热处理对Ti-1300钛合金组织与性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Ti-1300合金是西北有色金属研究院最近新研制出的一种超高强钛合金。该合金具有良好的可锻性和高淬透性,在1300MPa强度级别下具有良好的塑性和韧性匹配。该类型合金在固溶和时效过程中相变过程比较复杂,合金的组织和性能对热处理制度较为敏感。由于该合金是新合金,所以对其研究很少,这会限制其在航空航天工业领域的应用。
     基于上述考虑,本文研究了Ti-1300合金经常规固溶时效处理、固溶+随炉升温热处理以及固溶+锡浴时效处理后的显微组织和拉伸性能,采用X射线、OM、SEM、TEM等多种手段对Ti-1300合金固溶时效过程中的相变规律进行了研究,以期为该合金的应用提供一些参考。
     研究表明,Ti-1300合金在相变点之上固溶处理后为单一的等轴β组织,并且随着温度的降低,晶粒尺寸也在减小;相变点之下固溶处理后在β基体上析出颗粒状和针状α相。
     Ti-1300合金经790℃固溶+570℃时效处理后强度和塑性达到最佳匹配,这是因为在570℃时效时,相变驱动力和溶质原子扩散速度对α相变共同产生作用,使相转变速度达到最高值,组织中α相含量增多,使组织细化。
     Ti-1300合金在850℃固溶+随炉升温至400℃时开始发生β→ω转变,升温至500℃时,大部分β相已经转变成ω相,还有极少量α相的存在,当在570℃保温4小时后,ω相全部转变成α相。产生的ω相使得合金的强度迅速升高,而塑性却变差。因此,为使Ti-1300合金达到较好的强度和塑性的匹配,时效处理时应避免发生ω相变,故而时效处理温度应选择在500℃~600℃之间,时效时间选择在4小时左右。
     Ti-1300合金经850℃固溶+锡浴时效处理后发生β→α相转变,形成细晶强化,使合金的强度增加,塑性也得到提高。在β→α相转变过程中,晶界是优先形核的地方,这是因为晶界的切变阻力大,并且缺陷很多,这样可以产生能量差,保证α相的晶核出现。
     经锡浴处理后的Ti-1300合金比Ti-B19和Ti-B20具有更快的时效响应特征,并且其时效响应速率显著高于BETA-C、Ti-15-3等商用亚稳β钛合金。
Ti-1300 alloy is a super high strength titanium alloy which developed by Northwest Institute For Non-ferrous Metal Research. This alloy has great forgeability and high hardenability, and optimum matching of plasticity and ductility under 1300MPa conditions. Ti-1300 alloy has complex phase transformation during solution and aging, its microstructure and propertity are sensitive to the heat treating regime. Because Ti-1300 alloy is newly, so we have little research on it, this will limit its application on aerospace industry.
     In order to offer some experiences of its applications, the microstructure and properties of Ti-1300 alloy treated by normal solution and aging, heated from room temperature after solution and tin bath after solution are studied in this paper. The phase transformation of Ti-1300 alloy during heat treatment is observed by means of XRD, OM, SEM and TEM .
     The results show that the microstructure of Ti-1300 alloy is single and equiaxedβphase after solution above the transformation point, the grain size reduced with the temperature decreased, and the granular and needleαphase was observed inβmatrix after solution above the transformation point.
     Ti-1300 alloy owned optimal strength and plastic by aging at 570°C after solution at 790℃, because the interaction of phase transformation driving force and solute atoms diffusion velocity made moreαphase was observed in the matrix, andαphase refining the structure.
     Theωtransformation occurred when Ti-1300 alloy was heated to 400℃from room temperature after soluted at 850℃for 1 hour. When the alloy was heated to 500℃, most βphase changed toωphase, there is still a fewα. When it kept worm for 4 hours later,ωphase transformed intoαphase. Theωphase made the strength of the alloy rise rapidly, but plasticity decreased. So theωphase must be avoided when aging treatment in order to get the best properties, therefore, the aging treatment temperature should be chose between 500℃~600℃and time should be chose for 4 hours.
     The strength and plastic was increased by fine grain strengthening after Ti-1300 alloy was soluted at 850℃for 1 hour. Duringβ→αphase transformation, it was observed thatαphase nucleated at grain boundary firstly, because grain boundary had big shear resistance and many defects, it can produce energy difference and ensureαphase appearance.
     The aging response character of Ti-1300 alloy after tin bath is more quickly than that of Ti-B19 and Ti-B20, moreover, the aging response rate is higher than BETA-C and Ti-15-3 of metastableβtitanium alloys in business application.
引文
[1]张宝昌.有色金属及热处理.西安.西北工业大学出版社,1993
    [2]汪金友,葛志明.航空用钛合金.上海.上海科学技术出版社,1985
    [3]刘静安.钛合金手册.北京.科学技术出版社,1982
    [4]王永军.Ti-17合金显微组织余热稳定性及高拉塑性关系的研究.西北工业大学硕士论文,1998
    [5]张翥.β钛合金的概述.稀有金属,1995,19(4):296-299
    [6]李殿魁.钛合金的近期发展趋势.上海钢研,1996,6,48-53
    [7]E.A.鲍利索娃等,陈石卿译.钛合金金相学,北京:国防工业出版社,1986.4
    [8]钛及钛合金典型显微组织图册,有色金属研究总院编写.
    [9]SONG Dan,DING Jinjun,WANG Yandong.Influence of alloying elements(Nb,Mo,V)on microstructure of Ti3Al base alloys,ACTA Metallurgica Sinica(English Letters),1996,9(2):85-88
    [10]ZHANG Yue,CHU Wuyang,XIAO Jimei etal.Interphase stress corrosion cracking of alloy Ti-24Al-11Nb in methanol solution,ACTA Metallurgica Sinica (English Letters),1996,9(2):121-128
    [11]C.莱茵斯,M.皮特尔斯编,陈振华等译.钛与钛合金.北京.化学工业出版社,2003.32-48
    [12]张廷杰.钛合金相变的电子显微镜研究(Ⅲ)—钛合金中的马氏体相变.稀有金属材料与工程,1989,No.4:71-78
    [13]邓安华.钛合金的马氏体相变,上海有色金属,1999,20(4):193-199
    [14]张廷杰.钛合金相变的电子显微镜研究(Ⅳ)—钛合金中的ω相变.稀有金属材料与工程,1989,No.5:77-82
    [15]宋维锡.金属学.北京.冶金工业出版社,2000.454-458
    [16]王建安.金属学与热处理.北京.机械工业出版社,1980
    [17]《有色金属及热处理》编写组.有色金属及热处理.北京.国防工业出版社,1981
    [18]张宝昌.有色金属及其热处理.西安.西北工业大学出版社,1993
    [19]张喜燕,赵永庆,白晨光.钛合金及应用.北京.化学工业出版社,2005.86-99
    [20]张廷杰.钛合金相变的电子显微镜研究(Ⅴ)—亚稳β相时效分解中的两类α相沉淀.稀有金属材料与工程,1989,No.6:76-80
    [21]Boyer R.,Welsch G.,Collings E.W.,Materials properties handbook:Titanium alloys,ASM International,1994.
    [22]O.M.Ivasishin,A.I.Ustino,V.S.Skorodzievshii etal.Structural and compositional changes during isothermal annealing of α"-martensite in Yi-Swt.%Mo alloy,Scripta Materialia,Vol.37,No.6:883-888
    [23]Jian Wang,Yu Wang,R.Schaublin etal.The effect of point defects on the martensitic phase transformation,Materials Science and Engineering:A,Vol.438-440,2006,102-108
    [24]Y.Mantani and M.Tajima,Phase transformation of quenched α" martensite by aging in Ti-Nb alloys,Materials Science and Engineering:A,Vol.438-440,2006,315-319
    [25]Thomas J.Headley and Henry J.Rack.Phase transformations in Ti-3Al-SV-6Cr-4Zr-4Mo,METALLURGICAL TRANSACTIONS A,10A,1979,909
    [26]A.V.Dobromyslov and V.A.Elkin.Martensitic transformation and metastable βphase in binary titanium alloys with d-metals of 4~6 periods.Scripta mater.44,2001,905-910
    [27]J.I.Qazi,B.Marquardt,L.F.Allard etal.Phase transformations in Ti-35Nb-7Zr-5Ta-(0.06-0.68)O alloys.Materials Science and Engineering,2005,C25,389-397
    [28]Nakai Kiyomichi,Ohmori,Yasuya.Analysis of phase transformation in a Ti-10mass%Zr alloy by hot stage optical microscopy.Materials Transactions,2001,Vol.42,No.11:2398-2405
    [29]《国外钛合金文集》.北京.冶金工业出版社,1972
    [30]R.Davis,H.M.Flower,D.R.F West.Decomposition of Ti-Mo Alloy Martensites by Nucleation and Growth and Spinodal Mechanism.Acta Metallurgica,1979,Vol.27,No.6:1041-1052
    [31]沈桂琴,彭益群.Ti-15Mo-2.7Nb-3Al-0.2Si高强钛合金的相变.材料工程,1999,No.3:19-23
    [32]于振涛,周廉等.生物医用β钛合金的设计与开发.稀有金属材料与工程[J],2004,23(1):5-10
    [33]许智轩,张玉梅,王忠义等.医用新型钛合金的口腔刺激试验.稀有金属材料与工程,2006,35(1):110-112
    [34]于思荣.生物医学钛合金的研究现状及发展趋势.稀有金属,2001,25(5):349-354
    [35]宁聪琴,周玉.医用钛合金的发展及研究现状[J].材料科学与工艺,2002, 10(1):100-105
    [36]黄金昌.β钛合金在飞机中的应用.钛工业进展,1999,2,32-34
    [37]全宏声.β钛合金在航空航天工业中的应用逐步扩大.材料工程,1994,10,45-46
    [38]赵树萍,吕双坤.钛合金在航空航天领域中的应用.钛工业进展,2002,6,18-21
    [39]陈玉文.β钛合金及其在宇航工业中的应用.稀有金属,1997,20(4):297-300
    [40]汪建林.高强度β钛合金的发展和应用.上海钢研,2001,2,25-33
    [41]彭艳萍,曾凡昌等.国外航空钛合金的发展应用及其特点分析.材料工程,1997,10,3-6
    [42]娄贯涛.钛合金的研究应用现状及其发展方向.钛工业进展,2003,(2):9-13
    [43]赵永庆,奚正平等.我国航空用钛合金材料研究现状.航空材料学报,2003,23:215-219
    [44]赵永庆,杨冠军.西北院自主开发钛合金及产业化.中国有色金属报,2006:1-2
    [45]葛鹏,赵永庆等.Ti-B20钛合金的时效特征.中国有色金属学报,2005,15(1):44-48
    [46]李明.航空用钛合金结构材料.世界有色金属,2000,6,17-20
    [47]Eylon.D.Issues in the Development of Beta Titanium Alloy.JOM,1994,(6):14-15
    [48]Boyer R.etal.An Overview on the Use of Titanium in the Aerospace Industry.Mater.Sci.Eng.,1996,A213:103-104
    [49]宁兴龙.俄罗斯航空用钛合金.钛工业进展,1999,4:19-25
    [50]毛小南,赵永庆等.国外航空发动机用钛合金的发展现状.稀有金属快报,2007,26(5):1-7
    [51]石德珂,金志浩.材料力学性能.西安.西安交通大学出版社,1998.19-20
    [52]S.Malinov,W.Sha,EMarkovsky.Experimental study and computer modeling of the α→α+β phase transformation in β21s alloy.at isothermal conditions.Journal of Alloy and Compounds,2003,348,110-118
    [53]Benoit Appolaire,Ludovic Hericher,Elisabeth Aeby-Gautier.Modeling of phase transformation kinetics in Ti alloys-Isothermal treatments.Acta Materialia,2005,53,3001-3011
    [54]S.Malinov,P.Markovsky,W.Sha.Resistivity study and computer modeling of the isothermal transformation kinetics of Ti-8Al-1Mo-1V alloy.Journal of Alloy and Compounds,2002,333,122-132
    [55]Yasuya Ohmori,Toshitaka Ogo,Kiyomichi Nakal etal..Effects of ω-phase on β to α,α" transformations in a metastable β titanium alloy.Materrials Science and Engineering.A312(2001),182-188
    [56]D.H.Ping,C.Y.Cui,F.X.Yin and Y.Yamabe-Mitarai,TEM investigations on martensite in a Ti-Nb-based shape memory alloy,Scripta Materialia,Volume 54,Jssue 7,April 2006,Pages 1305-1310
    [57]F.Prima,P.Vermaut,G.Texier etal.Evidence of α-nanophase heterogeneous nucleation from ω Particles in a β-metastable Ti-based alloy by high-resolution electron microcopy.Scripta Materialia.2006,54,645-648
    [58]葛鹏.新型超高强亚稳β钛合金的设计与强化研究.西安交通大学博士论文,2006.49-50
    [59]罗嫒媛.Ti-B19钛合金时效过程中的相变研究.西北工业大学硕士论文,2006.33-43
    [60]葛鹏,赵永庆等.热处理对1种新型亚稳定β钛合金组织与性能韵影响.稀有金属材料与工程,2004,33(9):968-971
    [61]葛鹏.一种新型高强度亚稳β钛合金Ti-B20.稀有金属材料与工程,2005,34(5):790-794

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700