LiODFB基电解液及其与LiFePO_4-AC/AG-AC超级电容电池电极材料的相容性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超级电容电池是一种兼具锂离子二次电池高能量密度和超级电容器高功率密度优点的新型储能器件,在交通运输、移动通讯、信息技术等方面具有极其重要的应用前景,其技术的成功突破将掀起储能器件领域的一场新的革命。电解液作为其核心组成之一,对超级电容电池的容量、内阻、寿命、温度特性、电极—电解液的界面性能等有着重要影响。本论文探索研究了新型导电锂盐LiODFB基电解液体系与LiFePO_4-AC/AG-AC型超级电容电池电极材料的相容性。
     论文以LiBF_4和H_2C_2O_4为前驱体,SiCl_4为助剂,采用一步合成法结合溶析结晶提纯工艺制备了结晶态锂盐LiODFB。经测算,其产率为80%,杂质含量为0.0371wt%,水含量为1.01ppm,满足电池级导电锂盐对杂质及水分含量的要求,结合FTIR谱图与核磁共振的结果表明合成了品质优良的LiODFB样品。采用热重-差热分析其热稳定性,发现其热分解温度达278.9℃,优于商业化应用最为广泛的LiPF_6。
     针对LiFePO_4-AC/AG-AC超级电容电池的电极材料,对LiODFB盐进行溶剂优化研究。选择5种物化性能优良的溶剂配置成九种电解液,采用电导率测试确定LiODFB最佳浓度为1.0M;通过恒流充放电、循环伏安、交流阻抗等电化学测试,研究了不同溶剂体系电解液与LiFePO_4、AG和AC材料的相容性,结果表明EC-PC-DMC溶剂体系与上述电极材料都有着较好的相容性,为九种复合溶剂中综合性能最为优良的溶剂体系。
     确定溶剂体系后,将LiODFB与LiX复合进行电解质盐的优化研究。将不同比例的LiODFB与LiX配置成四组不同电解液,研究了其与LiFePO_4、AG和AC材料的相容性。实验表明LiODFB中加入一定浓度的LiX不仅提高了LiFePO_4和AG材料的电池特性,同时也提高了AC材料的电容特性。当LiODFB和LiX的浓度分别为0.8M和0.2M时,电解液与LiFePO_4-AC/AG-AC电池电极材料有着较为优良的相容性。
     采用相同溶剂体系,将LiODFB与性能优良的双电层电容器用电解质盐铵盐进行复合盐的优化探索研究。综合不同电极材料的电化学性能,发现在LiODFB中加入不同浓度的铵盐后,AC材料的电容特性虽然显著提高,但是加入铵盐却对AG电极材料的成膜影响较大,不利于LiFePO_4/AG电池的电池特性发挥。
     通过上述研究,获得了一种既适合锂离子电池又适合双电层电容器的“双功能”电解液;同时,也初步为LiFePO_4-AC/AG-AC超级电容电池提供了一种与其电极材料相容性相对优良的电解液;其配方为LiODFB-LiX/EC-PC-DMC,其中锂离子浓度为1mol/L。
Super-capacitor battery is a new kind of energy storage device possessing high energy density of lithium ion battery as well as high power density of super-capacitor.It has great application aspects in fields of transportation,mobile communication and information technology,etc. The success of its technological breakthroughs will raise a new revolution in the field of energy storage devices.As one of the core material of super-capacitor battery,electrolyte has an extremely impact on capacity, resistance,and temperature properties,etc.In this paper,the compatibility between LiODFB-based electrolytes with the electrode materials of LiFePO_4-AC/AG-AC battery was studied.
     LiBF_4 and H_2C_2O_4 was dissolved in solvent as the precursor,SiCl_4 was added to the solution as the catalyzer,combined with solventing-out crystallization,LiODFB was synthesized in one step.The test results of the product rate,the qualities of impurity and the water content were 80%, 0.0371%,and 1.01 PPm,respectively.These targets satisfied the request of lithium ion batteries.The result of FTIR and NMP show that the synthetic product LiODFB shows high qualities.The TG-DTA curves show the onset of the endothermic dissociation of LiODFB is at about 278.9℃.That is to say LiODFB has high temperature stability than the most widely used LiPF_6 obviously.
     Study on the solvent optimize of LiODFB salt for LiFePO_4-AC/AG-AC battery electrode materials.Five kinds of solvent system with excellent physical and chemical properties were employed and mixed into nine different electrolyte systems.The optimal concentration of LiODFB salt was determined by conductivity tests.The compatibility between different solvent electrolyte systems and LiFePO_4, AG,AC electrodes was studied through constant current charge-discharge, CV,EIS,etc.The result shows that the EC-PC-DMC system takes fine compatibility with LiFePO_4-AC/AG-AC electrodes.This system is proved to be the best solvent.
     After the solvent system was determined as EC-PC-DMC,the optimization of LiODFB-LiX blend salt electrolyte was studied in this system.Four different electrolytes were prepared with changing the proportion of LiODFB and LiX.The compatibility with LiFePO_4-AC/AG-AC electrodes was studied using the same methods as solvent optimize.The characteristics of LiFePO_4/AG battery as well as AC/AC super-capacitor performances were improved by adding some LiX to LiODFB based electrolytes.When the concentrations of LiODFB and LiX were respectively 0.8 M and 0.2 M,electrolyte plays the optimal compatibility with LiFePO_4-AC/AG-AC super-capacitor battery.
     In the same solvent system,ammonium salt which is the excellent electrolyte salt of super capacitor was added into LiODFB based electrolytes to optimize blend salt electrolytes.The electrochemical performances of different electrode-materials were considered generally, and the results indicate that capacitance characteristics were improved significantly by adding ammonium salt to 1.0 M LiODFB based electrolyte.However,high concentrations of ammonium salt A affect the properties of SEI film in AG electrode,that go against to improve the charge-discharge performances of LiFePO_4/AG cell.
     To sum up,we point out that the most applicable electrolyte to LiFePO_4-AC/AG-AC super-lithium capacitor is LiODFB-LiX/ EC-PC-DMC,and the concentration of lithium salt is 1 mol/L.
引文
[1]安平,其鲁.锂离子二次电池的应用和发展[J].北京大学学报(自然科学版),2006,(S1):52-57
    [2]刘亚飞,陈彦彬,白厚善.锂离子动力电池与相关材料最新进展[C].第六届中国功能材料及其应用学术会议暨2007国际功能材料专题论坛,2007
    [3]胡毅,陈轩恕,杜砚,等.超级电容器的应用与发展[J].电力设备,2008,9(1):19-22
    [4]Jonathan X.Weinert,Andrew F.Burke,et al.Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement[J],J Power Sources,2007,172(2):938-945
    [5]刘建睿,王猛,尹大川,等.高能锂离子电池研究进展[J].材料导报,2001,15(7):32-35
    [6]H.Katz,W.Bogel,J.P.Buchel.Industrial awareness of lithium batteries in the word,during the past two years[J].J.Electrochem Soc,1998,72:43-50
    [7]胡行仁.世界电池市场综述[J].电池,2000,30(3):113-115
    [8]次世代.二次电池-锂金属二次电池开发展望[J].工业材料,1999,146(3):127-133
    [9]R.Kotz,M.Carlen,et al.principle and application of electrochemical capacitors[J].Electrochemical Acta,2000,45(15-16):2483-2498
    [10]L.T.Lam,R.Louey.Development of ultra-battery for hybrid-electric vehicle applications[J].Journal of Power Sources,2006,158(2):1140-1148
    [11]J.N.Marie-Francoise,H.Gualous,R.Outbib,et al.42 V Power Net with supercapacitor and battery for automotive applications[J].Journal of Power Sources,2005,143(1-2):275-283
    [12]唐致远,刘春燕,徐国强.锂离子电池的产品现状及其发展前景[J].河北化工,2001,(1):6-8
    [13]胡绍杰,徐保伯.锂离子电池工业的发展与展望[J].电池,2000,30(4):171-174
    [14]熊奇,唐冬汉.超级电容器在混合电动车上的研究进展[J].中山大学学报(自然科学版),2003,42(A19):130-133
    [15]程立文,汪继强,谭玲生.超级电容器的技术与应用市场发展简评[J],电源技术,2007,31(11):921-925
    [16]吴憩棠.超级电容器和蓄电池混合电动车新技术[J].汽车与配件,2007,53(4):22-23
    [17]A.D.Pasquier,I.Plitz,S.Menocal,G.Amatucci.A comparative study of Li-ion battery,supercapacitor and nonaqueous asymmetric hybrid devices for automotive application[J].Journal of power sources.2003,115(1):171-178.
    [18]张治安,邓梅根,汪斌华,等.电化学混合电容器[J].电池,2004,34(4):295-297
    [19]T.Hiromoto,A.Nobuo,S.Hideki,et al.Lithium ion capacitor[P].JP,WO2007055358,2007
    [20]郭炳焜.锂离子电池[M].长沙:中南大学出版社,2002
    [21]A.Celzard,F.Collas,J F.Mar(?)che,et al.Porous electrodes-based double-layer supercapacitors:pore structure versus series resistance[J].Journal of Power Source,2002,108(1-2):153-162
    [22]D.Qu,H.Shi.Studies of activated carbons used in double-layer capacitors[J].Journal of Power Source,1998,74(1):99-107
    [23]解晶莹,尹鸽平,史鹏飞.锂镍氧化物的合成和电化学行为研究[J].电源技术,1997,21(5):185-189
    [24]J.Akimoto,Y.Gotoh,Y.Oosawa.Synthesis and structure refinement of LiCoO_2single crystals[J],J.Solid State Chemistry,1998,141(1):298-302
    [25]吴宇平,方世壁,刘昌炎,等.锂离子电池正极材料氧化钴锂的进展[J].电源技术.1997,21(5):208-209
    [26]R.Yazami.High performance LiCoO_2 positive electrode material[J].Journal of Power Source,1995,54(2):389-392
    [27]J.K.Hong,J.H.Lee,M.seung.Effect of carbon additive on electrochemical performance of LiCoO_2 composite cathodes[J].Journal of Power Source,2002,111(1):90-96
    [28]T.Ohzuku,A.Ueda,M.Kouguchi.Synthesis and characterization of LiAl_(1/4)Ni_(3/4)O_2(R3m)for lithium-ion(shuttlecock)batteries[J].J.Electrochem.Soc.,1995,143(12):4033-4039
    [29]李晓干,仇卫华,刘庆国等.LiAl_yNi_(1-y)O_2作为锂离子正极材料的研究[J].电化学,2000,6(3):357-362
    [30]A.R.Armstrong,P.G.Bruce.Synthesis of layered LiMnO_2 as electrode for rechargeable lithium batteries[J].Nature,1996,381:499-500
    [31]A.R.Armstrong,A.D.Robertson,P.G.Bruce.Structural transformation on cycling layered Li (Mn_(1-y)Co_y)O_2 cathode materials[J]. Electrochimica Acta, 1999,45(1-2): 285-294
    [32] M. Tabuchi, K. Ado, H. Kobayashi, et al. Synthesis of LiMnO_2 with α -NaMnO_2 type structure by a mixed alkaline hydrothermal reaction [J]. J. Electrochem. Soc, 2002,149: A288-A292
    [33] S. Komaba, S. T. Myung, N. Kumagai. Hydrothermal synthesis of high crystalline orthorhombic LiMnO_2 as a cathode material for Li-ion batteries [J]. Solid State Ionics, 2002,152-153: 311-318
    [34] S. Madhavi, G. V. Subba Rao. Effect of aluminium doping on cathodic behavior of Li x Ni_(0.7)Co_(0.3)O_2[J]. Journal of Power Source, 2001, 93(1-2): 156-162
    
    [35] Y. Fujita, K. Amine. LiNi_(1-x)Co_xO_2 prepared at low temperature using and either LiNO_3 or LiOH[J]. Journal of Power Source, 1997, 68(1): 126-130
    [36] T. K. Feyg, R. F. Shu. LiNi_(0.8)Co_(0.2)O_2 cathode materials synthesized by the maleic acid assisted sol-gel method for lithium batteries[J]. Journal of Power Source, 2002,103(2): 265-272
    [37] Y. J. Park, Y. S. Hong, X. L. Wu, et al. Synthesis and Electrochemical Charateristeristics of Li[Co_xLi_((1/3-x/3))Mn_(2/3-2x/3)O_2 Compounds[J]. Journal of Power Source, 2004,129(2): 288-295
    [38] M. Yoshio, H. Noguchi, J. I. Iton, et al. Preparation and properties of LiCo_yMn_xNi_(1-x-y)O_2 as a cathode for lithium ion batteries[J]. Journal of Power Source, 2000, 90(2): 176-181
    [39] A. D. Roberston, A. R. Aremstrong, P. G.. Bruce. Low temperature lithium manganese cabalt oxide spinels, Li_(4-x)Mn_5-2x)Co_((3x)O_(12)(0    [40] K. Numata, C. Sakaki, S. Yamanaka. Synthesis and characterization of layer structured solid solution in the system of LiCoO_2-LiMnO_3[J]. Solid State Ionics 1999,117(3-4): 257-263
    [41] S. S. Shin, Y. K. Sun, K. Amine. Synthesis and electrochemical properties of Li[Li_(1-2x)Ni-xMn_((2-x)/3)]O_2 as cathode material for lithium secondary batteries[J]. Journal of Power Source, 2002, 112(2): 634-638
    [42] J. H. Kim, Y. K. Sun. Electrochemical Performance of Li[Li_xNi_(1-3x)Mn_((1-x)/2)]O_2 cathode materials synthesized by sol-gel method[J]. Journal of Power Source, 2003,119-121: 166-170
    [43] Z. H. Lu, J. R. Dahn. Understanding the Anomalous Capacity of Li/Li[Ni_xLi_(1/3-2x/3)Mn_(2/3-x/3)]O_2 Cells Using In Situ X-Ray Diffraction and Electrochemical Studies[J]. J. Electrochem.soc., 2002,149 (7): A815-A822
    [44] S. Gopukumar, K. Y. Chung, K. B. Kim. Novel synthesis of layed LiNi_(1/2)Mn_(1/2)O_2 as cathode material for lithium rechangeagble cells[J]. Electrochimica Acta, 2004,49(5): 803-810
    [45] S. H. Kang, K. Amine. Comparative study of Li(Ni_(0.5-x)Mn_(0.5-x)M_(2x))O_2 (M=Mg,Al,Co,Ni,Ti; x=0,0.025) cathode materials for rechangeable lithium batteries[J]. Journal of Power Source, 2003,119-121: 150-155
    [46] I. Belharouak, Y. K. Sun, J. Liu, K. Amine. Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as a suitable cathode for high power applications [J]. Journal of Power Source, 2003, 123(2): 247-252
    [47] Y. Koyama, I. Tanaka, H. Adachi, et al. Crystal and electronic structures of superstructural Li_(1-x)[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2[J]. Journal of Power Source, 2003, 119-121:644-648
    [48] B. J. Hwang, Y. W. Tsai, D. Carlier, et al. A combined computational experimental study on LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2[J]. J. Chem. Mater., 2003, 15: 3676-3682
    [49] N. Yabuuchi, T. Ohzuku. Novel lithium insertion material of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries[J]. Journal of Power Source, 2003, 119-121: 171-174
    [50] Y. Gao, J. R. Dahn. Synthesis and characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion battery applications[J]. J. Electrochem Soc, 1996,143(1): 100-119
    [51] E. Zhecheva, R. Stoyanova, M. Gorova, et al. Co/Mn distribution and electrochemical intercalation of Li into LiMn_(2-y)Co_yO_4 spinels, 0    [52] G. G. Amatucci, J. M. Tarascon. Optimization of insertion compounds such as LiMn_2O_4 for Li-ion batteries[J]. J. Electrochemical Society, 2002, 149(12): K31-K46
    [53] W. Enoch. Method of treating lithium manganese oxide spinel[P]. US: WO 9802930,1998
    [54] G. G. Amatucci, A. Blyr, C. Sigala, et al. Surface treatments of Li_(1+x)Mn_(2-x)O_4 spinel for improved elevated temperature performance [J]. Solid State Ionics, 1997, 104(1-2): 13-25
    [55]S.Ch.Park,Y,M.Kim,S.Ch.Han,et al.The elevated temperature performance of LiMn_2O_4 coated with LiN_(1-x)Co_xO_2(x=0.2 and 1)[J].Journal of Power Source,2002,107:42-47
    [56]Y.M.Chiang,D.R.Sadoway,Y.Jang,et al.High temperature stable lithium aluminum manganese oxide cathodes for rechargeable batteries[J].Electrochem.Solid State Lett.,1999,2:107-110
    [57]周恒辉,倪江峰,陈继涛.等.LiFePO_4电池的研究及产业化进展[J].新材料产业,2006(4):49-52
    [58]张海朗.锂离子电池新型正极材料LiFePO_4的研究评述[J].现代化工,2005,25(9):18-20
    [59]K.Zaghib,K.Striebel,A.Guerfi,et al.LiFePO_4/polymer/natural graphite:low cost Li-ion batteries[J].Electrochemical Acta,2004,50(2-3):263-270
    [60]M.Takahashi,S.Tobishima,K.Takei,et al.Reaction behavior of LiFePO_4 as a cathode material for rechargeable lithium batteries[J].Solid State Ionics,2002,148(3-4):283-289
    [61]A.K.Padhi,K.S.Najundaswamy,J.B.Goodenough.Phospho-olivines as positive-electrode materials for rechargeable lithium batteries[J],J.Electrochem Soc.,1997,144:1188-1194
    [62]王先友.锂离子电池碳负极研究新动向[J].电源技术,1999,23(4):233-237
    [63]A.Mabuchi.Charge-discharge characteristics of the mesocarbon microbeads heat-treated at different temperatures[J].J.Electrochem Soc.,1995,142(4):1041-1046
    [64]M.Nishijima.Anode performance of new layered nitrades[J].J.Electrochem Sot.,1996,83:107-117
    [65]吴宇平.锂离子蓄电池锡基负极材料的研究[J].电源技术,1999,23(3):191-193
    [66]杜翠薇.锂离子电池非碳负极材料的研究进展[C].第二十四届中国化学与物理电源学术年会论文集,哈尔滨,2000,294-295
    [67]张汉平,付丽君,吴宇平,等.锂离子电池负极材料的研究进展[J].电池,35(4):274-275
    [68]陈召勇,胡国荣,肖劲,等.第12届国际锂电池会议评述[J].电池,2004,34(4):255-258
    [69]H.Nakagawa,A.Shudo,K.Miura.High-capacity electric double-layer capacitor with high-density-activaed carbon fiber electrodes[J].J.Electrochemical society, 2000,147(1):38
    [70]邓梅根,张治安,胡永达,等.双电层电容器电极材料最新研究进展[J].炭素技术,2003,(4):25
    [71]C.Schmitt,H.Probstle,J.Fricke.Carbon cloth-reinforcedand activated aerogel films for supercapacitors[J].Non-Crystalline Solids,2001:277-285
    [72]Y.Gao,J.R.Dahn.Synthesis and characterization of Li_(1+x)Mn_(2-x)O_4 for Li-ion battery applications[J].J.Electrochem Soc.,1996,143(1):100-119
    [73]M.Q.Han.Study on carbon aerogel electrodes for supercapacitor[J].Journal of Functional Materials,2004,4:457-459
    [74]Siijima.Helicalmicrotubules ofgraphitic carbon[J].Nature,1991,354:56
    [75]A.G.Rinzier,J.Liu.Purified single-walled carbon nanotubes[J].Applied Physical A-Materials Science&Process,1998,1(67):29-37
    [76]刘亚菲,胡中华,任炼文,等.高性能活性炭电极材料在双电层电容器中的应用[J].新型炭材料,2007,24(4):355-360
    [77]袁定胜,胡向春,刘应亮,等.超级电容器用炭材料的研究进展[J].电池,2007,24(4):466-468
    [78]R.J.Smiley,W.N.Delgass.AFM,SEM and XPS characterization of PAN-based carbon fibres etched in oxygen plasmas[J].Journal of Material Society,1993,28:3601-3611
    [79]A.D.Pasquier,I.Plitz,J.Gural,et al.Power-ion battery:bridging the gap between Li-ion and supercapacitor chemistries[J].Journal of Power Sources,2004,136(1):160-170
    [80]黄柏辉,杨萍,张宝宏,等.LiCoO_2/AC复合电极作为超级电容器的电极材料[J].电源技术,2006,130(7):560-562
    [81]殷金玲,张宝宏,孟祥利,等.插入型化合物作为超级电容器电极材料[J].材料导报,2006,20(S2):303-305
    [82]王贵欣,周固民.LiNi_(0.8)Co_(0.2)O_2/MWTs复合物超级电容器电极材料的研究[J].无机化学学报,2005,21(4):593-597
    [83]薛云,陈野,张密林.超级电容器用LiMn_2O_4的制备与性能[J].材料热处理学报,2008,29(1):12-15
    [84]Y.G.Wang,L.C.Ling.Synthesis of mesoporous carbon and its adsorption property to biomolecules[J].Microporous and Mesoporous Materials,2008,115(3):461-468
    [85]江奇,瞿美臻,张伯兰,等.电化学超级电容器电极材料的研究进展[J].无 机材料学报,2002,17(4):649-656
    [86]A.Singhal,G.Skandan,G..Amatucci,et al.Nanostructured electrodes for next generation rechargeable electrochemical devices[J].Journal of Power Sources,2004,129(1):38-44
    [87]D.P.Aurelien,P.Irene,M.Serafin,et al.Comparative study of Li-ion battery,supercapacitor and nonaqueous asymmetric hybrid devices for automotive applications[J].Journal of Power Sources,2003,115(1):171-178
    [88]L.Cheng,H.J.Liu,J.J.Zhang,et al.Nanosized Li_4Ti_5O_(12)Prepared by Molten Salt Method as an Electrode Material for Hybrid Electrochemical Supercapacitors[J].J.Electrochem.Soc.2006,153(8):A1472-A1477
    [89]梁海潮,陈方,李仁贵,等.纳米TiO_2掺杂活性碳极化电极的电化学特性研究[J].电源技术,2005,29(1):24-26
    [90]T.Hiromoto,A.Nobuo,S.Hideki,et al.Lithium ion capacitor[P].JP,WO2007055358,2007
    [91]O.Hatozaki.Lithium ion capacitor(LIC)[C].The 16th international seminar on double layer capacitors and hybrid energy storage devices,2006,241-252
    [92]T.Morimoto,M.Tsushima,Y.Che.Performance of capacitors using organic electrolytes[J].Materials Research Society,2000,575:357-367
    [93]A.Yoshino.Hybrid(asymmetric)capacitor[J].Electrochemistry,2004,72:716-719
    [94]徐仲榆,郑洪河.锂离子蓄电池碳负极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性[J].电源技术,2000,24(5):295-301
    [95]G Herlem,B.Fahys.N butylamine as solvent for lithium salt electrolytes,structure and properties of concentrated solutions[J].Electrochim Acta,1996,41:3753-2759
    [96]D.P.Wilkinson,J.R.Darn.Electrolyte solution sequestering agents for electrochemical cells having carbonaceous electrodes[P].USP5130211,1992-07-14
    [97]Z.X.Shu,R.S.Mcmilllan,J.J.Murray,et al.Eeffect of 12 crown 4 on the electrochemical intercalation of lithium into graphite.J.Electrochem Soc.,1993(140):L101-103
    [98]A.Koji,M.Yasuo,U.Akira.Nonaqueous electrolytic solution and lithium secondary batteries.W002059999,2002-08-01
    [99]Takahashi Masatoshi,Abe koji,Ueki Akira,et al.Lithium secondary battery. EP1065744,2001-01-03
    [100] A.Koji, M.Yasuo, Ueki Akira. Lithium secondary battery and nonaqueous electrolyte for the same. JP2002298910, 2002-10-11
    [101] U. Akira, A. Koji. Nonaqueous electrolyte solution and lithium secondary batterie using same. JP2002260725. 2002-09-13
    [102] S. S. Zhang, K. Xu, T. R. Jow. Tris(2,2,2-trifluoethyl) phosphate as a co-solvent for nonflammable electrolytes in Li-ion batteries[J]. Journal of Power Sources, 2003,113(1): 166-172
    [103] X. M Wang, E. Yasukawa, S.Kasuya. Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion batteries II.The Use of Amorphous Carbon Anode[J]. Journal of Power Sources, 2001(148): A1066-A1071
    [104] Jee-Sun Shin, Chi-Hwan Han, Un-Ho Jung, et al. Effect of Li_2CO_3 additive on gas generation in lithium-ion batteries [J]. Journal of Power Sources, 2002, 109(1): 47-52
    [105] F. Kita, H. Sakata, A. Kawakami, et al. Electronic structures and electrochemical properties of LiPF_(6-n)(CF_3)_n[J]. Journal of Power Sources, 2001, 97-98: 581-583
    [106] M. Schmidt, U. Heider, A. Kuehner, et al. Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries[J]. Journal of Power Sources, 2001, 97-98: 557-560
    [107] C. W. Walker, J. D. Cox, M. Salomon. Conductivity and Electrochemical Stability of Electrolytes Containing Organic Solvent Mixtures with Lithium tris(Trifluoromethanesulfonyl)methide[J]. J. Electrochem. Soc, 1995, 142(3): L80-L82
    [108] M. Ishikawa, H. Kamohara, M. Morita, et al. Li(CF_3SO_2)_2N as an electrolytic salt for rechargeable lithium batteries with graphitized mesocarbon microbeads anodes[J]. Journal of Power Sources, 1996,62(2): 229-232
    [109] M. Handa, S. Fukuda, Y. Sasaki, et al. Use of a Chelate Complex with Boron as a Lithium Salt for Lithium Battery Electrolytes [J]. J. Electrochem. Soc, 1997, 144(9): L235-L236
    [110] Y. Sasaki, S. Sekiya, M. Handa, et al. Chelate complexes with boron as lithium salts for lithium battery electrolytes [J]. Journal of Power Sources, 1999, 79(1): 91-96
    [111]S.Sachio,Y.Hiroyuki.Organic lithium phosphate,its manufacture,and low-non-aqueous electrolyte and secondary non-aqueous electrolyte lithium battery using it[P].JP NO.99 335382,1999-12-7
    [112]郑洪河等.锂离子电池电解质[M].化学工业出版社,2006,1
    [113]S.Bruno.Lithium rocking chair batteries:an old concept?[J].Electrochemical Society,1992,139(10):2776-2781
    [114]K.Xu,S.S.Zhang,B.A.Pose,et al.Lithium Bis(oxalate)borate stabilizes graphite anode in propylene carbonate[J].Electrochemical and Solid-State Letters,2002,5(11):A259-A262
    [115]S.S.Zhang.An unique lithium salt for the improved electrolyte of lithium-ion battery[J].Electrochemistry Communications,2006,8(9):1423-1428
    [116]谢辉,唐致远,李中延.可用于锂离子电池的新型锂盐:LiODFB[J].化工新型材料,2007,35(6):39-40
    [117]Z.H.Chen,J.Liu,K.Amine.Lithium difluoro(oxalato)borate as salt for lithium-ion Batteries[J].Electrochemical and Solid-State Letters,2007,10(3):A4-A47
    [118]S.S.Zhang.Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC_2O_4F_2-based electrolyte[J].Journal of Power Sources,2007,163(2):713-718
    [119]J.Liu,Zonghai Chen,Sara Busking,K.Amine.Lithium difiuoro(oxalato)borate as a functional additive for lithium-ion batteries[J].Electrochemistry Communications,2007,9(3):475-479
    [120]T.R.Jow.Additive for enhancing the performance of electrochemical cells[P].US007172834B1,2007
    [121]S.S.Zhang,K.Xu,T.R.Jow.Electrolyte for electrochemical device[P].US2002/0081496A1,2002
    [122]W.Xu,A.J.Shusterman,M.Videa.Structures of orthoborate anions and physical properties of their lithium salt nonaqueous solutions[J].Journal of The Electrochemical Society,2003,150:E74-E80
    [123]S.S.Zhang.An unique lithium salt for the improved electrolyte of lithium-ion battery[J].Electrochemistry Communications,2006,8(9):1423-1428
    [124]S.S.Zhang.An unique lithium salt for the improved electrolyte of lithium-ion battery[J].Electrochemistry communications,2006,8(9):1423-1428
    [125]Sheng Shui Zhang.Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC_2O_4F_2-based electrolyte[J]. Journal of Power Source, 2007,163(2): 713-718
    [126] Jun Liu, Zonghai Chen, Sara Busking, et al. Lithium difluoro(oxalato)borate as a functional additive for lithium-ion batteries[J]. Electrochemical Communications, 2007, 9(3): 475-479
    [127] V. Aravindan, P. Vickraman. A novel gel electrolyte with lithium difluoro(oxalato)borate salt and Sb_2O_3 nanoparticles for lithium ion batteries[J]. Solid State Sciences, 2007, 9(11): 1-5
    [128] Jun Liu, Zonghai Chen, Sara Busking, et al. Effect of electrolyte additives in improving the cycle and calendar life of graphite/Li_(1.1)[Ni_(1/3)Co_(1/3)Mn_(1/3)]_(0.9)O_2 Li-ion cells[J]. Journal of Power Source, 2007,174(2): 852-855
    [129] Tsujika S, Kawagoe Shi. Process for synthesizing ionic metal complex[P]. EP1308449A2,2003-05-07
    [130] M. Ue, M. Takeda, M. Takeharea. Properties of new quaternary ammonium salts for electrochemical capacitors proceedings of the symposium on the Electrochemical capacitor II[A]. The Electrochemical Society Proceedings Series[C]. Pennington: The Electrochemical Society of America, 1997, 289-300
    [131] M. Ue, K. Ida, S. Mori. Electrochemical properties of organic liquid electrolytes based on quaternary ammonium salts for electrical double-layer capacitor[J]. J Electrochem Soc, 1994,141(11): 2989-2996
    [132] M. Ue. Conductivities and ion association of quaternary ammonium tetrafluoroborates in propylene carbonate[J]. Electorchim Acta, 1994, 39(13): 2083-2087
    [133] T. Kanbara, K. Nishimura, T. Yamamoto. Electric double-layer capacitors using porous and electrically conducting clay-carbon composites as electrodes [J]. Journal of power sources, 1990, 32: 165-174
    [134] Y. Sanada, K. Morimoto, K. Kurihara. Electric double layer capacitor using sulfolane based electrolytic solution[J]. Denki Kagaku, 1993, 61(4): 448-450
    [135] M. Ue. Advances-in electrochemical capacitors-electrolyte for electrochemical capacitors[J]. Denki Kagaku, 1998, 66(9): 904-911
    [136] J. Gamby, P. L. Tabema, P. Simon. Studies and characterizations of various activated carbons used for carbon/carbon supercapacitors[J]. Journal of power sources, 2001,101(1): 109-116
    [137]F.Chen,R.G.Li,M.H,et al.Preparation and characterization of ramsdellite Li_2Ti_3O_7 as an anode material for asymmetric supercapaeitors[J].Eleetrochimica Acta,2005,51(1):61-65
    [138]X.B.Hu,Y.J.Huai,Z.J.Lin,J.S.Suo,Z.H.Deng.A (LiFePO_4-AC)/Li_4Ti_5O_(12)hybrid battery capacitor[J].Journal of the electrochemical society,2007,154(11):A1026-A1030
    [139]A.D.Pasquier,I.Plitz,J.Gural,et al.Power-ion battery:bridging the gap between li-ion and supercapaeitor chemistries[J].Journal of power sources,2004,136(1):160-170
    [140]毕文英,王成扬.混合超级电容器AC/LiMn_2O_4体系的电化学性能[J].化学通报,2007,70(1):57-61
    [141]巩桂英,徐宇虹,马萍,等.AC/Li_4Ti_5O_(12)混合电容器的性能研究[J].电源技术,2007,35(5):409-413
    [142]T.Herzig,C.Schreiner,D.Gerhard,et al.Characterisation and properties of new ionic liquids with the difluoromono[1,2-oxalato(2-)-O,O']borate anion[J].Journal of Fluorine Chemistry,2007,128(6):612-618
    [143]张治安,赖延清,高宏权,等.一种草酸二氟硼酸锂的提纯方法[P].中国专利CN,200810030568.2[P].2008
    [144]G.V.Zhuang,K.Xu,T.R.Jow,et al.Study of SEI Layer Formed on Graphite Anodes in PC/LiBOB Electrolyte Using IR Spectroscopy[J].Electrochemical and Solid-State Letters,2004,7(8):A224-A227
    [145]赵瑶兴,孙祥玉.有机分子结构光谱鉴定[M].北京:科学出版社,2003
    [146]YU Bi-tao,QIU Wei-hua,LI Fu-shen,et al.The Electrochemical Characterization of Lithium Bis(oxalato)borate Synthesized by a Novel Method[J].Electrochemical and Solid-State Letters,2006,9(1):A1-A4
    [147]T,Herzig,C.Schreiner,D.Gerhard,et al.Characterisation and properties of new ionic liquids with the difluoromono[1,2-oxalato(2-)-O,O']borate anion[J].Journal of Fluorine Chemistry,2007,128(6):612-618
    [148]Zhenrong Lu,Li Yang,Yaju Guo.Thermal behavior and decomposition kinetics of six electrolyte salts by thermal analysis[J].Journal of Power Sources,2006,156:555-559
    [149]郭炳琨,徐徽,王先友,等.锂离子电池[M].第一版.中南大学出版社,2002:89
    [150]吴宇平,万春荣,姜长印,等.锂离子二次电池[M].第一版.北京:化学工 业出版社,2002:142-149
    [151]吕鸣祥.化学电源[M].天津大学出版社,1992:309-313
    [152]徐仲榆,郑洪河.锂离子蓄电池碳电极/电解液的相容性研究进展Ⅱ电解液组成与碳负极/电解液的相容性[J].电源技术,2000,5:295-301
    [153]S.S.Zhang.An unique lithium salt for the improved electrolyte of Li-ion battery[J].Electrochemistry Communications,2006,8(9):1423-1428
    [154]W.Feng-Chin,T.Ru-Ling,H.Chi-Chang,et al.The capacitive characteristics of activated carbons-comparisons of the activation methods on the pore structure and effects of the pore structure and electrolyte on the capacitive performance[J].Journal of Power Sources,2006,159(2):1532-1542

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700