994,52:185-192.
    [56]David W,Thackeray M,Goodenough J B,Structure refinement of the spinel-related phases Li_2Mn_2O_4 and Li_(0.2)Mn_2O_4[J]. J. Solid State Chem, 1987, 67: 316-323.
    [57] Yamada A, Tanaka M. Jahn-Teller structural phase transition around 280K in LiMn_2O_4[J].Mater. Res. Bull., 1995, 30: 715-721.
    [58] Yamada A, Miura K, Hinokuma K. Synthesis and Structural Aspects of LiMn_2O_4 as a Cathode for Rechargeable Lithium Batteries[J]. J. Electrochem. Soc, 1995, 142: 2149.
    [59] Gummow R J, Kock A D, Thackeray M. Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells[J]. Solid State Ionics, 1994, 69: 59-67.
    [60] Guyomard D, Tarascon J M. Li Metal-Free Rechargeable LiMn_O_4/Carbon Cells: Their Understanding and Optimization[J]. J. Electrochem. Soc, 1992, 139: 937-947.
    [61] Amatucci G G, Pereira N, Zheng T. Failure mechanism and improvement of the elevated temperature cycling of LiMn_2O_4 compounds through the use of the LiAl_xMn_(2-x)O_(4-y)F_z solid solution[J]. J. Electrochem. Soc, 2001, 148: A171-A182.
    [62] Padhi A K, Nanjundaswamy K S, Masquelier C. Mapping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation [J]. J. Electrochem Soc, ,1997, 144:2581-2586.
    [63] Li Y-X, Gong Z-L, Yang Y. Synthesis and characterization of Li_2MnSiO_4/C nanocomposite cathode material for lithium ion batteries[J]. J Power Sources, 2007, 174(2): 528-532.
    [64] Gong Z L, Li Y X, Yang Y. Synthesis and characterization of Li_2Mn_xFe_(1-x)SiO_4 as a cathode material for lithium-ion batteries[J]. Electrochem Solid-State Lett, 2006, 9(12): A542-A544.
    [65] Nyten A, Abouimrane A, Armand M, et al. Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material[J]. Electrochem Commun, 2005, 7(2): 156-160.
    [66] Gong Z L, Li Y X, Yang Y. Synthesis and electrochemical performance of Li_2CoSiO_4 as cathode material for lithium ion batteries[J]. J. Power Sources, 2007, 174(2): 524-527.
    [67] Andersson A S, Kalska B, Haggstrom L. Lithium extraction/insertion in LiFePO_4: an X-ray diffraction and M(?)ssbauer spectroscopy study[J]. Solid State Ionics, 2001, 130(1-2): 41-52.
    [68] Garcia-Moreno O, Alvarez-Vega M, Garcia-Alvarado F. Influence of the structure on the electrochemical performance of lithium transition metal phosphates as cathodic materials in rechargeable lithium batteries:a new high-pressure form of LiMPO_4 (M = Fe and Ni)[J]. Chem.Mater., 2001, 13(5): 1570-1576.
    [69] Huang H, Yin S, Nazar L F. Approaching theoretical capacity of LiFePO_4 at room temperature at high rates[J]. J. Electrochem. Solid-State Lett., 2001, 4(10): A170-A172.
    [70] Padhi A K, Nanjundaswamy K S, Masquelier C. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphate[J]. J. Electrochem Soc, 1997, 144: 1609-1613.
    [71] Chung S Y, Bloking J T, Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Material, 2002, 101: 123-128.
    [72] Padhi A K, Nanjundaswamy K S, Masquelier C, et al. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates[J]. J. Electrochem. Soc, 1997, 144(5): 1609-1613.
    [73] Padhi A K, Nanjundaswamy K S, Goodenough J B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J]. J. Electrochem. Soc, 1997, 144(4): 1188-1194.
    [74] Burba C M, Frech R. Vibrational spectroscopic investigation of structurally-related LiFePO_4,NaFePO_4, and FePO_4 compounds[J]. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 2006,65(1): 44-50.
    [75] Okada M, Lee Y S, Yoshio M. Cycle characterizations of LiM_xMn_(2-x)O_4 (M = Co, Ni) materials for lithium secondary battery at wide voltage region[J]. J. Power Sources, 2000, 90(2):196-200.
    [76]Yamada A,Chung S C,Hinokuma K.Optimized LiFePO_4 for lithium battery cathodes[J].J.Electrochem.Soc.,2001,148(3):A224-A229.
    [77]Arnold G,Garche J,Hemmer R.Fine-particle lithium iron phosphate LiFePO_4 synthesized by a new low-cost aqueous precipitation technique[J].J.Power Sources,2003,119-121:247-251.
    [78]Yamada A,Hosoya M,Chung S C.Olivine-type cathodes achievements and problems[J].J.Power Sources,2003,19-121:232-238.
    [79]Andersson A S,Thomas J O,Kalska B.Thermal stability of LiFePO_4-based cathodes[J].Electrochem Solid-State Lett,2000,3(2):66-68.
    [80]Barker J,Saidi M Y,Swoyer J L.Lithium iron(Ⅱ) phosphor-olivines prepared by a novel carbothermal reduction method[J].J.Electrochem.Solid-State Lett.,2003,6(3):A53-A55.
    [81]Higuchi M,Katayama K,Azuma Y.Synthesis of LiFePO_4 cathode material by microwave processing[J].J.Power Sources,2003,119-121:258-261.
    [82]Yang S,Zavalij P Y,Whittingham M S.Hydrothermal synthesis of lithium iron phosphate cathodes[J].Electrochem.Comm.,2001,3(9):505-508.
    [83]Croce F D,Epifanio A D,Hassoun J.A novel concept for the synthesis of an improved LiFePO_4 lithium battery cathode[J].J.Electrochem.Solid-State Lett.,2002,5(3):A47-A50.
    [84]Gao F,Tang Z Y,Xue H J.Preparation and characterization of nano-particle LiFePO_4 and LiFePO_4/C by spray-drying and post-annealing method[J].Electrochim.Acta,2007,53(4):1939-1944.
    [85]Lim S Y,Yoon C S,Cho J P.Synthesis of nanowire and hollow LiFePO_4 cathodes for high-performance lithium batteries[J].Chem.Mat.,2008,20(14):4560-4564.
    [86]刘善科,董全峰,孙世刚等.锂离子电池正极材料LiFePO_4研究进展[J].电源技术,2006,30(5):424-428.
    [87]Chung S Y,Bloking J T,Chiang Y M.Electronically conductive phospho-olivines as lithium storage electrodes[J].Nat.Mater.,2002,1(2):123-128.
    [88]Chung S Y,Bloking J T,Chiang Y M.From our readers-On the electronic conductivity of phosphoolivines as lithium storage electrodes-Reply[J].Nat.Mater.,2003,2(11):702-703.
    [89]Herle P S,Ellis B,Coombs N.Nano-network electronic conduction in iron and nickel olivine phosphates[J].Nature Material,2004,3:147-152.
    [90]Ravet N,Abouimrane A,Armand M.From our readers:On the electronic conductivity of phospho-olivines as lithium storage electrodes[J].Nature Material,2003,2:702.
    [91]Okada S,Sawa S,Egashira M.Cathode properties of phospho-olivine LiMPO_4 for lithium secondary batteries[J].J Power Sources,2001,97-98:430-432.
    [92]Azuma H,Tohda M.LiMPO_4 as the cathode for lithium batteries[J].J.Electrochem.Solid-State Lett.,2002,5(6):A135-A137.
    [93]Amine K,Yasuda H,Yamachi M.Olivine LiCoPO_4 as 4.8 V electrode material for lithium batteries[J].J.Electrochem.Solid-State Lett,,2000,3(4):178-179.
    [94]Larsson P,Ahuia R,Nyten A,et al.An ab initio study of the Li-ion battery cathode material Li_2FeSiO_4[J].Electrochem Commun,2006,8(5):797-800.
    [95]Arroyo-de Dompablo M E,Armand M,Tarascon J M,et al.On-demand design of polyoxianionic cathode materials based on electronegativity correlations:An exploration of the Li_2MSiO_4 system(M=Fe,Mn,Co,Ni)[J].Electrochem Commun,2006,8(8):1292-1298.
    [96]龚正良.聚阴离子型硅酸盐锂离子电池正极材料研究[D].厦门大学博士学位论文,2007
    [97]Nyten A,Kamali S,Haggstrom L,et al.The lithium extraction/insertion mechanism in Li_2FeSiO_4[J].J Mater Chem,2006,16(23):2266-2272.
    [98]Dominko R,Bele M,Gaberscek M,et al.Structure and electrochemical performance of Li_2MnSiO_4 and Li_2FeSiO_4 as potential Li-battery cathode materials[J].Electrochem Commun,2006,8(2):217-222.
    [99]Gong Z L,Li Y X,He G N,et al.Nanostructured Li_2FeSiO_4 electrode material synthesized through hydrothermal-assisted sol-gel process[J].Electrochem Solid-State Lett,2008,11(5):A60-A63.
    [100]Kokalj A,Dominko R,Mali G,et al.Beyond one-electron reaction in Li cathode materials:Designing Li_2Mn_xFe_(1-x)SiO_4[J].Chem Mater,2007,19(15):3633-3640.
    [101]杨勇,李益孝,龚正良.可充锂电池用硅酸锰铁锂/碳复合正极材料及其制备方法[P]:CN,11803608.
    [102]Wu S Q,Zhang J H,Zhu Z Z,et al.Structural and electronic properties of the Li-ion battery cathode material Li_xCoSiO_4[J].Current Applied Physics,2007,7(6):611-616.
    [103]West A R,Glasser F P.Preparation and crystal chemistry of some tetrahedral Li_3PO_4-type compounds[J].J Solid State Chem,1972,4(1):20-28.
    [104]Lyness C,Delobel B,Armstrong A R,et al.The lithium intercalation compound Li_2CoSiO_4and its behaviour as a positive electrode for lithium batteries[J].Chem Commun,2007,(46):4890-4892.
    [105]Messina R,Perichon J,Broussely M.Electrochemical reduction mechanism of silver chromate in lithium cells[J].J.Electroanal.Chem.Interfacial Electrochem.,1982,133(1):115-123.
    [106]Beninati S,Fantuzzi M,Mastragostino M,et al.MW-assisted synthesis of SVO for ICD primary batteries[J].J Power Sources,2006,157(1):483-487.
    [107]Dey A N.Lithium-metal chromate organic electrolyte cell[P]:U.S.,I70-55167 3658592,19700715.
    [108]Dey A N.lithium-metal chromate organic electrolyte cell and method for cathode[P]:U.S.,I76-754775 4423124,19761227.
    [109]Kachibaya E I,Dzhaparidze L N,Imnadze R A,et al.Physicochemical study of products of CuCrO_4 electrochemical reduction in Li batteries during discharge[J].Soobshcheniya Akademii Nauk Gruzii,1995,151(1):65-69.
    [1]Gong Z L,Li Y X,Yang Y.Synthesis and characterization of Li_2Mn_xFe_(1-x)SiO_4 as a cathode material for lithium-ion batteries[J].Electrochem Solid-State Lett,2006,9(12):A542-A544.
    [2]龚正良.聚阴离子型硅酸盐锂离子电池正极材料研究[D].厦门大学博士学位论文,2007
    [3]Dey A N.lithium-metal chromate organic electrolyte cell and method for cathode[P]:U.S.,I76-754775 4423124,19761227.
    [4]刘汉三.锂离子电池正极材料锂镍氧系列化合物的合成、结构和性能研究[D].厦门大学博士学位论文,2003
    [5]钱逸泰等.结晶化学导论[M].合肥:中国科学技术大学出版社,1999.
    [6]白春礼.扫描隧道显微术及其应用[M].上海:上海科学技术出版社,1992.
    [7]邓勃,宁永成,刘密新.仪器分析[M]:清华大学出版社,1991.
    [8]丁燕怀,张平,高德淑.测定Li~+扩散系数的几种电化学方法[J].电源技术,2007,131.
    [9]Deiss E.Spurious chemical diffusion coefficients of Li~+ in electrode materials evaluated with GITT[J].Electrochimica Acta,2005,50:2927-2932.
    [10]杨孙楷等.仪器分析实验[M].厦门:厦门大学出版社,1996.
    [1]Li Y-X,Gong Z-L,Yang Y.Synthesis and characterization of Li_2MnSiO_4/C nanocomposite cathode material for lithium ion batteries[J].J Power Sources,2007,174(2):528-532.
    [2]Dominko R,Bele M,Gaberscek M,et al.Structure and electrochemical performance of Li_2MnSiO_4 and Li_2FeSiO_4 as potential Li-battery cathode materials[J].Electrochem Commun,2006,8(2):217-222.
    [3]Nyten A,Abouimrane A,Armand M,et al.Electrochemical performance of Li_2FeSiO_4 as a new Li-battery cathode material[J].Electrochem Commun,2005,7(2):156-160.
    [4]Zaghib K,Salah A A,Ravet N,et al.Structural,magnetic and electrochemical properties of lithium iron orthosilicate[J].J Power Sources,2006,160(2):1381-1386.
    [5]Gong Z L,Li Y X,He G N,et al.Nanostructured Li_2FeSiO_4 electrode material synthesized through hydrothermal-assisted sol-gel process[J].Electrochem Solid-State Lett,2008,11(5):A60-A63.
    [6]Dominko R,Conte D E,Hanzel D,et al.Impact of synthesis conditions on the structure and performance of Li_2FeSiO_4[J].J Power Sources,2008,178(2):842-847.
    [7]Gong Z L,Li Y X,Yang Y.Synthesis and characterization of Li_2Mn_xFe_(1-x)SiO_4 as a cathode material for lithium-ion batteries[J].Electrochem Solid-State Lett,2006,9(12):A542-A544.
    [8]杨勇,李益孝,龚正良.可充锂电池用砗酸锰铁锂/碳复合正极材料及其制备方法[P]:CN.I1803608.
    [9]龚正良.聚阴离子型硅酸盐锂离子电池正极材料研究[D].厦门大学博士学位论文,2007
    [10]Crivello M,Perez C,Fernandez J,et al.Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol[J].Applied Catalysis a-General,2007,317(1):11-19.
    [11]Dominko R.Li_2MSiO_4(M=Fe and/or Mn) cathode materials[J].J Power Sources,2008,184(2):462-468.
    [12]Kokalj A,Dominko R,Mali G,et al.Beyond one-electron reaction in Li cathode materials:Designing Li_2Mn_xFe_(1-x)SiO_4[J].Chem Mater,2007,19(15):3633-3640.
    [13]Dominko R,Bele M,Kokalj A,et al.Li_2MnSiO_4 as a potential Li-battery cathode material[J].J Power Sources,2007,174(2):457-461.
    [1]Messina R,Perichon J,Broussely M.Electrochemical reduction mechanism of silver chromate in lithium cells[J].J.Electroanal.Chem.Interfacial Electrochem.,1982,133(1):115-123.
    [2]Beninati S,Fantuzzi M,Mastragostino M,et al.MW-assisted synthesis of SVO for ICD primary batteries[J].J Power Sources,2006,157(1):483-487.
    [3]Dey A N.Lithium-metal chromate organic electrolyte cell[P]:U.S.,I70-55167 3658592,19700715.
    [4]Dey A N.lithium-metal chromate organic electrolyte cell and method for cathode[P]:U.S.,I76-754775 4423124,19761227.
    [5]Kachibaya E I,Dzhaparidze L N,Imnadze R A,et al.Physicochemical study of products of CuCrO_4 electrochemical reduction in Li batteries during discharge[J].Soobshcheniya Akademii Nauk Gruzii,1995,151(1):65-69.
    [6]Crivello M,Perez C,Fernandez J,et al.Synthesis and characterization of Cr/Cu/Mg mixed oxides obtained from hydrotalcite-type compounds and their application in the dehydrogenation of isoamylic alcohol[J].Applied Catalysis a-General,2007,317(1):11-19.
    [7]Harrison P G,Lloyd N C,Daniell W,et al.Evolution of Microstructure during the Thermal Activation of Copper(Ⅱ) and Chromium(Ⅲ) Doubly Promoted Tin(Ⅳ) Oxide Catalysts:An FT-IR,XRD,TEM,XANES/EXAFS,and XPS Study[J].Chem.Mater.,2000,12(10):3113-3122.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700