层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2锂离子电池正极材料的制备及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
层状Li(Ni_((1-x)/2)Co_xMn_((1-x)/2))O_2材料被认为是最有可能替代LiCoO_2的正极材料。本论文以x=1/3的层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2为研究目标,采用溶胶凝胶法和湿法球磨两种工艺合成了性能优良的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2电极材料;运用XRD、SEM、恒电流充/放电等技术对该材料的组织结构和电化学性能进行了系统研究。
     采用溶胶凝胶法制备了单一、均匀的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2固溶体材料。该材料晶体结构层状特征好,充放电容量较高,循环性能优良。用柠檬酸作为螯合剂,通过不同柠檬酸量制备样品的结构与性能比较研究表明,柠檬酸与金属离子比为0.8时,合成材料性能较优。不同烧结工艺制得的LiNi_(1/3_Co_(1/3)Mn_(1/3)O_2固溶体材料的结构与性能研究表明:随烧结温度提高,时间延长,所得产物的结晶越完整,层状结构越明显,同时晶粒长大。950℃烧结8h热处理工艺合成LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2材料的电化学性能最好,在2.75-4.3V之间以0.1C充放电,首次充放电比容量为191.3/163.8 mAh·g~(-1),效率为85.6%,循环性能良好。不同锂源合成的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料的结构和电化学性能表明,以氢氧化锂作为锂源,同时加入氨水合成的材料,电化学容量较高,循环性能稳定,但是振实密度较低。
     以柠檬酸为分散剂和燃料,六水合硝酸盐、电解二氧化锰为原料,采用球磨活化获得混合均匀、反应活性高的前驱体,高温合成工艺制备了锂离子二次电池用的具有层状结构的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料。该材料为单相的层状嵌锂氧化物,具有α-NaFeO_2结构,属六方晶系,空间群为R(?)m;材料为团聚态颗粒,一次粒子细小,呈多边形,尺寸约200-300nm,结晶化程度高。通过计算反应方程的化学计量系数φ_e,初步确定柠檬酸与金属离子比值范围;对不同柠檬酸与金属离子比值下合成LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料进行比较研究,确定比值为0.7时,合成材料性能较好。对前驱体的预烧处理工艺进行研究,确定了低温分步烧结的工艺。参考溶胶凝胶法合成工艺的热处理优化参数,采用950℃烧结10h高温热处理工艺合成的LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料,在2.75-4.3V电压区间,以0.1C恒电流充放电,首次充/放电容量为184.3/156.7 mAh·g~(-1),充/放电效率为85.0%。0.5C倍率下充放电,材料首次放电容量为151.3mAh·g~(-1),经过30次循环后容量保持在150.8mAh·g~(-1)左右,循环性能优异。比较研究了碳酸锂、氢氧化锂、硝酸锂为锂盐原料,制备的层状LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2正极材料的结构性能表明:硝酸锂为锂盐原料所制备的材料结构性能较好。
Recently,Layered Li[Ni_((1-x)/2)Co_xMn_((1-x)/2)]O_2 is considered to be one of the best candidates to replace LiCoO_2.In this paper,Layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 was selected to be the object of our research and Layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 was synthesized by the sol-gel method and ball-milling activation route.The studies of XRD,SEM,charge-discharge at constant current were introduced to characterize the structure, micro-morphology and electrochemical properties of the as-prepared materials.
     The lithium nickel cobalt manganese oxide LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 was synthesized using citric acid as a chelating agent by a sol-gel method.It has good crystal structure,high theoretical capacity,well cycle performance.The effect of varying the acid to metal ion ratio R on the structural and electrochemical properties of the synthesized compound were studied.An acid to metal ion ratio R=0.8 got the best result.The effect of varying high temperature synthesizing conditions on the structural and electrochemical properties of the synthesized compound was studied.With Raising synthesizing temperature and prolonging sintering period appropriately,it could improve the crystallinity and the layered structure of the as-prepared materials.However,it also might result in the increase of particle size.The electrochemical test in 2.75-4.3V delivered the initial charge and discharge specific capacity of 191.3 and 163.8 mAh·g~(-1) at a 0.1C rate,respectively,with the initial charge/discharge efficiency of 85.6%,and good cycling stability for layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 prepared in the optimized condition of acid to metal ion ratio R=0.8,and sintering for 8h at 950℃.LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 was prepared using different lithium raw materials.The results showed that LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 was prepared using lithium hydroxide as lithium raw materials with ammonia controlling the PH,which has high theoretical capacity,good cycle performance,but low tap density.
     The layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 cathode materials with hexagonal structure were successfully synthesized by ball-milling activation followed with combustion method and high temperature sintering in air. The sample has a phase-pure hexagonalα-NaFeO_2 structure with a space group of R(?)m,and uniform particle size of 200-300nm.With ball-milling activation,uniform precursor with high reacting activity was obtained. The elemental stoichiometric coefficientφ_e of the specific formulas was calculated to ascertain the range of the acid to metal ion ratio K.The effect of varying the acid to metal ion ratio R on the structural and electrochemical properties of the synthesized compound were studied.An acid to metal ion ratio K=0.7 got the best result.The pretreatment temperature process was investigated.The electrochemical test in 2.75-4.3V delivered the initial charge and discharge specific capacity of 184.3 and 156.7 mAh·g~(-1) at a 0.1C rate,respectively,with the initial charge/discharge efficiency of 85.0%,and the discapacity of 150.8mAh·g~(-1) on the 30~(th) cycle at a 0.5C rate for layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 prepared in the condition of sintering for 10h at 950℃.LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 was prepared using lithium carbonate、lithium hydroxide、lithium nitrate as raw materials respectively.The results showed that LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 that prepared using lithium nitrate as lithium raw materials has good structural and electrochemical properties.
引文
[1]郭炳昆,李新海,杨松青,化学电源-电池原理及制造技术[M].长沙:中南工业大学出版社,2000,288
    [2]陈立泉,混合电动车及其电池[J].电池,2000,30(3):98-100
    [3]Chilton J J E,Cook G M.in Abstract:Lithium Nonaqueous Secondary Batteries [J].ECS fall Meeting,Boston,1962:90-91
    [4]Hughes M,Hampson N A,et al.A review of cells based on lithium negative electrodes(anodes)[J].J Power Sourses,1984,12(2):83-144
    [5]Whittingham M S.Electrochemical energy storage and intercalation chemistry[J].Science,1976,192:1226-1127
    [6]Nagaura T,Tozawa K.Lithium ion rechargeable battery[J].Progress in Batteries and Solar Cells,1990,9:209-217
    [7]Dahn J R,Zheng T,Liu y,Xue J S,Mechanisms for lithium insertion in carbonaceous materials[J].Science,1995,270(5236):590-594
    [8]Armstrong A R,Bruce P G.Synthesis of layered LiMnO_2 as an electrode for rechargeable lithium batteries[J].Nature,1996,381(6582):499-500
    [9]张世超.锂离子电池产业现状与研究开发热点[J].新材料产业,2004(1):46-52
    [10]吕鸣祥,黄长保,宋玉谨.化学电源[M].天津:天津大学出版社,1992,306-307
    [11]郭丙昆,徐徽,王先友,肖立新.锂离子电池[M].长沙:中南大学出版社,2002
    [12]王居.化学电源的隔膜[J].电源技术,1993,17(3):36-40
    [13]Geronov Y,Zlatilova P,Puresheva B,et al.Behavior of lithium electrode during cycling in nonaqueous solutions[J].Journal of Power Sources,1989,26:585-591
    [14]詹晋华.锂离子二次电池研究进展[J].电池,1996,26(4):192-195
    [15]Li Y X,Wan C R,Wu Y P,et al.Synthesis and characterization of ultrafine LiCoO_2 powders by a spray-drying method[J].J.Power Sources,2000,85(2):294-298
    [16]刘业翔,胡国荣,禹筱元等.锂离子电池研究与开发的新进展[J].电池,2002,32(5):269-273
    [17]王剑,其鲁,柯克等.新合成方法制备的LiCoO_2正极材料的结构和电 化学性能研究[J].无机化学学报,2004,20(6):159-163
    [18]刘业翔,胡国荣,禹筱元等.锂离子电池研究与开发的新进展[J].电池,2002,32(5):269-273
    [19]高虹,瞿秀静,瞿玉春等.锂离子电池正极材料LiNiO_2的制备研究[J].电源技术,1999,23(增刊):53-55
    [20]Ohzuku T,Ueda A,Nagayama M.Electrochemistry and structural chemistry of LiNiO_2(R3m) for 4 volt secondary lithium calls[J].J.Electrochem.Soc.,1993,140(7):1862-1870
    [21]Banov B,Bourilkov J,Madenov M.Cobalt stabilized layered lithium-nickel oxides cathode in lithium rechargeable cells[J].J.Power Sources,1995,54(2):268-270
    [22]Yamada S,Fujiwara M,Kanda M.Synthesis and properties of LiNiO_2 as cathode material for secondary batteries[J].J.Power Sources,1995,54(2):209-213
    [23]舒东,杨勇,夏熙等.尖晶石型LiMn_2O_4的电化学性质[J].电池,2001,31(5):215-217
    [24]刘烈炜,田炜,赵新强等.尖晶石LiMn_2O_4的掺杂研究进展[J].材料导报,2003,17(6):44-46
    [25]Jian TU,Xinbing ZHAO,Gaoshao CAO,et al.Electrochemical performance of surface-modified LiMn_2O_4 prepared by a melting impregnation method[J].Journal of Materials Science&Technology,2006,22(4):433-436
    [26]Amatucci G G,Bliyr A,Sigala C.Surface treatment of Li_(1+x)Mn_(2-x)O_4 spinel for improved elevated temperature performance[J].Solid State Ionics,1997,104(1):18-25
    [27]Padhi A K,Najundaswamy K S,Masquelier C,et al.Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates[J].J.Electrochem.Soc.,1997,144:1609-1613
    [28]Takahashi M,Tobishima S,Takei K,et al.Characterization of LiFePO_4 as the cathode material for rechargeable lithium batteries[J].J.Power Sources,2001,97-98:508-501
    [29]Andersson A S,Thomas J O.The source of first-cycle capacity loss in LiFePO_4[J].J.Power Sources,2001,97-98:498-502
    [30]Nallathamby K,Doh C H,Park C W,et al.A novel approach to exploit LiFePO_4compound as an ambient temperature high capacity anode material for rechargeable lithium batteries[J].Electrochemistry Communications,2004,6:1110-1113
    [31]Kim J M,Chung H T.The first cycle characteristics of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2charged up to 4.7V[J].Electrochemica Acta,2004,49:937-944
    [32]甘朝伦,詹晖,周运鸿.锂离子电池正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3) O_2的性能研究[J].第26届全国化学与物理电源学术年会论文集.中国厦门:2004.A35-A37
    [33]Li D C,Muta T.Effect of synthesis method on the electrochemical performance of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2[J].J.Power Sources,2004,132:150-155
    [34]Lee M H,Kang Y J,Myung S T.Synthetic optimization of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2via co-precipitation[J].Electrochimica Acta,2004,50:939-948
    [35]Sebastien P,Marca M D.Direct synthesis of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 from nitrate precursors[J].Electrochemistry communications,2004,6:767-772
    [36]Mizushima K,Jones P C,Wiseman P J,et al.Li_xCoO_2(0 less than x less than equivalent to 1):A new cathode material for batteries of high energy density[J].Materials Research Bulletin,1980,15(6):783-789
    [37]Palacin M R,Larcher D,et al.Low-temperature synthesis of LiNiO_2.Reaction mechanism,stability,and electrochemical properties[J].Journal of the Electrochemical Society,1997,144(12):4226-4236
    [38]Kim J,Amine K.A comparative study on the substitution of divalent,trivalent and tetravalent metal ions in LiNi_(1-x)M_xO_2(M= Cu~(2+),Al~(3+) and Ti~(4+))[J].J.Power Sources,2002,104(1):33-39
    [39]Pouillerie C,Croguennec L,Biensan P,et al.Synthesis and Characterization of New LiNi_(1-y)Mg_yO_2 Positive Electrode Materials for Lithium-Ion Batteries[J],J.Electrochem.Soc,2000,147:2061-2069
    [40]Ohzuku T,Knakura K,Aoki T.Comparative study of solid-state redox reactions of LiCo_(1/4)Ni_(3/4)O_2 and LiAl_(1/4)Ni_(3/4)O_2 for lithium-ion batteries[J],Electrochimica Acta,1999,45:151-160
    [41]Gummow R J,Thackeray M M.An investigation of spinel-related and orthorhombic LiMnO_2 cathodes for rechargeable lithium batteries[J].Journal of the Electrochemical Society,1994,141(5):1178-1182
    [42]Pistoia G,Zane D,Zhang Y.Some aspects of LiMn_2O_4 electrochemistry in the 4volt range[J].Journal of the Electrochemical Society,1995,142(8):2551-2557
    [43]Takeda Y,Nakahara K,Nishijima M,et al.Sodium deintercalation from sodium iron oxide[J].Mater.Res.Bull,1994,29:659-666
    [44]Wu E J,Tepesch P D,Ceder G.Size and charge effects on the structural stability of LiMnO_2(M=transition metal) compound[J].Philos.Mag,1998,77:1039-1047
    [45] Kanno R, Shirane T, Inaba Y, et al. Synthesis and electrochemical properties of lithium iron oxides with layer-related structures[J]. J. Power Sources, 1997, 68: 145-152
    
    [46] Manthilam A, Goodenough J B. Lithium insertion into Fe_2(MO_4)_3 frameworks: comparison of M=W with M=Mo[J]. J. Solid State Chem., 1987, 71: 349-360
    
    [47] Manthiram A, Goodenough J B. Lithium insertion into Fe_2(SO_4)_3 frameworks [J]. J. Power Sources, 1989,26: 403-408
    
    [48] Padhi A K, Najundaswamy K S, Masquelier C, et al. Effect of structure on the Fe~(3+)/Fe~(2+) redox couple in iron phosphates[J]. J. Electrochem. Soc, 1997, 144: 1609-1613
    
    [49] Yamada A, Chung S C, Hiokuma K. Optimized LiFePO_4 for lithium batteries cathodes[J]. J. Electrochem . Soc, 2001,148(3): A224-A229
    
    [50] Andersson A S, Thomas J O. The source of first cycle capacity loss in LiFePO_4[J]. J. Power Sources, 2001, (97-98): 498-502.
    
    [51] Takahashi M, Tobishima S, Takei K, et al. Characterization of LiFePO_4 as the cathode material for rechargeable lithium batteries[J]. J.Power Sources 2001, 97-98: 508-511.
    
    [52] Arnold G., Garche J, Hemmer R, et al. Fine-Particle lithium iron Phosphate LiFePO_4 synthesized by a new low-cost apueous precipitation technique[J]. J.Power Sources, 2003,119-121: 247-251.
    
    [53] Liao X Z, Ma Z F, He Y S, et al. Electrochemical performance of LiFePO_4/C Cathode Material for Rechargeable Lithium Batteries[J]. J. Electrochemical Society, 2005,152 (10): A1969-A1973
    
    [54} Liao X Z, Ma Z F, Wang L, et al. A Novel Synthesis Route for LiFePO_4/C as Cathode Materials for Lithium-ion Batteries[J]. Electrochemical and Solid-State Letters, 2004, 7 (12): A522-A525
    
    [55] Frangers, B C, Le C F. Optimized Lithium Iron Phosphate for High-Rate Electrochemical Applications[J]. Electrochem. Soc, 2004, 151(7): A1204-A1207
    
    [56] Chung S Y, Blocking J T. Chiang Y M. Electronically conductive phospho-olivines as lithium storage electrodes[J]. Nature Material, 2002, 1: 123-128
    
    [57] Croce F, Scrosati B, Hassoun J, et al. A Novel Concept for the Synthesis of an Improved LiFePO_4 Lithium Battery Cathode[J]. Electrochem.Solid-State Lett, 2002, 5(3): A47-A50
    
    [58] Kim J H, Park C W, Sun Y K. Synthesis and electrochemical behavior of Li[Li_(0.1)Ni_(0.35-x/2)Co_xMn_(0.55-x/2)]O_2 cathode materials[J].Solid state Ionics,2003,164:43-49
    [59]Ryuji S,Akihiro F,Kazuya O,et al.Positive electrode active material for lithium secondary cell[J].EP1 447 866 A1,2004,8:18-24
    [60]永山雅敏,芳泽浩司.非水电解质二次电池用正极活性物质的制备[J].中国专利,200410001673.5,2004-01-09
    [61]Jouanneau S,Eberman K W,et al.Synthesis,Characterization and elertrochemical behavior of improved Li[Ni_xCo_(1-2x)Mn_x]O_2(0.1≤x≤0.5)[J].J.Electrochem.Soc,2003,150(12):A1637-A1642
    [62]Ohzuku T,Makimura Y.Layered lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for lithium-ion batteries[J].Chem.Lett.,2001,7:642-643
    [63]Venkatram S,Manthiram A.Structural and chemical characterize ation of layered Li_(1-x)Ni_(1-y)Mn_yO_(2-δ)(y=0.25 and 0.5,and(0≤(1- x)≤ 1) oxides[J].Chem.Mater.,2003,15(26):5003-5009
    [64]Koyama Y,Tanaka I,Ohzuku T,et al.Crystal and electronic structures of superstructural Li_(1-x)(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2(0≤x≤1)[J].J.Power Sources,2003,119-121(1):644-648
    [65]Macneil D D,Lu Z H,Dahn J R.J.Electrochem.Soc.,2002,149(10):A1332-A1336
    [66]Lu Z H,Macneil D D,Dahn J R.Electrochem.Solid State Letters,2001,4(11):A191-A194
    [67]Yabuuchi N,Ohzuku T.Novel lithium insertion material of LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2for advanced lithium-ion batteries[J].J.Power Sources,2003,119-121:171-174
    [68]Yabuuchi N,Ohzuku T.Extended abstract No.122[J].IMLBI1,June 23-28,Monterey,USA,2002
    [69]Shaju K M,Subba Rao G V,Chowdari B V R.Performance of layered LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 as cathode for Li-ion batteries[J].Electrochimica Acta,2002,48:145-151
    [70]Naoaki Y,Ohzuku T.Novel lithium insertion material of LiCo_(1/3)Ni_(1/3)Mn_(1/3)O_2 for advanced lithium-ion batteries[J].J.Power Sources,2003,119-121:171-174
    [71]Belharouak I,Sun Y K,Liu J,et al.Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as a suitable cathode for high power applications[J].J.Power Sources,2003,123(2):247-252
    [72]Kobayashi H,Arachi Y,Emura S,et al.Investigation on lithium de-intercalation mechanism for Li_(1-y)Ni_(1/3)Mn_(1/3)Co_(1/3)O_2[J].J.Power Sources,2005,146(1-2):640-644
    [73] Yoshio M, Noguchi H, Itoh J, et al. Preparation and properties of LiNi_(1-x-y)Co_xMn_yO_2 as a cathode for lithium-ion batteries [J]. J. Power Sources, 2000, 90:176-181
    
    [74] Ngala J K, Chernova N A, Ma M, et al. The synthesis, characterization and electrochemical behavior of the layered LiNio.4Mn_(0.4)Co_(0.2)O_2 compound[J]. J. Mater. Chem., 2004,14(2): 214-220
    
    [75] Jiang J, Buhrmester T, Eberman K W, et al. Electrochemical and thermal comparisons of Li[Ni_(0.1)Co_(0.8)Mn_(0.1)]O_2 synthesized at different temperatures[J]. J. Electrochem. Soc., 2005,152(1): A19-A22
    
    [76] Lee M H, Kang Y J, Myung S T, et al. Synthetic optimization of Li[Ni_(1/3)Co_(1/3)Mn_(1/3)]O_2 via co-precipitation[J]. Electrochim Acta, 2004, 50(4): 939-948
    
    [77] Belharouak I, Sun Y K, Liu J, et al. Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as a suitable cathode for high power applications[J]. J. Power Sources, 2003,123(2): 247-252
    
    [78] Todorov Y M, Numata K. Effects of the Li:(Mn + Co + Ni) molar ratio on the electrochemical properties of LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2 cathode material[J]. Electrochim. Acta, 2004, 50(2-3): 495-499
    
    [79] Choi J, Manthiram A. Investigation of the irreversible capacity loss in the layered LiNi _(1/3)Mn_(1/3)Co_(1/3)O_2 cathodes[J]. Electrochem Solid-State Lett, 2005, 8(8): C102-C105
    
    [80] Choi J, Manthiram A. Role of chemical and structural stabilities on the electrochemical properties of layered LiNi_(1/3)Mn_(1/3)Co_(1/3)O_2 cathodes[J]. J. Electrochem. Soc, 2005,152(9): A1714-A1718
    
    [81] Cao H, Zhang Y, Zhang J, et al. Synthesis and electrochemical characteristics of layered LiNi_(0.6)Co_(0.2)Mn_(0.2)O_2 cathode material for lithium ion batteries[J]. Solid State Ion, 2005,176(13-14): 1207-1211
    
    [82] Choi J, Manthiram A. Structural and electrochemical characterization of the layered LiNi_(0.5-y)Mn_(0.5-y)Co_(2y)O2 (0≤2y≤ 1) cathodes[J]. Solid State Ion, 2005, 176(29-30): 2251-2256
    
    [83] Cho T H, Park S M, Yoshio M, et al. Effect of synthesis condition on the structural and electrochemical properties of Li[Ni_(1/3)Mn_(1/3)Co_(1/3)]O_2 prepared by carbonate co-precipitation method[J]. J. Power Sources, 2005,142(1-2): 306-312
    
    [84] Lee Y S, Sun Y K, Ota S, et al. Preparation and characterization of nano-crystalline LiNio.5Mn1.5O4 for 5 V cathode material by composite carbonate process[J]. Electrochem.Commun, 2002, 4(12): 989-994
    [85]Cho T H,Shiosaki Y,Noguchi H.Preparation and characterization of layeredLiMn_(1/3)Ni_(1/3)Co_(1/3)O_2 as a cathode material by an oxalate co-precipitation method[J].J.Power Sources,2006,159(2):1322-1327
    [86]Zhang X,Wen Z,Yang X,et al.Synthesis and electrochemical behavior of a new layered cathode material LiCo_(1/2)Mn_(1/3)Ni_(1/6)O_2[J].Mater.Res.Bull,2006,41(3):662-666
    [87]Tack M S,Myung H L,Shinich K,et al.Electrochimica Acta,2005,(50):4800-4805
    [88]Zhang S,Qiu X,He Z,et al.Nanoparticled Li(Ni_(1/3)Co_(1/3)Mn_(1/3))O_2 as cathode material for high-rate lithium-ion batteries[J].J.Power Sources,2006,153(2):350-353
    [89]Hwang B J,Tsai Y W,Chen C H,et al.Influence of Mn content on the morphology and electrochemical performance of LiNi_(1-x-y)Co_xMn_yO_2 cathode materials[J].J.Mater.Chem.,2003,13(8):1962-1968
    [90]Kim J H,Park C W,Sun Y K.Synthesis and electrochemical behavior of Li[Li_(0.1)Ni_(0.35-x/2)Co_xMn_(0.55-x/2)]O_2 cathode materials[J].Solid State Ion,2003,164(1-2):43-49
    [91]Park K S,Cho M H,Jin S J,et al.Structural and electrochemical properties of nanosize layered Li[Li_(1/5)Ni_(1/10)Co_(1/5)Mn_(1/2)]O_2[J].Electrochem Solid-State Lett.,2004,7(8):A239-A241
    [92]Wang G X,Bewlay S,Yao J,et al.Multiple-ion-doped lithium nickel oxides as cathode materials for lithium-ion batteries[J].J.Power Sources,2003,119-121:189-194
    [93]Li D C,Noguchi H,Yoshio M.Electrochemical characteristics of LiNi_(0.5-x)Mn_(0.5-x)Co_(2x)O_2(0<x≤0.1) prepared by spray dry method[J].Electrochim Acta,2004,50(2-3):427-430
    [94]Kim M G,Shin H J,et al.J.Electrochem.Soc,2005,152(7):A1320-A1325
    [95]Kim J M,Kumagai N,Chung H T.Improved Electrochemical Properties and Structural Stability of Overlithiated Li_(1+x)(Ni_(1/3)Co_(1/3)Mn_(1/3))_(1-x)O_2 Prepared by Spray-Drying Method[J].Electrochemical and Solid-State Letters,2006,9(11):A494-A498
    [96]Jouanneau S,Bahmet W,Eberman K W,et al.Effect of the sintering agent,B_2O_3,on Li[Ni_xCo_(1-2x)Mn_x]O_2 materials[J].J.Electrochem.Soc.,2004,151(11):A1789-A179
    [97]Tukamoto H,West A R.Electronic conductivity of LiCoO_2 and its enhancement by magnesium doping[J].J.Electrochem.Soc.,1997,144(9):3164-3168
    [98]Pouillerie G,Groguennec L,Biensen P,et al.Synthesis and characterization of new LiNi_(1-y)Mg_yO_2 positive electrode materials for Lithium-ion batteries[J].J.Electrochem.Soc,2000,147(6):2061-2069
    [99]Kim G H,Myung S T,Bang H J,et al.Synthesis and electrochemical properties of Li[Ni_(1/3)Co_(1/3)Mn_((1/3-x))Mg_x]O_(2-y)F_y via coprecipitation[J].Electrochem.Solid-State Lett,2004,7(12):A477-A480
    [100]李建刚,万春荣,杨冬平等.LiNi_(3/8)Co_(2/8)Mn_(3/8)O_2正极材料氟掺杂改性研究[J].无机材料学报,2004,19(6):1298-1306
    [101]Park S H,Shin S S,Sun Y K.The effects of Na doping on performance of layered Li_(1.1-x)Na_x[Ni_(0.2)Co_(0.3)Mn_(0.4)]O_2 materials for lithium secondary batteries[J].Mater.Chem.and Phy,2006,95(2-3):218-221
    [102]Na S H,Kim H S,Moon S I.The effect of Si doping on the electrochemical characteristics of LiNi_xMn_yCo_((1-x-y))O_2[J].Solid State Ion,2005,176(3-4):313-317
    [103]谭显艳,胡国荣,高旭光等.正极材料LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2的研究进展[J].电池,2005,4(35):315-316
    [104]Meng Y S,Wu Y W,Hwang B J,et al.Combining ab initio computation with experiments for designing new electrode materials for advanced lithium batteries:LiNi_(1/3)Fe_(1/6)Co_(1/6)Mn_(1/3)O_2[J].J.Electrochem.Soc,2004,151(8):A1134-A1140
    [105]Sun Y,Xia Y,Noguchi H.The improved physical and electrochemical performance of LiNi_(0.35)Co_(0.3-x)Cr_xMn_(0.35)O_2 cathode materials by the Cr doping for lithium ion batteries[J].J.Power Sources,2006,159(2):1377-1382
    [106]Li J,He X,Zhao R,et al.Stannum doping of layered LiNi_(3/8)Co_(2/8)Mn_(3/8)O_2cathode materials with high rate capability for Li-ion batteries[J].J.Power Sources,2006,158(1):524-528
    [107]Ma Z F,Yang X Q,Liao X Z,et al.Electrochemical evaluation of composite cathodes base on blends of LiMn_2O_4 and LiNi_(0.8)Co_(0.2)O_2[J].Electrochem.Commun,2001,3(8)
    [108]Kitao H,Fujihara T,Takeda K,et al.High-temperature storage performance of Li-ion batteries using a mixture of Li-Mn spinel and Li-Ni-Co-Mn oxide as a positive electrode material[J].Electrochem.Solid-State Lett,2005,8(2):A87-A90
    [109]赵藻藩,周性尧,张悟铭,赵文宽.仪器分析[M].北京:高等教育出版社,1990
    [110]李树棠.晶体X射线衍射学基础[M].北京:冶金工业出版社,1990
    [111]汪艳,冯熙康.锂离子蓄电池的研究现状[J].电源技术,2001,25:242-245
    [112]Shaju K M,Rao G V S,Chowdari B V R.Electrochimica Acta,2002,48:145-151
    [113]李阳兴,万春荣,姜长印等.锂离子电池用Li_xCo_(0.8)Ni_(0.2)O_2[J].功能材料,2001,32(1):59-61
    [114]Paulsen J M,Thomas C L,Dahn JR.O_2 structure Li_(2/3)[Ni_(1/3)Mn_(2/3)]O_2:a newlayered cathode material for rechargeable lithium batteries.I.Electrochemical Properties[J].J.Electrchem.Soc,2000,147:861-868
    [115]Arai H,Okada S,Sakurai Y.Electrochemical and thermal behavior of LiNi_(1-z)M_zO_2(M = Co,Mn,Ti)[J].J.Electrochem.Soc,1997,144:3117-3125
    [116]Cho J,Kim G,Lim H S.Effect of preparation methods of LiNi_(1-x)Co_xO_2cathode materials on their chemical structure and electrode performance[J].J.Electrochem.Soc.1999,146:3571-3576
    [117]Saadoune I,Delmas C,et al.Effect of cobalt substitution on cationic distribution in LiNi_(1-y)Co_yO_2 electrode materials[J].Solid State Ionics,1996,90(1-4):83-90
    [118]Wang Z X,Sun Y C,Chen L Q,et al.Electrochemical characterization of positive electrode material LiNi_(1/3)Co_(1/3)Mn_(1/3)O_2 and compatibility with electrolyte for lithium-ion batteries[J].J.Electrochem.Soc.,2004,151(6):914-921
    [119]Rougier A,Saadoune I,Gravereau P,et al.Effect of cobalt substitution on cationic distribution in LiNi_(1-y)Co_yO_2 electrode materials[J].Solid State Ionics,1996,90(1-4):83-90
    [120]Liquan C,Xujie H,Erik K,et al.Diffusion enhancement in LiXMn2O4[J].Solid State Ionics,1995,76:91-96
    [121]Wakihara M,Guohua L,Ikuta H,et al.Chemical diffusion coefficients of lithium in LiM_yMn_(2-y)O_4(M=Co,Cr)[J].Solid State Ionics,1996,86-88:907-912
    [122]Ning L J,Wu Y P,Fang S B,et al.Materials prepared for lithium ion batteries by mechanochemical methods[J].J.Power Sources,2004,133(2):229-242
    [123]Song G M,Wang Y J,Zhou Y.Synthesis and electrochemical performance of LiCr_xMn_(2-x)O_4 powders by mechanical activation and rotary heating[J].J.Power Sources,2004,128(2):270-277
    [124]Kosova N V,Uvarov N F,Devyatkina E T,et al.Mechanochemical synthesis of LiMn_2O_4 cathode material for lithium batteries[J].Solid State Ionics,2000,135(1-4): 107-114
    [125]Soiron S,RougierA,Aymard L,et al.Mechanochemical synthesis of Li-Mn-O spinels:Positive electrode for lithium batteries[J].J.Power Sources,2001,97-98:402-405
    [126]任强,武秀兰,朱振峰.机械化学制备陶瓷及复合材料粉体的研究进展[J].中国陶瓷,2003,39(5):1-4
    [127]杨华明,陈德良,邱冠周.超细粉碎机械化学的研究进展[J].中国粉体技术,2002,8(2):32-37
    [128]李运姣,李洪桂,孙培梅等.LiMn2O4的机械活化-湿化学合成机理[J],功能材料,2004,35(2):183-185
    [129]Yi S B,Chung H T,Kim H G.A novel preparation method of active materials for the lithium secondary battery[J].Electrochemistry Communications 2007,9(4):591-595
    [130]Fey G T K,Wang Z F,Kumar T P.Malonic acid-assisted synthesis of LiNi_(0.8)Co_(0.2)O_2 cathode active material for lithium-ion batteries[J].Ionics,2002,8:351

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700