两组四种DNA-蛋白质靶向治疗艾滋病的复合药物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
HIV病毒是艾滋病的根本原因。它在艾滋病人体内以两种方式存在:既存在于被感染的CD4+细胞中,又同时以游离形式存在于血液循环中。清除这两种方式的HIV病毒,将从根本上治愈艾滋病。历史上,曾有过CD4-PE40(绿脓杆菌毒素Ⅱ-Ⅲ区段)的基因工程设计,试图达到上述目的,但鉴于大肠杆菌表达的CD4蛋白及作为人体异源蛋白的PE40具有强烈的免疫原性而归于失败。因此第一代针对gp120的免疫毒素(immunotoxin),CD4-PE40缺少应用前景,有必要加以改进。本课题采用全新的策略,力求既要发挥毒素基因的生物学功能,又要摒弃其免疫原性等副作用。具体的策略如下:以由HIV/SIV受体/辅助受体与DNA结合蛋白组成的融合蛋白作为非病毒载体,所形成的非病毒载体可以与对细胞有强烈杀伤作用的PEIIImut(绿脓毒素第三区段的突变基因片段)的表达型重组体形成DNA-protein复合物并将其导入受HIV感染的细胞,毒素基因的表达型重组体分为两种,一种以CMV为启动子的非限制性表达重组体;另一种是以HIV 5’LTR为启动子的限制性表达重组体,该启动子可以被感染细胞中的TAT蛋白活化,从而诱导PEIIImut在导入细胞中的表达,杀灭该被感染的细胞,当毒素基因被错误地导入未被感染的细胞中的时候,由于该细胞中没有TAT蛋白,不能诱导毒素基因的表达,因此该重组体的表达对正常细胞没有杀伤作用,第二种重组体是一种双开关设计,可以保证其药物的安全性;第二,作为非病毒载体的融合蛋白与毒素基因重组体形成的复合物可以中和失活血液中游离的HIV病毒,防治病毒的再次感染;第三,融合蛋白与毒素基因重组体形成的复合物可以和新产生的位于细胞膜上的gp120相结合从而阻止被感染细胞和正常细胞之间的融合。这一设计,既避免了毒素蛋白的免疫原性,也避免了对任何其它类型的正常细胞的杀伤作用。
     根据文献报道,本课题选取HIV的受体CD4分子和辅助受体CCR5与CXCR4与gp120特异结合的主要结构域,即CD4的V1区(100个氨基酸,第1位-第100位)、CXCR4的第二个胞外环区(XE,27个氨基酸)与CCR5的N末端(RN,30个氨基酸)的组合作为靶向部分。同时,还从GenBank中钓取编码一种人DNA结合蛋白(SON)的序列,选取其中一段编码72个氨基酸的DNA序列(788-859位),该序列富含32个碱性氨基酸,与前述的靶向部分组成一组新型的可以编码融合蛋白的基因,即XRS(由XE,RN,SON三个功能域组成),CD4-RN-SON(由CD4V1,RN,SON三个功能域组成),CD4-XE-RN-SON(由CD4V1,XE,RN,SON四个功能域组成),CD4V1SON(由CD4V1,SON两个功能域组成)。该组融合蛋白的C末端部分是富含碱性氨基酸的SON的多肽,富有正电荷,可与富有负电荷的PEⅢmut表达型DNA重组体形成正-负电的结合。N末端部分将携带整个DNA-蛋白质复合物与受HIV感染的细胞表面的gp120结合,HIV/SIV的配体与非病毒载体上的gp120的受体结合,又鉴于细胞的内化功能,进而使整个复合物进入该细胞。PEⅢmut蛋白的表达可以杀灭受HIV感染的细胞。与此同时,融合蛋白的N末端部分CD4V1或XR还将结合在血循环中存在的游离的HIV病毒,使之因中和而失去感染力。
     将上述目的基因克隆到温度控制型表达载体CW111中,获得一组表达型重组体,这组表达型重组体只有XRS、CD4V1SON获得了很好的表达。通过温度诱导,对XRS高表达株进行大规模培养,提取包涵体,经(?)KTA系统纯化,大量制备目的蛋白。通过凝胶成像扫描系统分析,结果显示XRS蛋白的表达量占整个菌体蛋白的13%,目的蛋白CD4V1SON占细胞总蛋白的35%。同时本研究对XRS蛋白进行了理化性质的分析,波谱扫描分析了XRS蛋白的光谱特征;通过质谱技术测定了XRS蛋白的分子量为15703.44 Dalton;氨基酸序列分析N端15个氨基酸为MNVSEADDRYIXDRF,与相应的DNA编码一致;通过高压液相测定的蛋白纯度为93.18%,通过毛细管电泳测定的该蛋白的等电点为10.99。
     构建了表达突变的强毒绿脓杆菌毒素第三功能结构域的重组体(PEⅢmut)作为杀伤部分,毒素基因的表达型重组体分为两种,一种以CMV为启动子的非限制性表达重组体pCMV-PEⅢ,这种重组体在导向作用下主要进入受HIV/SIV感染的细胞,其表达可以杀伤这类细胞。但极少数这样的重组体可能进入未受感染的正常细胞并表达出毒素蛋白质而杀灭正常细胞,造成毒副作用。这是因为在HIV/SIV的繁殖过程中,将有少数gp120的脱落,其中的极少数将可能粘贴在正常细胞的表面,在这种情况下,pCMV-PEⅢ有可能被非病毒载体误导入正常细胞。但是这种情况属于极少数的例外,因此,其毒副作用将是轻微的;另一种是以HIV5’LTR为启动子的限制性表达重组体pYL-PEⅢ,对于被HIV感染的细胞,大量TAT蛋白的产生可以激活HIV的HIV 5’LTR中的启动子,从而启动PEⅢmut的表达,进而杀灭该受感染细胞。对于为受感染的细胞,因无tat蛋白而不能驱动5’LTR中的启动子,PEⅢmut不表达,则不杀伤正常细胞,从而避免因正常细胞被毒素基因的错误导入而引起的伤害。由于HIV 5’LTR启动的毒素基因表达较低,本研究在pYL-PEⅢ毒素基因前加入Intron序列构建构建成pDYP-1质粒,以增强毒素基因在细胞内的表达。
     将纯化所得的目的蛋白CD4V1SON、XRS分别或单独与毒素基因的表达型重组体在体外进行结合,形成DNA-蛋白质复合物(DNA-Protein complex),即CD4V1SON/pDYP-1、XRSON/pDYP-1,同时与由pCMV-PEⅢmut与CD4V1SON、XRSON形成的复合物即CD4V1SON/pCMV-PEⅢmut、XRSON/pCMV-PEⅢmut以及XRSON+CD4V1SON/pDYP-1、XRSON+CD4V1SON/pCMV-PEⅢmut进行了比较。鉴于一般而言药物对HIV与SIV(猴免疫缺陷病毒)等效性,细胞活性试验是以SIV为对象进行的。用上述复合物处理被SIV感染的CEMX-174细胞,观察上述不同剂量的(1、2、4μg,以DNA计)复合物在单独或联合(如CD4V1SON/pDYP-1与XRSON/pDYP-1、CD4V1SON/pCMV-PEⅢmut与XRSON/pCMV-PEⅢmut)应用时对被感染的CEMX-174细胞的杀伤作用,对照组为不加任何处理因素的被SIV感染的CEMX-174细胞。同时还观察了上述复合物在单独或联合使用时对SIV感染正常细胞时的中和作用,对照组为SIV加正常的CEMX-174细胞。另一对照为单独使用非病毒载体CD4V1SON,XRSON;单独使用DNA重组体/pCMV-PEⅢmut,pDYP-1。
     结果显示:(1)杀伤试验:全部对照组样品对受
     感染细胞均
     无杀伤作用。以DNA计,所使用1、2、4μg DNA剂量的XRS/pDYP-1对CEMX-174/SIV细胞的杀伤率约为27.91%、37.21%、50.54%,病毒滴度分别为1:320、1:320、1:160;三种剂量的XRS/pCMV-PEⅢmut对CEMX-174/SIV细胞的杀伤率约分别为18.45%、39.54%、68.53%,病毒滴度为1:320、1:320、1:80;三种剂量的XRS+CD4V1SON/pCMV-PEⅢmut对感染细胞的杀伤率为:12.97%、24.36%、43.64%,病毒滴度分别为1:80、1:80、1:40;三种剂量的XRS+CD4V1SON/pDYP-1对感染细胞的伤率分别为18.67%、28.47%和49.95%,病毒滴度分别为1:80、1:80、1:40。上述各种组合都表现出一定的剂量依赖关系。对照组的滴度为1:1280。
     (2)中和试验:2.3、4.6、9.2μg剂量的XRSON蛋白对SIV的保护作用为2.4%、10.33%、20.22%,病毒滴度分别为1:1280、1:1280、1:320;2.3、4.6、9.2μg剂量的XRSON+CD4V1SON蛋白对SIV的保护作用为-7.4%、4.8%、18.75%,病毒滴度分别为1:1280、1:320、1:80。1、2、4μgDNA剂量的XRSON/pDYP-1对SIV的保护作用为-4.3%、3.1%、10.33%,病毒滴度分别为1:1280、1:640、1:160。1、2、4μg DNA剂量的XRSON/pCMV-PEⅢmut对SIV的保护作用为0.5%、2.3%、7.3%,病毒滴度分别为1:320、1:80、1:20。1、2、4μg DNA剂量的XRSON+CD4V1SON/pDYP-1对SIV的保护作用为-6.4%、15.89%、22.5%,病毒滴度分别为1:1280、1:640、1:80。1、2、4μg DNA剂量的XRSON+CD4V1SON/pCMV-PEⅢmut保护作用为-2.3%、3.1%、21.94%,滴度分别为1:1280、1:640、1:80。上述各组药物与空白对照组相比,存活细胞数显著增多,即被SIV感染的细胞数显著减少。同一种药物对SIV的中和作用,具有剂量依赖关系。
     细胞试验表明,本研究所设计的具有靶向性的融合蛋白可以有效地将毒素编码蛋白的基因的重组体导入被SIV感染的细胞中,并能表达出突变型毒素蛋白PEⅢmut。该毒素可以有效地杀伤被SIV感染的细胞。同时,本研究的数据还显示,靶向融合蛋白可以有效地中和游离状态的SIV,使被中和的病毒失去感染能力。需要强调的是中和作用和杀伤作用不是完全可分的,中和作用实际上既有靶向蛋白对病毒的中和作用,有些病毒仍然可以感染细胞。这些感染细胞仍然可以被蛋白-DNA复合物杀伤,但仍以中和作用为主。同样,在杀伤试验中,也有蛋白-DNA复合物对病毒的中和作用,但是以杀伤作用为主。
     为了了解毒素基因重组体进入感染细胞的表达情况,需要一种直观而简便的观察方法。本课题利用重组技术将红色和绿色两种荧光蛋白基因替换毒素基因重组体中的毒素基因,构建了HIV 5’LTR启动的荧光蛋白基因重组体。其与靶向蛋白结合制成新的DNA-蛋白质复合物。希望通过观察荧光蛋白的表达情况来了解复合物中毒素基因表达。但是由于CEMX-174是一种悬浮细胞,这种细胞体积比较小,而且被HIV感染后细胞比较脆弱,因此这种转染难于观察。我们以荧光素酶基因代替荧光蛋白基因购见重组体并转染293细胞收到了很好的结果,其中贴壁细胞的转染结果明显好于悬浮细胞CEMX-174。表明启动子能够启动其下游的基因。同时我们将含有毒素基因的重组体通过脂质体转入到CEMX-174细胞中,流式细胞仪观察发现CMV启动的毒素基因的表达可以使被感染细胞凋亡,但是HIV5’LTR为启动子的组对细胞没有凋亡作用。这一结果说明,在CMV为启动子下,毒素基因得以表达,且强烈杀伤细胞。而HIV 5’LTR在受感染的细胞内不能启动毒素基因表达,因而毒素质粒对细胞无杀伤作用,以上两个试验表明毒素基因对细胞具有凋亡作用,但是HIV 5’LTR为启动子的毒素基因重组体只有在TAT蛋白的激活下才能发挥作用,在无TAT的作用下,即使5’HIV 5’LTR为启动子的毒素基因重组体由于误贴标签被错误地导入正常细胞,毒素基因也不表达,这样就可以实现双开关控制,保证药物的安全性。
     本研究通过AKTA纯化的两种蛋白主要采用了反相柱和离子交换柱,反向柱纯化首先去掉了大量的变性剂,收集到的样品经冻干后很容易去掉有机溶剂乙睛。确定目的蛋白反向柱纯化在30%左右可以收集到目的峰,这样就可以尽量去除一些杂蛋白,有利于第二步阳离子交换柱纯化。通过280多次的小量摸索,尝试了多种离子柱、金属离子螯合柱、疏水柱以及分子筛等多种柱子,同时对各种缓冲系统和不同的pH值进行的探索,我们逐步探索出了一条纯化XRS,CD4V1SON蛋白的技术路线。收集的蛋白HPLC测定纯度达93.18%,基本达到了动物试验的要求。
     由于动物试验需要大量的目的蛋白和毒素基因重组体,我们对目的蛋白和毒素基因重组体进行了大规模发酵和纯化,摸索出了蛋白和重组体大规模发酵和纯化的工艺以及各种影响因素。掌握了蛋白发酵和诱导表达所需要的条件,这些条件的获得为工业生产提供了重要的依据。毒素基因重组体的纯化主要采用了离子交换柱层析技术。探索出了一条快速、非有机的从细菌中提取高质量质粒DNA的方法。
     目前动物试验的准备工作正在进行,这种药物在动物模型中的作用如何还需要作进一步的探索。但本研究为抗HIV/SIV提供了一种新途径。根据该设计原理,对编码靶向蛋白的基因加以变换,类似的方案还可以用于癌症、自身免疫性疾病等的治疗。
HIV is the unique pathogen of AIDS. There are two existing forms of HIV virus in AIDS patients: one existing in the infected CD4+ cells and another in the blood circulation as free HIV virus. AIDS patients can be cured if such two forms of HIV virus are cleared away. Historically, there was a engineered design regarding CD4-PE40 (Domain II-III of Pseudomonas aeruginosa, exotoxin) which was used to reach this aim [1-15]. But due to the very strong immunogenicity of CD4-PE40 protein resulted from engineered E.coli and PE40 as heteroprotein , this attempt leaded to failure. Yet as first-generation IT (immunotoxin) targeted to gp120, CD4-PE40 (chimeric immunotoxin using CD4 and enzymatic domains of Pseudomonas exotoxin A), showed limited promise in initial clinical testing, highlighting the need for improvement. [16]. The new strategy was utilized to both exert function of Pseudomonas exotoxin A and avoid side effect ,such as immunogenicity of heteroprotein . Detailed strategy was as follows: Fusion proteins composed of receptor and coreceptor and DNA-binding Protein were used as noviral carrier which can combine with PEIIImut expression recombinant to form protein-DNA complexes and transect PEIIImut DNA recombinant into cells infected by HIV. There are two kinds of toxin gene recombinant. One is unrestricted recombinant pCMV-PEIIImut which uses CMV as promotor. Another is restricted recombinant pYL-PEIIImut and pDYP-1 (Domain III mutant of Pseudomonas aeruginosa exotoxin) which uses HIV-5'LTR as promotor. PEIIImut can be activated by TAR protein which exists in cells infected by HIV virus because promotor of PEIIImut DNA recombinant is 5'LTR. PEIII mutant protein expression can kill the cells infected by HIV in a targeting way. When PEIIImut DNA recombinants were mis-transfected into normal cells, they can't be expressed due to TAT protein absence in normal cells. The safety can be ensured by dual-key control. In the meantime, the N-terminal part of the fusion protein will also combine the free HIV virus existing in the blood stream, making it lose infectivity because of neutralization. Thirdly, this complexes can prevent cell-cell fusion by binding to gp120 on the surface of infected cells. Such a design could avoid the immunogenicity and cell toxicity to kill any other kind of unifected cells.The reported key binding regions of CD4, CXCR4 and CCR5 used as receptor and coreceptor by HIV are V1 domain of CD4 containing 100 amino acid, the second extracellular loop of CXCR4 containing 27 amino acids and the N terminal region of CCR5 containing 30 amino acids as targeting protein. DNA-binding protein, SON spanning 72 amino acids which is rich in the positive amino acids, was chosen. The targeting protein and the DNA-binding protein were engineered to be fusion proteins, shch as XRSON(composed of XE-RN-SON), CD4Vl-RN-SON(composed of CD4V1-RN-SON), CD4V1-XE-RN-SON(composed of CD4V1-XE-RN-SON), CD4V1SON(composed of CD4V1-SON). N-terminal of Fusion proteins was the receptor or coreceptors of HIV, such as CD4, CXCR4 and CCR5 that can bind Env gp120 molecule on the surface of infected cells by HIV and the primary free HIV virus. C-terminal was DNA-binding peptide from SON gene which is rich in positive amino acids and binds PEⅢmut DNA recombinant via charge interaction. N-terminal can carry the whole DNA-protein complex into cells infected by HIV. PEⅢmut DNA recombinant plasmid can express PEⅢprotein which can kill the cells infected by HIV. In the meantime, receptor or coreceptors of HIV can bind the Env gp 120 of free HIV virus in the blood stream, making virus lose infectivity by neutralization.
     Coding fusion genes were inserted into expression vector, pCW111 whose promoter is controlled by temperature. Only XRSON and CD4V1 SON were expressed well. After the induction and harvest of the engineered bacteria, the fusion proteins were isolated and purified by AKTA. The expression rate of fusion protein XRSON was 13%. The expression rate of CD4V1SON was 35%. Physiochemical property of XRS was identified. High-resolution MALD-TOF evaluation revealed that the molecular weight of XRS was 15703.44.15. Amino acid sequencing of N-terminal of XRSON was MNVSEADDRYIXDRE Capillary electrophoresis revealed that the Isolectric Point of XRS was 10.99. The constitutes of amino acid of XRS protein was the same as design. Purity of XRS revealed by HPLC was 93.18%.
     Two kinds of recombinants (pCMV-PEⅢmut and pDYP-1,) expressing the mutant format of domainⅢof Pseudomonas aeruginosa exotoxin were used to kill cells infected by HIV/SIV. Their promoters are CMV promoter as unrestricted recombinant and HIV-1 5'LTR as restricted recombinant, respectively. The tat protein expression in infected cells by HIV can activate 5'LTR promoter, so that the toxin gene PEⅢmut will be especially expressed in cells infected, Though pDYP-1, recombinants was sent into in normal cells, PEⅢmut protein will not be expressed without the existence of tat protein. Cells will not be killed accordingly. To enhance tat expression level in infected cells, 5'LTR-Intron-PEⅢmut recombinant pDYP-1 were constructed by inserting IntronⅡsequence under stream of 5'LTR sequence. DNA-protein complexes as drugs were formed by mixing fusion protein XRS with recombinants (pCMV-PEⅢand pDYP-1, respectively).
     DNA-protein complexes were formed, such as CD4V1SON/pDYP-1、XRSON/pDYP-1 which were compared with CD4V1SON/pCMV-PEⅢmut、XRSON/pCMV-PEⅢmut, XRSON+CD4V1SON/pDYP-1、XRSON+CD4V1SON /pCMV-PEⅢmut after toxin DNA recombinants, CD4V1 and XRS were purified. Cell activity experiment had been done with SIV in terms of the similar relationship of the HIV and SIV(simian immunodeficiency virus )in biological behavior. The killing effects of these complexes on the cells infected by SIV were observed respectively and combinationally after CEMX-174 cells was treated with varied doses of complexes(1, 2, 4μg, calculated in DNA). cells in the control group were uninfected by HIV. The neutralizing effects of the complexes on the free SIV were observed respectively and combinationally after CEMX-174 cells was treated with varied doses of complexes(1, 2, 4μg, calculated in DNA) for 48 hours. The normal ceils were mixed with SIV virus as contral. After 7 days, The neutralizing effects of the complexes were significant.
     The results showed that the killing rates of the complexes in single and combined manner in different dosages(1, 2, 4μg, calculated in DNA) were as follows: the killing rates of XRS/pDYP-1 were 27.91%、37.21%、50.54%, respectively; the killing rate of control cells infected by SIV without complex was 0. Virus titers were 1: 320、1: 320、1: 160, respectively; the titer of control cells infected by SIV without complex was 1: 1280. XRS/pCMV-PEⅢmut were 12.97%、24.36%、43.64%, respectively; the killing rate of control was 0. Virus titers were 1: 320、1: 320、1: 80, respectively; the titer of the control was 1: 1280. XRS+CD4V1/pCMV-PEⅢmut were 12.97%、24.36%、43.64%, respectively; the killing rate of the control was 0. Virus titers were 1: 80、1: 80、1: 40 respectively; the titer of the control was 1: 1280. XRS+CD4V1/pDYP-1 were 18.67%、28.47%and 49.95%, respectively; the killing rate of the control was 0. Virus titers were 1: 80、1: 80、1: 40, respectively; the titer of the control was 1: 1280. The cytotoxicity is dependent on the concentration of complex.
     On the other hand, the protecting effects of the complexes on the host cells in neutralization assay are as follows: the rates in XRSON (2.3, 4.6, 9.2ug) were 2.4%、10.33%、20.22%, respectively; the protecting rate of the control was zero. Virus titers were 1: 1280、1: 1280、1: 320, respectively; the titer of the control was 1: 1280. XRSON +CD4V1 were-7.4%、4.8%、18.75%, respectively; the protecting rate of the control was zero. Virus titers were 1: 1280、1: 320、1: 80, respectively; the titer of control was 1: 1280. XRSON/pDYP-1 (1, 2, 4μg, calculated in DNA) were-4.3%、3.1%、10.33%, respectively; the protecting rate of control was 0. Virus titers were 1: 1280、1: 640、1: 160, respectively; the titer of control was 1: 1280. XRSON/pCMV-PEⅢmut were 0.5%、2.3%、7.3%, respectively; the protecting rate of control was 0. Virus titers were 1: 320、1: 80、1: 20, respectively; the titer of control was 1: 1280. XRSON+CD4V1/pDYP-1 were-6.4%、15.89%、22.5%, respectively; the protecting rate of the control was 0. Virus titers were 1: 1280、1: 640、1: 80, respectively; the titer of control was 1: 1280. XRSON+CD4V1/pCMV-PEⅢmut were-2.3%、3.1%、21.94%, respectively; Protecting rate of the control was 0. Virus titers were 1: 1280、1: 640、1: 80, respectively; the titer of the control was 1: 1280. The protection is dependent on the concentration of drugs.
     According to the above results, we concluded that the recombinants can effectively express the target toxin protein which could kill the cells infected by SIV after the fusion proteins effectively mediate the recombinants into the target cells. Moreover, the data showed that the fusion proteins could neutralize the free SIV and lead to the markedly decrease of the infectivity of SIV in different treatment groups. We must emphasize the fact that the killing effect of the complexes didn't absolutely separate from neutralizing effects of the complexes. Some cells can be infected by SIV virus in the neutralizing effect of the complexes. But the neutralizing effect of the complexes is significant. To the contrary, the neutralizing effect of the complexes involves in the killing effect. But the killing effect is significant.
     To understand the expression of toxin gene in infected cells, two new recombinants was constructed by replacing the toxin gene with the red and green fluorescence protein gene in pCMV-PEⅢmut plasmid and pDYP-1 plasmid. The recombinant and the nonviral vector targeting protein were mixed to produce new complexs. As CEMX-174 cells is so small and tender a kind of suspended cells that the fluorescence protein is difficult to be deserved. One new recombinants was constructed by replacing the toxin gene with the luciferase gene in pCMV-PEⅢmut plasmid and was transfected into 293 cells and CEMX-174 cells. Transfection efficiency is enhanced significantly in 293 cells than in CEMX-174 cells. Those datas elucidated that toxin gene can be activated under the stream of CMV and LTR promoter. In the mean time, FACS showed that PEⅢmut can trigger apoptosis under the stream of CMV when injected into CEMX-174 cells through lipofectAmine TM Reagent. But PEⅢmut can't trigger apoptosis under the stream of LTR promoter when injected into CEMX-174 cells through lipofectAmine TM, resulting from the absence of TAR. When toxin gene recombinants were transfected into normal cells, the effect of killing was significant in the group of pCMV-PEⅢmut plasmid, pDYP-1 plasmid group did't have such effect. Such two Test above showed that the effect of toxin gene under the stream of LTR promoter should be activated by TAR protein. When PEⅢmut DNA recombinants were mis-transfected into normal cells, they can't be expressed due to TAT protein absence in normal cells. The safety can be ensured by dual-key control.
     Reverse phase column and cation exchange chromatography were selected to purify two kinds of proteins. Proteins purified was natured by dialysis after freeze-dry. Interest protein was obtained at 30%B buffer during Reverse phase column purification. Other proteins were cleaned away. Probational columns involve Gel column, Ion column, affinity column and so on. Some buffers and pH range were used. We establish a successful process to purify XRS and CD4V1SON after 280 times tryout. HPLC mensuration showed that purify of obtained protein is 93.18%. As a result of a large needs of target protein and toxin gene recombinants, they were fermented and purified in large-scale. The process and factors of large-scale fermentation and production were obtained. Large-scale production in industry is possible on the basis of all techniques. Anion exchange chromatographys was selected to purify toxin gene recombinants. The process of rapid purification of toxin gene recombinants was obtained.
     We are ready for animal test. Effects of protein-DNA-complexes in animal model are exploring further. Such kind of protocols used in this study is a novel strategy for AIDS therapy, and it is very likely to be extended for the efficient therapy of other diseases only if the targeting protein as the nonviral vector could targeted to other suitable receptor on the cell surface of cancer or autoimmune diseases.
引文
1. Van Oijen MG, Preijers FW. Rationale for the use of immunotoxins in the treatment of HIV-infected humans. J Drug Target. 1998; 5(2): 75-91. Review.
    2. Pincus SH Therapeutic potential of anti-HIV immunotoxins. Antiviral Res. 1996 Dec;33(1): 1-9.
    3. Zhao X, Zhang M, Li H, Lu S. [Construction and expression of the gene CD4V1V2-PE40, coding for a molecular targeted protein against AIDS]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 1995 Aug;17(4): 248-52. Chinese.
    4. Davio SR, Kienle KM, Collins BE. Interdomain interactions in the chimeric protein toxin sCD4(178)-PE40: a differential scanning calorimetry (DSC) study. Pharm Res. 1995 May;12(5):642-8.
    5. Fang H, Pincus SH. Unique insertion sequence and pattern of CD4 expression in variants selected with immunotoxins from human immunodeficiency virus type 1-infected T cells. J Virol. 1995 Jan;69(1):75-81.
    6. Davey RT Jr, Boenning CM, Use of recombinant soluble CD4 Pseudomonas exotoxin, a novel immunotoxin, for treatment of persons infected with human immunodeficiency virus. J Infect Dis. 1994 Nov;170(5):1180-8.
    7. Ramachandran RV, Katzenstein DA, Wood R, Batts DH, Merigan TC. Failure of short-term CD4-PE40 infusions to reduce virus load in human immunodeficiency virus-infected persons. J Infect Dis. 1994 Oct;170(4):1009-13.
    8. Wells PA, Beiderman B, Garlick RL. Large-scale immunoaffinity purification of recombinant soluble human antigen CD4 from Escherichia coli cells. Biotechnol Appl Biochem. 1993 Dec;18(Pt3):341-57.
    9. Winters MA, Merigan TC. Continuous presence of CD4-PE40 is required for antiviral activity against single-passage HIV isolates and infected peripheral blood mononuclear cells. AIDS Res Hum Retroviruses. 1993 Nov;9(11):1091-6.
    10.Verhoef J, Gekker G, Erice A. Quantitative assay for testing susceptibility of HIV isolates to zidovudine and sCD4(178)-PE40. Eur J Clin Microbiol Infect Dis. 1992 Aug;11(8):715-21.
    11. Ashorn P, Moss B, Berger EA. Activity of CD4-Pseudomonas exotoxin against cells expressing diverse forms of the HIV and SIV envelope glycoproteins. J Acquir Immune Defic Syndr. 1992;5(1):70-7.
    12. Rubino KL, Tarpley WG, Nicholas JA.Effects of a soluble CD4 and CD4-Pseudomonas exotoxin A chimeric protein on human peripheral blood lymphocytes: lymphocyte activation and anti-HIV activity in vitro. Antiviral Res. 1991 Oct;16(3):267-79.
    13. Pitts TW, Bohanon M J, Leach MF. Soluble CD4-PE40 is cytotoxic for a transfected mammalian cell line stably expressing the envelope protein of human immunodeficiency virus(HIV-1), and cytotoxicity is variably inhibited by the sera of HIV-1-infected patients. AIDS Res Hum Retroviruses. 1991 Sep;7(9):741-50.
    14. Ashorn P, Englund G, Martin MA. Anti-HIV activity of CD4-Pseudomonas exotoxin on infected primary human lymphocytes and monocyte/macrophages. J Infect Dis. 1991 Apr;163(4):703-9.
    15. Ashorn P, Moss B, Weinstein JN.Elimination of infectious human immunodeficiency virus from human T-cell cultures by synergistic action of CD4-Pseudomonas exotoxin and reverse transcriptase inhibitors. Proc Natl Acad Sci U S A. 1990 Nov;87(22):8889-93.
    16. Pincus SH, Fang H, Wilkinson RA, Marcotte TK, Robinson JE, Olson WC. In vivo efficacy of anti-glycoprotein 41, but not anti-glycoprotein 120, immunotoxins in a mouse model of HIV infection. J Immunol. 2003 Feb 15;170(4):2236-41.
    17. Jay A.Levy. HIV and the pathogenesis of AIDS. 2000.
    18.张兴权,范江主编。艾滋病病毒感染和艾滋病。1997。
    19. Roy M.Gulick, Schlomo Staszewski. New drugs for HIV Therepy. AIDS, 2002,16(suppl): s135-s144.
    20. Pastan Ⅰ. Biochim Biophy Acta 1997,1333:C1~C6
    21. Tateda K, Ishii Y, Horikawa M The Pseudomonas aeruginosa autoinducer N-3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun. 2003 Oct;71(10):5785-93.
    22. Cannon CL, Kowalski MP, Stopak KS Pseudomonas aeruginosa-induced apoptosis is defective in respiratory epithelial cells expressing mutant cystic fibrosis transmembrane conductance regulator. Am J Respir Cell Mol Biol. 2003 Aug;29(2): 188-97.
    23. Jia J, Alaoui-El-Azher M, Chow M c-Jun NH2-terminal kinase-mediated signaling is essential for Pseudomonas aeruginosa ExoS-induced apoptosis. Infect Immun. 2003 Jun;71(6):3361-70.
    24. Zhang J, Takayama H, Matsuba T Induction of apoptosis in macrophage cell line, J774, by the cell-free supernatant from Pseudomonas aeruginosa. Microbiol Immunol. 2003;47(3):199-206.
    25. Goto M, Yamada T, Kimbara K Induction of apoptosis in macrophages by Pseudomonas aeruginosa azurin: tumour-suppressor protein p53 and reactive oxygen species, but not redox activity, as critical elements in cytotoxicity. Mol Microbiol. 2003 Jan;47(2):549-59.
    26. Thrush GR., Lark LR., Clinchy BC & Vitetta ES. Immunotoxins: an update. Annu Rev Immunol 1996,14:49~71
    27. Van Oijen MG, Preijers FW. Rationale for the use of immunotoxins in the treatment of HIV-infected humans. J Drug Target. 1998;5(2):75-91.
    28. Roscoe DM, Jung SH, Benhar I, Pal L, Lee BK, Pastan I. Primate antibody response to immunotoxin: serological and computer-aided analysis of epitopes on a truncated form of Pseudomonas exotoxin. Infect Immun. 1994 Nov;62(11):5055-65.
    29. Benhar I, Wang QC, FitzGerald D, Pastan I. Pseudomonas exotoxin A mutants. Replacement of surface-exposed residues in domain Ⅲ with cysteine residues that can be modified with polyethylene glycol in a site-specific manner. J Biol Chem. 1994 May 6;269(18):13398-404.
    30. Kuan CT, Wang QC, Pastan Ⅰ. Pseudomonas. exotoxin A mutants. Replacement of surface exposed residues in domain Ⅱ with cysteine residues that can be modified with polyethylene glycol in a site-specific manner. J Biol Chem. 1994 Mar 11;269(10):7610-6.
    31. Deng H, Liu R, Ellmeier W. Identification of a major co-receptor for primary isolates of HIV-1. Nature. 1996 Jun 20;381(6584):661-6.
    32. Trkola A, Dragic T, Arthos J. CD4-dependent, antibody-sensitive interactions between HIV-1 and its co-receptor CCR-5.Nature. 1996 Nov 14;384(6605):184-7.
    33. Dittmar MT, McKnight A, Simmons G. HIV-1 tropism and co-receptor use. Nature. 1997 Feb 6;385(6616):495-6. No abstract available.
    34. Broder CC, Collman RG. Chemokine receptors and HIV. J Leukoc Biol. 1997 Jul;62(1):20-9.
    35. Lavi E, Strizki JM, Ulrich AM. CXCR-4 (Fusin), a co-receptor for the type 1 human immunodeficiency virus (HIV-1), is expressed in the human brain in a variety of cell types, including microglia and neurons. Am J Pathol. 1997 Oct;151(4):1035-42.
    36. Scarlatti G, Tresoldi E, Bjorndal A, in vivo ev.olution of HIV-1 co-receptor usage and sensitivity to chemokine-mediated suppression. Nat Med. 1997 Nov;3(ll):1259-65.
    37. Landau NR. HIV co-receptor identification: good or bad news for drug discovery? Curr Opin Immunol. 1997 Oct;9(5):628-30.
    38. Vallat AV, De Girolami U, He J, Localization of HIV-1 co-receptors CCR5 and CXCR4 in the brain of children with AIDS. Am J Pathol. 1998 Jan;152(1):167-78.
    39. Dragic T, Litwin V, Allaway GP, et al. HIV 1 entry into CD4+ cells is mediated by the chemokine receptor CC CKR 5. Nature, 1996, 381:667-673.
    40. Kwong PD, R.Wyatt,Q.J.Sattentau. Oligomeric modeling and electrostatic analysis of the gp120 envelope glycoprotein of human immunodeficiency virus. J Virol. 74:1961-72.
    41. Berger EA, Murphy PM, Farber JM. Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. Annu Rev Immunol. 1999;17:657-700.
    42. Clapham PR, Reeves JD, Simmons G, HIV coreceptors, cell tropism and inhibition by chemokine receptor ligands. Mol Membr Biol. 1999 Jan-Mar; 16(1):49-55.
    43. Reeves JD, Hibbitts S, Simmons G。Primary human immunodeficiency virus type 2 (HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell tropism in vivo. J Virol. 1999 Sep;73(9):7795-804.
    44. LaBranche CC, Hoffman TL, Romano J Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. Determinants of CD4 independence for a human immunodeficiency virus type 1 variant map outside regions required for coreceptor specificity. J Virol. 1999 Dec:,73(12):10310-9.
    45. Borsetti A, Parolin C, Ridolfi Bo CD4-independent infection of two CD4(-)/CCRS(-)/CXCR4(+) pre-T-cell lines by human and simian immunodeficiency viruses. J Virol. 2000 Jul;74(14):6689-94.
    46. Liu HY, Soda Y, Shimizu No CD4-Dependent and CD4-indePendent utilization ofcoreceptors by human immunodeficiency viruses type 2 and simian immunodeficiency viruses。Virology. 2000 Dec 5;278(1):276-88.
    47. Khan IM, Fisher RA, Johnson KJo The SON gene encodes a conserved DNA binding protein mapping to human chromosome 21. Ann Hum Genet. 1994 Jan;58 ( Pt 1):25-34.
    48. Cheng S, Lutfalla G, Uze G, et al. GART, SON, IFNAR, and CRF2-4 genes cluster on human chromosome 21 and mouse chromosome 16. Mamm Genome,1994, 4:338-342.
    49. Schuler GD, Boguski MS, Stewart EA, et al. A gene map of the human genome. Science, 1996,274:540-546
    50. Wynn SL, Fisher RA, Pagel C, et al. Organization and conservation of the GART/SON/DONSON locus in mouse and human genomes. Genomics, 2000, 68:57-62
    51. Sun CZ, Lo WY, Wang IH, et al. Transcription repression of human hepatitis B virus genes by negative regulatory element-binding protein/SON. J.Biol Chem, 2001,276:24059-24067.
    52.卢圣栋主编,现代分子生物学实验技术(第二版),中国协和医科大学出版社,2000
    53.F.奥斯伯等,主编,精编分子生物学实验指南,科学出版社,1998
    54. Marshak DR, Kadonaga JT, Burgess RR, Knuth MW, Brennan WA Jr & Lin S-H. Strategies for protein purification and characterization. A laboratory course manual. Cold Spring Harbor Laboratory press. 朱厚础等译.蛋白质纯化与鉴定实验指南.科学出版社.1999年p261.
    55..J 萨姆布鲁克主编,分子克隆---实验指南(第二版),科学出版社,1992.
    56.申景平博士论文
    57.洪梅博士论文
    58. Han YG, Liu HL, Zheng HJ. Purification and refolding of human alpha5-subunit (PSMA5) of the 20S proteasome, expressed as inclusion bodies in Escherichia coli. Protein Expr Purif. 2004 Jun;35(2):360-5.
    59. Wilkinson RJ, Elliott P, Carragher JF. Expression, purification, and in vitro characterization of recombinant salmon insulin-like growth factor-II. Protein Expr Purif. 2004 Jun;35(2):334-43.
    60. Mayer M, Buchner J. Refolding of inclusion body proteins. Methods Mol Med. 2004;94:239-54.
    61. Yang XA, Dong XY, Li Y. Purification and refolding of a novel cancer/testis antigen BJ-HCC-2 expressed in the inclusion bodies of Escherichia coli. Protein Expr Purif. 2004 Feb;33(2):332-8.
    62. Lee HJ, Im H. Purification of recombinant plasminogen activator inhibitor-1 in the active conformation by refolding from inclusion bodies. Protein Expr Purif. 2003 Sep;31(1):99-107.
    63. Ouellette T, Destrau S, Ouellette T. Production and purification of refolded recombinant human IL-7 from inclusion bodies. Protein Expr Purif. 2003 Aug;30(2):156-66.
    64. Wang J, Chen W, Lu J, Lu S. Overexpression and purification of recombinant atrial natriuretic peptide using hybrid fusion protein REF-ANP in Escherichia coli. Protein Expr Purif. 2003 Mar;28(1):49-56.
    65. Mackin RB, Choquette MH. Expression, purification, and PC1-mediated processing of(H10D, P28K, and K29P)-human proinsulin. Protein Expr Purif. 2003 Feb;27(2):210-9.
    66. Zhao F, Clare DA, Catignani GL. Purification and characterization of the fusion protein trypsin-streptavidin expressed in Escherichia coli J Protein Chem. 2002 Aug;21(6):413-8.
    67. Liu YZ, Zhang M, Liu XL. [Identification of rabbit lens proteins by two-dimensional gel electrophoreses and mass spectrometry. Zhonghua Yan Ke Za Zhi. 2004 Feb;40(2):113-7.
    68. Hamler RL, Zhu K, Buchanan NS.A two-dimensional liquid-phase separation method coupled with mass spectrometry for proteomic studies of breast cancer and biomarker identification. Proteomics. 2004 Mar;4(3):562-77.
    69. Zheng S, Schneider KA, Barder TJ. Two-dimensional liquid chromatography protein expression mapping for differential proteomic analysis of normal and O157:H7 Escherichia coli Biotechniques. 2003 Dec;35(6): 1202-12.
    70. Dickman MJ, Sedelnikova SE, Rafferty JB. Rapid analysis of protein-nucleic acid complexes using MALDI TOF mass spectrometry and ion pair reverse phase liquid chromatography. J Biochem Biophys Methods. 2004 Jan 30;58(1):39-48.
    71. Li PF, Hao, YS, Huang DA. Morphine-promoted survival of CEMx174 cells in early stages of SIV infection in vitro: involvement of the multiple molecular mechanisms. Toxicol In Vitro. 2004 Aug;18(4):449-56
    72. rgentin S, Ardati A, Tremblay S, et al. Developmental stage-specific regulation of atrial natriuretic factor gene transcription in cardiac cells. Mol Cell Biol. 1994,14(1):777-90.
    73. ajalahti-Palviainen T, Hirvinen M, Tervonen V, et al, Gene structure of a new cardiac peptide hormone: a model for heart-specific gene expression. Endocrinology. 2000, 141(2): 731-40.
    74. hen YF, Durand J, Claycomb WC. Hypoxia stimulates atrial natriuretic peptide gene expression in cultured atrial cardiocytes. Hypertension. 1997,29(1 Pt 1):75-82.
    75. hen S, Cui J, Nakamura K, et al. Coactivator-vitamin D receptor interactions mediate inhibition of the atrial natriuretic peptide promoter. J Biol Chem. 2000,275(20):15039-48.
    76. Ho DD, Neumann AU, Perelson AS, et al. Rapid turnover of plasma virions and CD4 lympocytes in HIV-1 infection. Nature. 1996, 373: 123-126.
    77. Wei X, Ghosh SK, Taylor ME. Viral dynamics in human immunodeficiency virus type 1 infection. Nature. 1996, 373: 117-122.
    78. Reeves, JD, et al. Primary human immuno-deficiency virus type2(HIV-2) isolates infect CD4-negative cells via CCR5 and CXCR4: comparison with HIV-1 and simian immunodeficiency virus and relevance to cell troism in vivo. J Virol, 1999, 73: 7795-7804
    79. Lee MK, Heaton J, Cho MW. Identification of and gp120 of a dual-tropic HIV-1 DH12 isolate. Virology, 1999, 257: 290-296
    80. Cho MW, Lee MK, Carney MC, et al. Identification of determinants on a dual tropic human immunodediciency virus type 1 envelope glycoprotein that confer usage of CXCR4. J Virol, 1998, 72: 2509-2515.
    81. Cregg JM. vedvick T.S. & Raschke WC. Bio/Technology 1993,11:905-910
    82. Genoud S, Kajumo F, Guo Y. CCR5-Mediated human immunodeficiency virus entry depends on an amino-terminal gp120-binding site and on the conformational integrity of all four extracellular domains. J Virol. 1999 Feb;73(2):1645-8.
    83. Martin KA, Wyatt R, Farzan M. CD4-independent binding of SIV gp120 to rhesus CCRS. Science. 1997 Nov 21;278(5342):1470-3.
    84. Lehner T, Doyle C, Wang Y. Immunogenicity of the extracellular domains of C-C chemokine receptor 5 and the in vitro effects on simian immunodeficiency virus or HIV infectivity. J Immunol. 2001 Jun 15; 166(12): 7446-55.
    85. Howard OM, Shirakawa AK, Turpin JA. Naturally occurring CCR5 extracellular and transmembrane domain variants affect HIV-1 Co-receptor and ligand binding function.. J Biol Chem. 1999 Jun 4; 274(23): 16228-34.
    86. Dean M, Jacobson LP, McFarlane G. Reduced risk of AIDS lymphoma in individuals heterozygous for the CCR5-delta32 mutation. Cancer Res. 1999 Aug 1;59(15): 3561-4.
    87. Emmnuel G. Cormier, Marjan Persuh, Daniah A.D. Specific interaction of CCR5 amino-terminal domain peptides containing sulfotyrosines with HIV-1 envolope glycoprotein gp120. PNAS, 97(11); 5762-7.
    88. Picard L, Wilkinson DA, McKnight A. Role of the amino-terminal extracellular domain of CXCR-4 in human immunodeficiency virus type 1 entry. Virology. 1997 Apr 28;231(1): 105-11.
    89. Potempa S, Picard L, Reeves JD. CD4-independent infection by human immunodeficiency virus type 2 strain ROD/B: the role of the N-terminal domain of CXCR-4 in fusion and entry. J Virol. 1997 Jun;71(6): 4419-24.
    90. Brelot A, Heveker N, Montes M. Identification of residues of CXCR4 critical for human immunodeficiency virus coreceptor and chemokine receptor activities. J Biol Chem. 2000 Aug 4;275(31): 23736-44.
    91. Doranz BJ, Orsini MJ, Turner JD Identification of CXCR4 domains that support coreceptor and chemokine receptor functions. J Virol. 1999 Apr;73(4): 2752-61.
    92. Zhou N, Luo Z, Luo J, Liu D. Structural and functional characterization of human CXCR4 as a chemokine receptor and HIV-1 co-receptor by mutagenesis and molecular modeling studies. J Biol Chem. 2001 Nov 16;276(46): 42826-33. Epub 2001 Sep 10.
    93. Chabot DJ, Zhang PF, Quinnan GV. Mutagenesis of CXCR4 identifies important domains for human immunodeficiency virus type 1 X4 isolate envelope-mediated membrane fusion and virus entry and reveals cryptic coreceptor activity for R5 isolates. J Virol. 1999 Aug;73(8): 6598-609.
    94. Brelot A, Heveker N, Pleskoff O. Role of the first and third extracellular domains of CXCR-4 in human immunodeficiency virus coreceptor activity. J Virol. 1997 Jun;71(6): 4744-51.
    95. Yang AG, Bai X, Huang XF. Phenotypic knockout of HIV type 1 chemokine coreceptor CCR-5 by intrakines as potential therapeutic approach for HIV-1 infection. Proc Natl Acad Sci U S A. 1997 Oct 14;94(21): 11567-72.
    96. Chen JD, Bai X, Yang AG. Inactivation of HIV-1 chemokine co-receptor CXCR-4 by a novel intrakine strategy. Nat Med. 1997 Oct;3(10): 1110-6.
    97. Yang AG, Zhang X, Torti F. Anti-HIV type 1 activity of wild-type and functional defective RANTES intrakine in primary human lymphocytes. Hum Gene Ther. 1998 Sep 20;9(14): 2005-18.
    98. Bai X, Chen JD, Yang AG. Genetic co-inactivation of macrophage- and T-tropic HIV-1 chemokine coreceptors CCR-5 and CXCR-4 by intrakines. Gene Ther. 1998 Jul;5(7): 984-94.
    99. Engel BC, Bauer G, Pepper KA. Intrakines-evidence for a trans-cellular mechanism of action. Mol Ther. 2000 Feb;1(2): 165-70.
    100. Schroers R, Davis CM, Wagner HJ Lentiviral transduction of human T-lymphocytes with a RANTES intrakine inhibits human immunodeficiency virus type 1 infection. Gene Ther. 2002 Jul;9(13): 889-97.
    101. Reeves JD, McKnight A, Potempa S. CD4-independent infection by HIV-2 (ROD/B): use of the 7-transmembrane receptors CXCR-4, CCR-3, and V28 for entry. Virology. 1997 Apr 28;231(1): 130-4.
    102. Sol N, Ferchal F, Braun J. Usage of the coreceptors CCR-5, CCR-3, and CXCR-4 by primary and cell line-adapted human immunodeficiency virus type 2. J Virol. 1997 Nov;71(11): 8237-44.
    103. Ross TM, Cullen BR. The ability of HIV type 1 to use CCR-3 as a coreceptor is controlled by envelope V1/V2 sequences acting in conjunction with a CCR-5 tropic V3 loop. Proc Natl Acad Sci U S A. 1998 Jun 23;95(13): 7682-6.
    104. Nair MP, Kandaswami C, Mahajan S. Grape seed extract proanthocyanidins downregulate HIV-1 entry coreceptors, CCR2b, CCR3 and CCR5 gene expression by normal peripheral blood mononuclear cells. Biol Res. 2002;35(3-4): 421-31.
    105. Carreno MP, Chomont N, Kazatchkine MD. Binding of LFA-1 (CD11a) to intercellular adhesion molecule 3 (ICAM-3; CD50) and ICAM-2 (CD102) triggers transmigration of human immunodeficiency virus type 1-infected monocytes through mucosal epithelial cells. J Virol. 2002 Jan;76(1): 32-40.
    106. Arias RA, Munoz LD, Munoz-Fernandez MA. Transmission of HIV-1 infection between trophoblast placental cells and T-cells take place via an LFA-1-mediated cell to cell contact. Virology. 2003 Mar 15;307(2): 266-77.
    107. Bounou S, Leclerc JE, Tremblay MJ. Presence of host ICAM-1 in laboratory and clinical strains of human immunodeficiency virus type 1 increases virus infectivity and CD4(+)-T-cell depletion in human lymphoid tissue, a major site of replication in vivo. J Virol. 2002 Feb;76(3): 1004-14.
    108. Takada A, Kawaoka Y. Antibody-dependent enhancement of viral infection: molecular mechanisms and in vivo implications. Rev Med Virol. 2003 Nov-Dec;13(6): 387-98.
    1 Bottino C, Biassoni R and Millo R.2000. The human natural cytotoxicity recepters(NCR) that induce HLA class 1-independent NK cell triggering .Human mmunol 61 :1-6
    2 Lopez-Botet M, Bellon T and Liano M .2000. Paired inhibitory and triggering NK cell recepter s for HLA class I molecules..Human Immunol 61:7-17.
    3 Bakker ABH, Wu J and Phillips JH. 2000.NK cell activation :distinct stimulatoryathways counterbalancing inhibitory signals..Human Immunol 61:18-27.
    4 Andrea De Maria and Lorenzo Moretta .2000. HLA-class-I-specific inhibitory receptor in HIV-1 infection .Human Immunology 61:74-81.
    5 Hersey p ,Bolhuis R .'Nonspecific ' MHC-unresteicted killer cekks and their receptors.Immuno; TODAY 8:233,1987.
    6 Siliciano RF, Patarroyo M and Schmidt RE. Activation of cytolytic T lymphocyte and natural killer cell function through the T11 sheep erythrocyte binding protein.Nature. 1985 Oct 3-9;317(6036):428-30.
    7 Timonen T ,Patarroyo M and Gahmberg CG . CD11a-c/CD18 and GP84 (LB-2) adhesion molecules on human large granular lymphocytes and their participation in natural killing.
    8 J Immunol. 1988 Aug 1;141(3):1041-6.
    9 Lanier LL ,buck DW and Rhodes L . Interleukin 2 activation of natural killer cells rapidly induces the expression and phosphorylation of the Leu-23 activation antigen. J Exp Med. 1988 May 1;167(5): 1572-85.
    10 Robrtson MJ ,Caligiuri MA and Manley TJ. Human natural killer cell adhesion molecules. Differential expression after activation and participation in cytolysis. J Immunol. 1990 Nov 15;145(10):3194-201.
    11 Shibuya A, Campbell D and Hannum C.DNAM-1, a novel adhesion molecule involved in the cytolytic function of T lymphocytes. Immunity. 1996 Jun;4(6):573-81.
    12 Azyma M, Cayabyb M and Buck D .Involvement of CD28 in MHC-unrestricted cytotoxicity mediated by a human natural killer leukemia cell line.J Immunol. 1992 Aug 15;149(4): 1115-23.
    13 Nandi D, Gross JA and Allison JP. CD28-mediated costimulation is necessary for optimal proliferation of murine NK eells.J Immunol. 1994 Apt 1; 152(7):3361-9.
    14 Daeron M .Fc receptor biology.Annu Rev Immunol. 1997;15:203-34.
    15 o' Shen J ,Weissman AM and Kennedy ICS.Engagement of the natural killer cell IgG Fc receptor results in tyrosine phosphorylation of the zeta chain. Proc Natl Acad Sci U S A. 1991 Jan 15;88(2):350-4.
    16 Vivier E, da Silva AJ and Ackerly M.Association of a 70-kDa tyrosine phosphoprotein with the CD16: zeta: gamma complex expressed in human natural killer cells.Eur J Immunol. 1993 Aug;23(8): 1872-6.
    17 Ryan JC ,Seaman WE .Divergent functions oflectin-like receptors on NK cells. Immunol Rev. 1997 Feb;155:79-89.
    18 Arase N ,Arase H and Parl SY.Association with FcRgamma is essential for activation signal through NKR-PI (CD161) in natural killer (NK) cells and NK1.1+ T ceils.J Exp Med. 1997 Dec 15;186(12):1957-63.
    19 Gami-Wagner BA, Purohit A and Mathew PA. .A novel function-associated molecule related to non-MHC-restricted eytotoxicity mediated by activated natural killer cells and T cells.J Immunol. 1993 Jul 1;151(1):60-70.
    20 Westgaard IH ,Berg SF and orstavik S .Identification of a human member of the Ly-49 multigene family.Eur J Immunol. 1998 Jun;28(6):1839-46.
    21 Barten R, Trowsdale J .The human Ly-49L gene.Immunogenetics. 1999 Jul;49(7-8):731-4. No abstract available.
    22 Olcese L ,Lang P and vely F .Human and mouse killer-cell inhibitory receptors recruit PTPlC and PTPlD protein tyrosine phosphatases.J Immunol. 1996 Jun 15;156(12):4531-4.
    23 Nakamura MC, Niemi EC and Fisher MJ. Mouse Ly-49A interrupts early signaling events in natural killer cell cytotoxicity and functionally associates with the SHP-1 tyrosine phosphatase.J Exp Med. 1997 Feb 17;185(4):673-84.
    24 Le Drean E, Vely F and Olcese L . Inhibition of antigen-induced T cell response and antibody-induced NK cell cytotoxicity by NKG2A: association of NKG2A with SHP-1 and SHP-2 protein-tyrosine phosphatases.Eur J Immunol. 1998 Jan;28(l):264-76.
    25 Braud VM, Allan DSJ and O' callaghan .HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C.Nature. 1998 Feb 19;391(6669):795-9.
    26 Borrego F , Ulbrecht M and Weiss EH .Recognition of human histocompatibility leukocyte antigen (HLA)-E complexed with HLA class I signal sequence-derived peptides by CD94/NKG2 confers protection from natural killer cell-mediated lysis.J Exp Med. 1998 Mar 2;187(5):813-8.
    27 Lee N , Liano M and Carretero M. HLA-E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A.Proc Natl Acad Sci U S A. 1998 Apt 28;95(9):5199-204.
    28 Cantoni C , Bottino C and Vitale M. NKp44, a triggering receptor involved in tumor cell lysis by activated human natural killer cells, is a novel member of the immunoglobulin superfamily.J Exp Med. 1999 Mar 1 ;189(5):787-96.
    29 Sivori S, Pende D and Bottino C. NKp46 is the major triggering receptor involved in the natural cytotoxicity of fresh or cultured human NK cells. Correlation between surface density of NKp46 and natural cytotoxicity against autologous, allogeneic or xenogeneic target cells.Eur J Immunol. 1999 May;29(5): 1656-66.
    30 Long EO, Barber DF and Burshtyn DN. Inhibition of natural killer cell activition signals by killer cell immunoglobulin-like receptors (CD158). Immunoi Rev 2001;181:223-33.
    31 Zocchi MR, Rubartelli A and Morgavi P. HIV-1 Tat inhibits human natural killer cell function by blocking L-type。J Immunol 1998 Sep 15;161(6):2938-43
    32 Peruzzi M, Azzari C, Rossi ME, De Martino M, Vierucci A. Inhibition of natural killer cell cytotoxicity and interferon gamma production by the envelope protein of HIV and prevention by vasoactive intestinal peptide.AIDS Res Hum Retroviruses 2000 Ju120;16(11):1067-73
    33 Nair MP, Schwartz SA. Reversal of human immunodeficiency virus type 1 protein- induced inhibition of natural killer cell activity by alpha interferon and interleukin-2. Clin Diagn Lab Immunol 2000 Jan;7(1): 101-5
    34 Poaty-Mavoungou V, Toure FS and Tevi-Benissan C.2002 Enhancement of natural killer cell activation and antibody-dependent cellular cytotoxity by interferon-alpha and interleukin-12 in vaginal mucosae Sivmac251-infected Macaca fascicularis. Viral Immunol 15(1): 197-212.
    35 Howcroft TK, Strebel K and Martin MA. Repression of class I gene promoter activity by two-exon Tat of HIV .Science. 1993;260:1320-2
    36 Kerkau T, Bacikl and Bennink JR .The human immunodeficiency virus type 1 (HIV-1)Vpu protein interferes with an early step in the biosynthesis of major histocompatibilituy conplex (MHC) class Ⅰ molecules.J Exp Med 1997; 185:1295-305.
    37 Schepppler JA, Nicholson JK and Swan DC. Down-modulation of MHC-I in a CD4+ T cell line, CEM-E5, after HIV-1 infection. J Immunol. 1989 Nov 1;143(9):2858-66.
    38 W.Kamp , M.b.berk and C.J.T.Visser. Mechanism of HIV-1 to escape from the host immune surveillance. Eurpean Journal of Clinical Investigation 2000:30,740-746.
    39 Swarm SA, Williams Mo Story CM, Bobbitt KR, Fieis R, Collins KL HIV-1 Nef blocks transport of MHC class 1 molecules to the cell surface via a P13-kinase-dependent pathway. Virology 2001 Apr 10;282(2):267-77
    40 The selective downregulation of class 1 major histocompatibility complex proteins by HIV-1 protects HIV-infected cells from NK cells. Immunity. 1999 Jun;10(6):661-71.
    41 HIV-1 Tat inhibits human natural killer cell function by blocking L-type calcium channels.J Immunol. 1998 Sep 15;161(6):2938-43.
    42 Fortis C,Tasca S and Capiluppi B. 2002 .Natural killer cell function in HIV infected patients. J Biol Regul Homeost Agents. 16(1):30-2.
    43 Trapani J.A, V.R.Sutton and M.J.Smyth.1999.CTL granules: evolution of vesicles essential for combating virus infections. Immunol Today 20:351.
    44 Muilbacher A.P. Waring R.T.Hla and T Tran. 1999. Granzymes are the essential downstream effector molecules for the control of primary virus infections by cytolytic leukocytes .Proc.Natl.Acad.Sci.96; 13950.
    45 Shankar p, Z.Xu and J.Lieberman.1999. Viral-specific T lymphocytes lyse human immunodeficiency virus -infected primary T lymphocytes by granule exocytosis pathway .Blood.94:3084.
    46 Alessandro P, Roberta Carosio and Claudio Fortis .2002. NK cell activation by Dendritic Cells is dependent on LFA-1-mediated induction of Calcium- Calmodulin
    47 Kinasae Ⅱ :Inhibition by HIV-1 TAT C-Terminal Domain. J Immunoi.168:95-101.
    1. Gulick RM.. New antiretroviral drugs. Clin Microbiol Infect. 2003,9(3): 186-93.
    2. Shearer WT, Israel RJ, Starr S, et al. Recombinant CD4-IgG2 in human immunodeficiency virus type infected children: phase 1/2 study. J Infect Dis. 2000,182(6): 1774-9.
    3. Cooley LA, Lewin SR. HIV-1 cell entry and advances in viral entry inhibitor therapy. J Clin Virol. 2003,26(2): 121-32.
    4. Hendrix CW, Flexner C, MacFarland RT, et al. Antimicrob Agents Chemother. Pharmacokinetics and safety of AMD-3100, a novel antagonist of the CXCR-4 chemokine receptor, in human volunteers. 2000,44(6): 1667-73.
    5. Reynes J, Rouzier R, Kanoni T, et al. SCH C: safety and antiviral effects of a CCR5 receptor antagonist in HIV-1 infected subjects. Ninth conference on retrovirues and opportunisitic infections. Seattle. 2002,24-28.
    6. Trkola A, Ketas T J, Nagashima KA, et al. Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140.J Virol. 2001,75(2):579-88.
    7. Kilby JM, Hopkins S, Venetta TM, et al. Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med. 1998,4(11):1302-7.
    8. Melodina S, Boucher M. Enfuvirtide, a new treatment for HIV infection. Issues Emerg Health Technol. 2003 ,(50):1-6.
    9. Hazuda D J, Felock P, Witmer M; et al. Inhibitors of strand transfer that prevent integration and inhibit HIV-1 replication in cells. Science. 2000,287(5453):646-50.
    10. Larder BA, Hertogs K, Bloor S, et al. Tipranavir inhibits broadly protease inhibitor-resistant HIV-1 clinical samples.AIDS. 2000,14(13): 1943-8.
    11. Sax PE. Meeting notes from the 2nd International AIDS Society Conference on HIV Pathogenesis and Treatment New drugs. AIDS Clin Care. 2003,15(9):80-1.
    12. Rousseau FS, Wakeford C, Mommeja-Marin H, et al. Prospective randomized trial of emtricitabine versus lamivudine short-term monotherapy in human immunodeficiency virus-infected.patients. J Infect Dis. 2003,188(11): 1652-8.13
    13. Roy M.Gulick, Schlomo Staszewski. New. drugs for HIV Therepy. AIDS, 2002, 16(suppl): s135-s144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700