锂离子电池正极材料LiMn_2O_4和LiNi_(0.5)Mn_(1.5)O_4的合成与表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
信息时代的来临使当今社会对高品质移动电源的需求迅速膨胀,而锂离子电池则应运而生,以其高电压、高比容量、无污染等诸多优点最终征服了市场、受到了世人的关注。锂离子电池的出现推动了电器小型化和交通工具电动化的进程,同时也为新能源的广泛利用铺就了道路,为解决能源和环保问题提供了一种有效的途径。然而品质与价格是决定一种技术应用范围的主要因素。目前,锂离子电池受原材料和工艺的制约成本依然居高不下,性能也亟待提升。因此,不断研究新型的锂离子电池技术尤其是新型的正极材料是其生命力所在。本文以清洁价廉的Mn系材料为方向,以具有三维网状结构通道的尖晶石结构为依托,选取了4 V的LiMn2O4和5 V的LiNi0.5Mn1.5O4两种正极材料,对其合成、结构及电化学性质进行了系统地研究。我们利用“软化学”方法分别于不同温度合成了LiMn2O4和LiNi0.5Mn1.5O4正极材料。采用X-射线衍射、拉曼散射和红外光谱研究了材料的结构性质;利用扫描电子显微镜观察了材料的形貌并计算了晶粒生长的热力学参数;我们还采用X-射线光电子能谱确定了材料中Mn和Ni的化学价态;最后我们采用循环伏安法和恒流充放电测试研究了材料的电化学性能。我们希望通过本文研究为LiMn2O4和LiNi0.5Mn1.5O4正极材料的基础研究和实际应用提供必要的理论基础和技术指导。
With the social development and progress, the energy crisis and environmental pollution have become two huge obstacles which are more and more difficult to avoid. If we can not solve these two problems, our living environment will get worse till the day we can not survive again. Maybe a few decades later, after the exhaustion of traditional energy sources, the world will back to darkness and confusion as the ancient times, and people will suffer from cold and starvation again. Therefore, environmental protection and new energy are the two central themes of the current world. Lithium-ion battery is an important medium for rational and effective use of energy, it can realize high efficient energy transfer and conversion, especially for the energies that can be used in HEV or EV to replace the fossil fuel. In fact, development of high performance lithium-ion battery technology will pave the way for the extensive use of new energy. Moreover, Lithium-ion battery technology is the most clean and pollution-free one among the current secondary battery technologies, so it means lot to environmental protection. Because of its two features, efficient and environmentally friendly, can contribute to the solution of the huge obstacles we talked before, research and development of lithium-ion battery have become a strategic imperative.
     Presently, for most of the lithium-ion batteries in use, the cathode material is still LiCoO2, and the cost is very high for the scarcity and expensiveness of cobalt. Also, there are still some safety problems difficult to overcome for LiCoO2. Therefore, to develop alternative materials is very necessary. The manganese resources are abundant, low cost and environmentally friendly, while spinel structure has high ionic conductivity because of its special three-dimensional network. Consequently, we chose spinel LiMn2O4 and LiNi0.5Mn1.5O4 to research in this thesis, and made some valuable results.
     LiMn2O4 and LiNi0.5Mn1.5O4 cathode materials with different prepared temperatures (600℃; 700℃; 800℃and 700℃; 800℃; 900℃, respectively) were synthesized by emulsion drying method. XRD patterns show that the structures of both are spinel and change little with the heat treatment temperature increased, but lattice constant, grain size and crystallinity were enhanced. The micro-strains also decrease for the release of micro-stress at higher temperatures. The morphologies of these two materials obtained at various temperatures were observed using scanning electron microscopy (SEM), and indicate that the actual grain sizes of both are all grown up with the increase of sintering temperatures. It is also found that the samples calcined at the temperatures higher than 800℃represent clear polyhedral shape, indicating well-developed crystallinity. According to the mean particle sizes (MPS) obtained from the SEM, the growth activation energy of the LiMn2O4 and LiNi0.5Mn1.5O4 cathode materials were calculated to be 69.8 and 144.2 kJ mol-1, respectively.
     X-ray photoelectron spectroscopy (XPS) has been extensively used to study the electronic structure and chemical composition of the materials. Here, LiMn2O4 and LiNi0.5Mn1.5O4 prepared at 800℃were characterized by XPS spectra. It can be found that the Ni2p3/2 binding energies of the LiNi0.5Mn1.5O4 XPS spectra are located at 845.65 eV, very closed to that of Ni2+, 854.5eV. Indicate that there are still little Ni3+ existed in LiNi0.5Mn1.5O4, but most are Ni2+. For the XPS spectra of LiMn2O4 and LiNi0.5Mn1.5O4, the Mn2p3/2 binding energies are located at 642.2 and 643.05 eV, respectively. The 643.05 is very close to the special value of Mn4+, 643.2 eV, which indicate that there are still little Mn3+ existed in LiNi0.5Mn1.5O4 besides Mn4+.
     The FTIR and Raman spectroscopy are the effective means to analyze the molecular structure of the cathode materials. In this thesis, LiMn2O4 and LiNi0.5Mn1.5O4 have been studied via these two technologies. First, according to the intensity and number of bands in the Raman spectra of LiMn2O4 and LiNi0.5Mn1.5O4, we can find that LiMn2O4 has a relatively high conductivity. From the research of the two vibration modes, A1g and , we can know that the [MnO6] octahedron in LiMn2O4 got partial distorted for have more Mn3+. While in LiNi0.5Mn1.5O4, almost all Mn-ion are Mn4+ give rise to the sharp and independent A1g mode. According to the Raman spectra and previous reports, we discussed the cation ordering change along with the prepared temperatures of LiNi0.5Mn1.5O4. As the mode in Raman spectra of the sample synthesized at 700℃split into two, it can be concluded that there are Ni2+/Mn4+ cation ordering existed in this material, and it belongs to P4332 space group, while the other five belong to Fd3m. In addition, we calculated the force constant (f) and the average Mn(Ni)-O bond length ? of LiMn2O4 and LiNi0.5Mn1.5O4 cathode materials, and found that the former has smaller force constant and longer Mn(Ni)-O length. The FTIR study of LiMn2O4 and LiNi0.5Mn1.5O4 shows that LiNi0.5Mn1.5O4 has a lower symmetry of the crystal structure compare to LiMn2O4. Meanwhile, we also compared the FTIR spectra of LiNi0.5Mn1.5O4 samples prepared at 700 and 900℃, confirmed that the 700℃sample have a cation ordering structure, and its space group is P4332.
     The cyclic voltammetry of the first cycle and the charge-discharge curves of the initial five cycles for LiMn2O4 and LiNi0.5Mn1.5O4 cathode were given in this thesis. The cyclic voltammetry shows that the redox reactions of the two materials all occur in two steps during charge and discharge process. But LiNi0.5Mn1.5O4 has a higher voltage platform, close to 5.0 V. However, for this material, the shape and potential of the oxidation peak and reduction peak are very different; indicate that LiNi0.5Mn1.5O4 has a strong polarization and poor electrochemical performance. Through charge and discharge curves, we calculated the specific capacity and coulomb efficiency for the initial five cycles of the two materials. The results show that LiMn2O4 has a high and stable coulomb efficiency, higher than 99 % in all five cycles. While the coulomb efficiency of LiNi0.5Mn1.5O4 is very low, although increase with the number of cycles, 56.8 % for first cycle to 76.7 % for fifth cycle. After the initial five cycles, the capacity fade of LiMn2O4 and LiNi0.5Mn1.5O4 are 2.6 % and 4.8 %, respectively. The discharge capacities of the two cathode materials for the fifth cycle are 112.18 mAh g-1 and 103.05 mAh g-1, respectively.
引文
[1]汪继强,陈立泉,《新能源材料》,雷永泉主编,天津大学出版社,天津,2000
    [2]吴宇平,万春荣,姜长印等编著,《锂离子二次电池》,化学工业出版社,北京,2002
    [3] J. M. Taraseon,and M. Armand,Nature,2001,414:359
    [4] J. P. Gabano,Lithium Batteries,Academic Press,New York,1983
    [5] M. S. Whittingham,Science,1976,192:1126
    [6]吴宇平,戴晓兵,马军旗,程预江编著,《锂离子电池——应用与实践》,化学工业出版社,北京,2004:14
    [7] D. W. Murphy,F. J. Disalvo,J. N. Carides,et al,Mat. Res. Bull.,1978,13:1395
    [8] M. Mohri,et al,J. Power Sourees,1989,26:545
    [9] T. Nagaura,4th International Rechargeable Battery Seminar,Florida,1990
    [10] M. Yoshio , H. Tanaka, K. Tominaya, et al. Syntesis of LiCoO2 from cobalt-organic acid complex and its electrode behavior in a lithium secondary battery, J. Power Sources, 1992, 40:347-353
    [11] A. Rougier, P. Gravereau, C. Delmas. Optimization of composition of the Li1-xNi1+Xo2 electrode material: Structural, magnetic and electrochemical studies. J. Electrochem. Soc.,1996,143(4): 168-175
    [12] T. Ohzuku, M. Kitagawa, T. Hiral. Electrochemistry of manganese dioxide in lithium nonaqueous cell. J. Electrochem. Soc.,1990,137(3):769-775
    [13] M. M. Thackeray. Structural considerations of layered and spinel lithiated oxides for lithium ion battery [J], J. Electrochem. Soc.,1995, 142(8):2558-2563
    [14]刘业翔,胡国荣,禹筱元,锂离子电池研究与开发的新进展,电池,2002,32(5):269-273
    [15]高学平,杨汉西,孙世刚等编著,《绿色二次电池及其新体系研究进展》,吴锋主编,科学出版社,北京,2007: 260
    [16] J. N. Reimers, J. R. Dahn, Electrochemical and In Situ X-Ray Diffraction Studies of Lithium Intercalation in LixCoO2, J. Electrochem. Soc., (1992), 139, 2091
    [17] G. G. Auatucci, J. M. Tarascon, L. Klein, CoO2, the End Member of the LixCoO2Solid Solution, J. Electrochem. Soc., (1996), 143, 1114
    [18] K. Mizushima, P. C. Jones, J. B. Goodenough, LixCoO2 (0    [19] J. Molenda, Phys. Status Solidi B, 122, 591 (1984)
    [20] W. Li, J. C. Currie, Morphology Effects on the Electrochemical Performance of LiNi1xCoxO2, J. Electrochem. Soc., (1997), 144, 2773
    [21]赵煜娟,陈彦彬,杜翠薇,刘庆国,电源技术,2002,26:56
    [22] I. Saadoune, C. Delmas, J Solid State Chem. 1998, 136:8
    [23] M. Broussely,P. Biensan, B. Simon. Electrochem. Acta., 1999, 45:3
    [24] H. Arai, M. Tsuda,K. Saito, M. Hayashi, Y. Sakurai, J Electrochem. Soc. 2002,149:A401
    [25]黄祖飞.LiMnO2体系结构与性能的第一性原理研究[D]:[博士学位论文].长春:吉林大学材料科学与工程学院,2006.
    [26] G. X. Wang, P. Yao, S. Zhong, et al., Electrochemical study on orthorhombic LiMnO2 as cathode in rechargeable lithium batteries, Applied Electrochemistry,1999,29:232-235.
    [27] R. Chen, M. S. Whittingham, Cathodic Behavior of Alkali Manganese Oxides from Permanganate, J. Electrochem. Soc., (1997), 144, L64
    [28] Y.–II. Jang, B. Huang, Y.–M. Chiang, D. R. Sadoway, Stabilization of LiMnO2 in theγ-NaFeO2 Structure Type by LiAlO2 Addition, Electrochem. Solid-State Lett. (1998), 1, 13
    [29] B. Ammundsen, et al. in Proc. Int. Symp. Electrochem. Soc., 99-24, 57-67(ECS, Pennington, NJ, 2000)
    [30] A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries, J. Electrochem. Soc., (1997), 144, 1188
    [31] A. S. Anderson, J. O. Thomas. J Power Sources, 2001, 97-98:498-502
    [32] P. P. Prosini, D. Zane, M. Pasquali, Electrochim Acta. 2001,46:3517
    [33]施志聪,李晨,杨勇.电化学.2003,9:9
    [34] S. F. Yang, Y. N. Song, M. S. Whitingham, et al. Nanocomposite electrodes for advanced lithium batteries: The LiFePO4 cathode [A]. Materials ResearchSociety, 2002, 309-313
    [35] H. Huang, S. C. Yin, L. F. Nazar. Approaching theoretical capacity of LiFePO4 at room temperature at high rates, Electrochem. and Solid-State Lett.,2001,4(10): A170-A172
    [36] M. M. Thackaray, A, de Kock, W. I. F. David, Synthesis and structural characterization of defect spinels in the lithium-manganese-oxide system, Mater. Res. Bull,28(1993)1041-1049
    [37] S. G. Stewart, V. Srinivasan, J. Newman, Modeling the performance of lithium-ion batteries and capacitors during hybrid-electric-vehicle operation, J. Electrochem. Soc,155(9)(2008)A664-A671
    [38] N. Takami, H. Inagaki, T. Kishi, Y. Harada, Y. Fujita, K. Hoshina, Electrochemical kinetics and safety of 2-volt class Li-ion battery system using lithium titanium oxide anode, J. Electrochem. Soc, 156(2)(2009)A128-A132
    [39] Q. Liu, D. Mao, C. Chang, F. Huang, Phase conversion and morphology evolution during hydrothermal preparation of orthorhombic LiMnO2 nanorods for lithium ion battery application, J. Power Sources 173(2007)538-544
    [40] J. Molenda, M. Ziemnick, J. Marzec, W. Zajac, M. Molenda, M. Bucko, Electrochemical and high temperature physicochemical properties of orthorhombic LiMnO2, J. Power Sources 173(2007)707-711
    [41] M. M. Thackeray, Spinel electrodes for lithium batteries, J. Am. Ceram. Soc. 82(12)(1999)3347-3354
    [42] T. Matsushima, Deterioration estimation of lithium-ion cells in direct current power supply systems and characteristics of 400-Ah lithium-ion cells, J. Power Souces 189(2009)847-854
    [43] Y. Liu, X. Li, H. Guo, Z. Wang, Q. Hu, W. Peng, Y. Yang, Electrochemical performance ande capacity fading reason of LiMn2O4/graphite batteries stored at room temperature, J. Power Sources 189(2009)721-725
    [44] T. Doi, M. Inaba, H. Tsuchiya, S.-K. Jeong, Y. Iriyama, T. Abe, Z. Ogumi, Electrochemical AFM study of LiMn2O4 thin film electrodes exposed to elevated temperatures, J. Power Sources 180(2008)539-545
    [45] Yu. G. Mateyshina, U. Lafont, N.F. Uvarov, E.M. Kelder, Physical and electrochemical properties of LiFe0.5Mn1.5O4 spinel synthesized by differentmethods, Russ. J. Electrochem. 45(5)(2009)602-605
    [46] H. Shigemura, H. Sakaebe, H. Kageyama, H. Kobayashi, A. R. West, R. Kanno, S. Morimoto, S. Nasu, M. Tabuchi, Structure and electrochemical properties of LiFexMn2-xO4(0≤x≤0.5) spinel as 5V electrode material for lithium batteries, J. Electrochem. Soc. 148(7)(2001)A736-760
    [47] T.-T. Fang, H.-Y. Chung, Reassessment of the electronic-conduction behavior above Verwey-like transiton of Ni2+- and Al3+-doped LiMn2O4, J. Am.Ceram.Soc.91(1)(2008)342-345
    [48] S. Patoux, L. Daniel, C. Bourbon, H. Lignier, C. Pagano, F. Le Cras, S. Jouanneau, S. Martinet, High voltage spinel oxides for Li-ion batteries: From the material research to the application, J. Power Sources 189(2009)344-352
    [49] N.-E. Sung, Y.-K. Sun, S.-K. Kim, M.-S. Jang, In situ XAFS study of the effect of dopants in Li1+xN(i1-3x)/2Mn(3+x)/2O4(0≤x≤1/3), a Li-ion battery cathode material, J. Electrochem. Soc.155(11)(2008)A845-A850
    [50] K. M. Shaju, P. G. Bruce, Nano-LiNi0.5Mn1.5O4 spinel: a high power electrode for Li-ion batteries, Dalton Trans. 40(2008)5471-5475
    [51] J. Liu, A. Mantiram, Understanding the improvement in the electrochemical properties of surface modified 5V LiMn1.42Ni0.42Co0.16O4 spinel cathodes in lithium-ion cells, Chem. Mater. 21(8)(2009)1695-1707
    [52] J.-W. Lee, S.-M. Park, H.-J. Kim, Effect of LiNi1/2Mn1/2O2 coating on the electrochemical performance of Li-Mn spinel, Electrochem. Comm. 11(2009)1101-1104
    [53] X. Li, Y. Xu, Spinel, LiMn2O4 active material with high capacity retention , Appl. Surf. Sci.253(2007)8592-8596
    [54] J. M. Tarascon, E. Wang, F. K. Shokoohi, W. R. Mckinnon, S. Colson, J. Electrochem. Soc. 138(1991)2859-2864
    [55] K. Amine, H. Tukamoto, H.Yasuda, Y. Fujita, J. Electrochem. Soc. 143(1996) 1607-1613
    [56] K. Amine , H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 68(1997)604-608
    [57] Q. Zhong, A. Bonakdarpour, M. Zhang, Y. Gao, J. R. Dahn, J. Electrochem. Soc.144(1997)205-213
    [58]徐如人,无机合成化学.高等教育出版社, 1991
    [59]林建华,荆西平等,无机材料化学,北京大学出版社,2005
    [60]晏于模,王魁香,近代物理实验.吉林大学出版社, 1995
    [61] E. Levi, M.D. Levi, G. Salitra, D. Aurbach, In situ XRD of Li deintercalation from two different types of LiMn2O4 spinel, Solid State Ionics 126(1999) 109-119
    [62] C. Masquelier,M. Tabuchi.,K. Ado., et al, Chemical and magnetic characterization of spinel materials in the LiMn2O4–Li2Mn4O9–Li4Mn5O12System. , J Solid State Chem. 1996;123:255–66
    [63] X. Q. Yang, X. Sun, M. Balasubramanian, et al. ,The population of oxygen vacancies in Li1+yMn2–yO4-delta type cathode materials—the primary factor of temperature dependent structural changes. Electrochem. Solid State Letter 2001;4:A117–20.
    [64] G. T. K. Fey, Y. D. Cho, T. P. Kumar, A TEA-starch combustion method for the synthesis of fine-particulate LiMn2O4.Mater. Chem. Phys 2004;87:275-84
    [65] P. Piszora, J. Darul, W. Nowicki, E. Wolska. Synchrotron X-ray powder diffraction studies on the phase transitions in LiMn2O4. J Alloys Compd 2004;362:231–5
    [66] H. P. Klug, L. E. Alexander. X-ray diffraction procedures for polycrystalline and amorphous materials. New York:Wiley;1974
    [67] N. Audebrand, J. P. Auffrédic, D. Lou?r. An X-ray powder diffraction study of the microstructure and growth kinetics of nanoscale crystallites obtained from hydrated cerium oxides. Chem Mater 2000;12:1791–9
    [68] L. G. Teoh, J. Shieh, W. H. Lai, M. H. Hon. Effects of mesoporous structure on grain growth of nanostructured tungsten oxide. J Mater Res 2004;19:2687–93
    [69] S. W. Oh, S.H. Park, J.H. Kim, Y.C. Bae, Y.K. Sun, J. Power Sources 157 (2006) 464
    [70] S. Nieto, S.B. Majumder, R.S. Katiyar, J. Power Sources 136 (2004) 88
    [71] Qiming Zhong, Arman Bonakdarpour, Meijie Zhang , Yuan Gao, and J. R.Dahn, Synthesis and Electrochemistry of LiNixMn2-xO4. J. Electrochemica Soc. 1997, 144 :205
    [72] Y. S. Lee, Y. K. Sun, S. Ota, T. Miyashita, M. Yoshio, Preparation and characterization of nano-crystalline LiNi0.5Mn1.5O4 for 5V cathode material bycomposite carbonate process, Electrochemistry Communications, 2002, 4: 989-994
    [73] Muharrem Kunduraci,F. Jafar,Al-Sharab,G. Glenn. Amatucci,High-Power Nanostructured LiMn2-xNixO4 High-Voltage Lithium-Ion Battery Electrode Materials: Electrochemical Impact of Electronic Conductivity and Morphology,Chem. Mater,2006,18, 3585-3592
    [74]杨军,解晶莹,王久林,《化学电源测试原理与技术》,化学工业出版社,2006:18
    [75] Y. K. Zhou,J. Huang,CH. M. Shen,et al. Materials Science and Engineering,2002,A335:260
    [76] G. P. Yin,Y. ZH. Gao, P. F. Shi,et al. Material Chemistry and Physics,2003,80:94
    [77] S. H. Choi,O. A. Shlyakhtin,J. Kim,Y. S. Yoon. J Power Souces,2005,140:355
    [78] M. Herstedt,D. P. Abraham,J. B. Kerr,et al. Electrochimica Acta,2004,49:5097
    [79] K. S. Kim, N. Winograd, Surf. Sci, 625, 43 (1974)
    [80] Hansan Liu, Jie Li, Zhongru Zhang, Zhengliang Gong, Yong Yang, Electrochimica Acta, 1151, 49 (2004)
    [81] W. Branford, M. A. Green, D. A. Neumann, Chem. Mater. 14(2002)1649
    [82] K. M. Shaju, G. V. Subba Rao, B. V. R. Chowdari, Solid State Ionics, 69, 152-153 (2002)
    [83] J.B. Goodenough, A. Manthiram, B. Wnetrzewski, J. Power Sources 43–44 (1993) 269
    [84] J. Molenda, J. Marzec, K.′Swierczek, D. Pa?ubiak, W. Ojczyk, M. Ziemnicki, Solid State Ionics 175 (2004) 297
    [85] C.M. Julien, M. Massort, Mater. Sci. Eng. B 97 (2003) 217
    [86] P. Strobel, A. Ibarra Palos, M. Anne, C. Poinsignon, A. Crisci, Solid State Sci. 5 (2003) 1009
    [87] M. Vijayakumar, S. Selvasekarapandian, K. Nakamura, T. Kanashiro, R. Kesavamoorthy, Solid State Ionics 167 (2004) 41
    [88] R. Alcantara, M. Jaraba, P. Lavela, J.L. Trado, E. Zhecheva, R. Stoyanova, Chem.Mater. 16 (2004) 1573
    [89] M. Kunduraci, J.F. Al Sharab, G.G. Amatucci, Chem. Mater. 18 (2006) 3585
    [90] G. Yuan, J.N Reimers, J.R. Dahn, Phys. Rev. B 54 (1996) 3878
    [91] K.A. Striebel, A. Rougier, C.R. Horne, R.P. Reade, E.J. Cairns, J. Electrochem. Soc. 146 (1999) 4339
    [92] G.T.K. Fey, C.Z. Lu, T.P. Kumar, J. Power Sources 115 (2003) 332

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700