锂离子电池二氧化锡负极材料的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着信息时代多功能便携式和高能量电子设备的需求日益增长,以及为减小环境污染而提出的使用电动汽车的迫切要求,开发高比容量、高稳定性、高安全性、长寿命、低成本的新型锂离子电池负极材料显得尤为迫切。本文在综合评述了锂离子电池及其负极材料研究进展的基础上,选取锡(Sn)基氧化物负极材料作为研究对象,采用静电喷雾技术,在不锈钢基片上制备了不同工艺参数的SnO2薄膜及其复合薄膜。采用X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)等技术和设备,以及循环伏安(CV)、恒电流充放电等电化学测试方法,重点研究了制备方法、工艺参数对SnO2薄膜及其复合薄膜的形貌及电化学性能等影响,为利用静电喷雾技术开发新型的锡基氧化物薄膜负极材料提供了理论依据和关键的制备技术。
     本文系统地研究了溶剂、衬底温度和液体流速、电压等工艺参数对SnO2薄膜的结构、形貌及电化学性能的影响。对这些工艺参数的优化结果表明:乙醇、乙二醇和丙二醇三种溶剂,衬底温度为250℃,液体流速为2mL/h,电压为14kV获得的SnO2薄膜具有最佳的综合性能。该条件下制得的薄膜表面均一、多孔网状、无裂痕,首次放电容量为1276mAh/g,经100次循环后,容量仍然保持在416mAh/g,具有较好的电化学性能。
     在此基础上,本文还研究了二氧化硅含量对SnO2-SiO2复合薄膜形貌和电化学性能的影响。随着二氧化硅含量的增加,SnO2-SiO2复合薄膜电极的首次嵌锂容量逐渐升高,首次库仑效率逐渐升高,首次容量损失呈减少趋势,SnO2-SiO2复合薄膜的100次循环后容量为364mAh/g:其库仑效率基本维持在98%,SnO2-SiO2复合薄膜结构有利于锂离子嵌脱,能够提供较多的嵌锂通道和嵌锂位置,并利用二氧化硅抑制SnO2电极的体积膨胀,在一定程度上提高了薄膜电极的循环性能。
During recent years, with the development of electric vehicles for decreasing environment pollution and portable electronic devices, these is an interest in developing new electronic devices, there is an interst indeveloping new electrode materials with higher capacity, higher stability, higher safety and lower cost for lithium ion batteries. This thesis selected tin-based oxides materials as anode for lithium ion battery. Different types of SnO2 and SnO2 -SiO2 compsite films were prepared by electrostatic spray deposition (ESD) method. The structure and electrochemical properties of films with different deposition method and technology parameters are investigated by electrochemical methods in combination with X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), transmission Electron Microscopy (TEM). The new approach and work results to prepare a new type of tin-based oxides films anode materials by ESD.
     In this thesis, the film performance has been studied as a function of preparation condition, i.e. the solvent, the deposition temperature, the deposition rate and voltage. The thin films obtained from the optimal fabrication condition (ethanol-glycol-propanediol solvents, the deposition temperature of 250℃, the deposition rate of 2mL/h, and the voltage of 14kV) were homogeneous, reticular porous, crack-free. The first discharge capacity is 1276mAh/g, and the reversible capacity retained 416mAh/g after 100 cycles.
     The different SiO2 content of SnO2 -SiO2 compsite has been studied. With the increase of the SiO2 contents, the SnO2 -SiO2 compsite electrode of the first lithium intercalation capacity and the first cycle efficiency gradually increased, the first capacity loss declined. The micro-structure and electrochemical properties of SnO2 -SiO2 compsites have been studied. It has been found that the reversible capacity retained 364mAh/g after 100 cycles. For the second cycle, the charge and discharge efficiency is 98%, which can be astribed to the mixable SiO2 provides a transmission path for lithium ion insertion. Moreover, the SiO2 have an enfored function to tin body and decreased the breaking uo of electrodes.
引文
[1]吴宇平.锂离子电池-应用与实践.北京:化学工业出版社,2004,104-105
    [2]吕鸣祥,黄长保,宋玉瑾.化学电源.天津:天津大学出版社,1992,78-90
    [3] Mizushima K, Jones P C, Wiseman P J, et al. A new cathode material for batteries of high energy density. Material Research Bulletin, 1980, 15(6): 783-789
    [4] Ohzuku T, Ueda A. Solid-state redox reactions of LiCoO2(R(3)over-BAR-M) for 4-volt secondary lithium cells. Journal of The Electrochemistry Society, 1994, 141(11): 2972-2977
    [5] Reimers J N, Dahn J R. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. Journal of The Electrochemistry Society, 1992, 139(8): 2091-2097
    [6] Amatucci G G, Tarascon J M, Klein L C. CoO2, the end member of the LixCoO2 solid solution. Journal of The Electrochemistry Society, 1996, 143(3): 1114-1123
    [7] Goodenough J B, Wickham D G, Croft W J. Some magnetic and crystallographic properties of the system Li+xNi++1-2xNi+++xO. Journal of Physics Chemistry Solids, 1958, 5(1): 107-116
    [8] Nagaura T, Tozawa K. Lithium ion rechargeable battery. Progress in Batteries Solar Cells, 1990, 9(3): 209-217
    [9] Gabrisch H, Yazami R, Fultz B. A transmission electron microscopy study of cycled LiCoO2. Journal of Power Sources, 2003, 119-121: 674-679
    [10] Ng K S, Moo C S, Chen Y P, et al. Enhanced coulomb counting method for estimating state-of-charge and state-of-health of lithium-ion batteries. Applied Energy, 2009, 86(9): 1506-1511
    [11] Kweon H J, Kim G B, Lim H S, et al. Synthesis of LixNi0.85Co0.15O2 by the PVA precursor method and charge-discharge characteristics of a l ithium ion battery using this materialas cathode. Journal of Power Sources, 1999, 83(1): 84-92
    [12] Fey G, Shiu R F, Subramanian V, et al. LiNi0.8Co0.2O2 cathode materials synthesized by the maleic acid assisted sol-gel method forlithium batteries. Journal of Power Sources, 2002, 103(2): 265-272
    [13] Park S, Park K, Sun Y, et al. Structural and electrochemical characterization of lithium excess and Al-doped nickel oxides synthesized by the sol-gel method. Electrochimica Acta, 2001, 46(8): 1215 -1222
    [14] Song M S, Lee R, Kwon I. Synthesis by sol-gel method and electrochemical properties of LiNi1-yAlyO2 cathode materials for lithium secondary battery. Solid State Ionics, 2003, 156(3-4): 319-328
    [15] Pouillerie C, Croguennec L, Dehnas C. The LixNi1-yMgyO2 (y=0.05, 0.10)system: structural modifications observed upon cycling. Solid State Ionics, 2000, 132(1-2): 15-29
    [16] Pouillerie C, Perton F,Biensan F, et al. Effect of magnesium substitution on the cycling behavior of lithium nickel cobalt oxide. Journal of Power Sources, 2001, 96(2): 293-302
    [17] Amatucci G G, Schmutz C N, Blyr A, et al. Materials'effects on the elevated and room temperature performance of C/LiMn2O4 Li-ion bateries.Journal of Power Sources, 1997, 69(1-2): 11-25
    [18] Padhi A K,Nanjundaswamy K S. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. Jounal of Electrochemistry Society, 1997, 144(4): 1188-1194
    [19] Liu H, Can Q, Fu L J, Li C, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries. Electrochemisty Communications, 2006, 8(10): 1553-1557.
    [20] Ravet N, Chouinard Y, Magnan J F, et al. Electroactivity of natural and synthetic triphylite. Journal of Power Sources, 2001, 97-98(6): 503 -507
    [21] Ni J F, Zhou H H, Chen J T, et al. LiFePO4 doped with ions prepared by co-precipitation method.Materials Letters, 2005, 59(18): 2361-2365
    [22] Liu Z, Yu A, Lee J Y. Synthesis and characterization of LiN1-x-yCoxMnyO2 as the cathode materials of secondary lithium batteries. Jounal of Power Sources, 1999, 81-82(5): 416 -419
    [23] Ohzuku T, Makimura Y. Layered lithium insertion material of LiCo1/3Ni1/3Mn1-3O2 for lithium-ion batteries. Chemistry Letters, 2001, 30(7): 642- 643
    [24] Oh S W, Park S H, Park C W, et al. Structural and electrochemical properties of layered Li[Ni0.5Mn0.5]1-xCoxO2 positive materials synthesized by ultrasonic spray pyrolysis method. Solid State Ionics, 2004, 171(3-4): 167-172
    [25] Elder S H, Doener L H, DiSalvo P J, et al. Lithium molybdenum nitride(LiMoN2): the fast metallic layered nitride. Chemistry Materials, 1992, 4(10): 928-937
    [26] Aurbach D, Markovsky B, Weissman I, et al. On the correlation between surface chemistry and performance of graphite negative electrodes for Li ionbateries.Electrochimistry Acta, 1999, 45(1-2): 67-86
    [27] Yang J, Takeda Y, Imanishi N, et al. Tin-containing anode materials in combination with Li2.6Co0.4N for irreversibility compensation. Journal of Electrochemistry Society, 2000, 147(5): 1671-1676
    [28] Li H, Huang X, Chen L, et al. A high capacity nano-Si composite anode material for lithium rechargeable batteries.Electrochemistry Solid State Letters, 1999, 2(11): 547-549
    [29] Li H, Huang X, Chen L, et al. The crystals tructural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature. Solid State Ionics, 2000, 135(1-4): 181-191
    [30] Jung H, Park M, Yoon Y, et al. Amorphous silicon anode for lithium-ion rechargeable batteries. Journal of Power Sources, 2003, 115(2):346-351
    [31] Umeno T, Fukuda K, Wang H, et al. Novel anode material for lithium-ion batteries:carbon-coated silicon prepared by thermal vapor decomposition. Chemistry Letters, 2001, 30(11): 1186-1187
    [32] Ohara S, Suzuki J, Sekine K, et al.Li insertion/extraction reaction at a Si film evaporated on a Ni foil. Journal of Power Sources, 2003, 119-121: 591-596
    [33] Takamura T, Ohara S, Uehara M, et al. A vacuum deposited Si film having a Li extraction capacity over 2000mAh/g with a long cycle life. Journal of Power Sources, 2004, 129(1): 96 -100
    [34] Idota Y, Kubota T, A.Matsufuji, et al. Tin-base amorphous oxide: a high capacity lithium-ion-storage material. Science, 1997, 276(5317): 1395-1397
    [35] Wachtler M, Besenhard J O, Winter M. Tin and tin-based intermatallics as new anode materials for lithium-ion cell. Journal of Power Sources, 2001, 94(2): 189-193
    [36] Coutney I A, Mckinnon W R, Dahn J R. On the aggragation of tin in SnO composite glasses caused by the reversible reaction with lithium. Journal of Electrochemistry Society, 1999, 146(1): 59-68
    [37]朱承飞,程新群,史鹏飞.锂离子电池用金属锡电极的初步研究.电池,2002,32(1): 10-12.
    [38] Inaba M, Uno T, Tasaka A. Irreversible capacity of electrodeposited Sn thin film anode. Journal of Power Sources, 2005, 146(1-2): 473-477
    [39] Kim J H, Jeong H, et al. Tin-based oxide as anode materials for lithium secondary batteries. Journal of Electrochemistry Society, 2003, 150(11): 1544-1547
    [40] Yang J, Takeda Y, Imanishi N, et al. Morphology modification and irreversibility compensation for SnO anodes. Journal of Power Sources, 2001, 97-98(5): 216-218
    [41] Subramanian V, Gnanasekar K I, et al. Nanocrystalline SnO2 and In-doped SnO2 as anode materials for lithium batteries. Solid State Ionics, 2004, 175(5): 81-184
    [42] Lee J Y, Xiao Y W, Liu Z L, et al. Amorphous Sn2B2O5, Sn2P2O7 and Sn2BPO6 anodes for lithium ion batteries.Solid State Ionics, 2000, 133(1): 25-35
    [43] Morimoto H, Nakai M. Mechanochemical synthesics and anode properties of SnO-Based amorphous materials. Journal of Electrochemistry Society, 1999, 146(11): 3970-3973
    [44] Courtney I A, Dahn J R. Electrochemical and in-situ X-ray diffraction studies of reaction of lithium with tin oxide composite. Journal of Electrochemistry Society, 1997, 144(6): 2045-2052
    [45] Law S E. Embedded-electrode Electrostatic-induction Spray-charging Nozzle: Theoretical and Engineering Design. Transaction of ASAE IA, 1979, 20(6): 1096-1104.
    [46] Elbanna H, Rashed M I, Ghazi M A. Droplets from Liquid Sheets in an Airstream. Transactions of ASAE, 1984, 27(3): 677-679
    [47] Garmendia L A. Simplified Model of Electro-aerody-namic Atomization. Journal of AICHE, 1977, 23(6): 935-938

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700