培美曲塞与吉非替尼对人结肠癌细胞株作用的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     研究培美曲塞对人结肠癌细胞的生长抑制作用及其与培美曲塞相关基因表达的相关性;研究吉非替尼对人结肠癌细胞的生长抑制作用及其与结肠癌细胞EGFR信号传导通路基因突变的相关性;研究培美曲塞联合吉非替尼对人结肠癌细胞的生长抑制作用;研究培美曲塞、吉非替尼及其联合对于人结肠癌细胞细胞周期及凋亡的影响;研究培美曲塞、吉非替尼及其联合对于人结肠癌细胞培美曲塞相关基因表达的影响;研究培美曲塞、吉非替尼及其联合对于人结肠癌细胞吉非替尼相关蛋白表达的影响。
     材料和方法
     1.以体外药敏实验(MTT方法)检测培美曲塞对HT-29、LoVo、SW620、HCT116、SW1116及WiDr六株人结肠癌细胞的生长抑制作用;以Real-time Quantitive RT-PCR方法检测六株结肠癌细胞培美曲塞相关基因RFC、FPGS、TS及DHFR的mRNA表达;分析培美曲塞对六株结肠癌细胞的生长抑制作用与相关基因表达的相关性。
     2.以体外药敏实验(MTT方法)检测吉非替尼对HT-29、LoVo、SW620、HCT116、SW1116及WiDr六株人结肠癌细胞的生长抑制作用;以基因序列测定方法检测六株结肠癌EGFR及K-RAS基因突变情况;分析吉非替尼对六株结肠癌细胞的生长抑制作用与细胞EGFR及K-RAS基因突变的相关性。
     3.以体外药敏实验(MTT方法)检测培美曲塞同时联合吉非替尼及培美曲塞序贯联合吉非替尼对于HT-29、LoVo、SW620、及SW1116四株人结肠癌细胞的生长抑制作用。
     4.以流式细胞仪检测培美曲塞、吉非替尼、培美曲塞同时联合吉非替尼及培美曲塞序贯联合吉非替尼对于人结肠癌细胞HT-29及LoVo的细胞周期及凋亡的影响。
     5.以Real-time Quantitive RT-PCR方法检测培美曲塞、吉非替尼及培美曲塞同时联合吉非替尼对人结肠癌细胞HT-29及LoVo的培美曲塞相关基因RFC. FPGS、TS及DHFR mRNA表达的影响。
     6.以Western blot方法检测培美曲塞、吉非替尼及培美曲塞同时联合吉非替尼对人结肠癌细胞HT-29及LoVo的吉非替尼相关蛋白pEGFR. pAKT及pERK表达的影响。
     结果
     1.培美曲塞可抑制HT-29、LoVo、SW620、HCT116、SW1116及WiDr六株人结肠癌细胞的生长,培美曲塞对各株结肠癌细胞的生长抑制作用各异(P<0.01)。六株结肠癌细胞RFC、FPGS、TS及DHFR基因mRNA表达各异(P<0.01)。培美曲塞对六株结肠癌细胞的生长抑制作用与细胞TS基因表达呈负相关(r=-0.886,P<0.05)。
     2.吉非替尼可抑制HT-29、LoVo、SW620、HCT116、SW1116及WiDr六株人结肠癌细胞的生长,吉非替尼对各株结肠癌细胞的生长抑制作用各异(P<0.01)。六株结肠癌细胞中LoVo细胞出现19外显子2236-2250位点缺失突变,HT-29、SW1116及WiDR细胞出现20外显子2361位点G>A点突变。本实验中仅一株细胞出现了有意义的EGFR基因的19外显子突变,相关性分析缺乏统计学意义。
     3.培美曲塞联合吉非替尼对于HT-29、LoVo、SW620及SW1116四株人结肠癌细胞的药效学作用均表现为协同作用。在对两药相对不敏感的HT-29、SW620及SW1116表现为培美曲塞序贯联合吉非替尼的协同作用强于培美曲塞同时联合吉非替尼,而在对两药相对敏感的LoVo细胞表现为序贯联合的协同作用等于甚至小于同时联合。各组CI值显著不同,P<0.01。
     4.培美曲塞、吉非替尼、培美曲塞同时联合吉非替尼及培美曲塞序贯联合吉非替尼均可阻滞HT-29和LoVo细胞的细胞周期进程并影响凋亡细胞百分率。差异具有统计学意义(P<0.01)。
     5.吉非替尼可使HT-29及LoVo细胞的TS及DHFR基因表达降低(P<0.01)。
     6.培美曲塞可使HT-29细胞及LoVo细胞的pEGFR、pAKT及pERK蛋白的表达升高(P<0.01)。
     结论
     1.培美曲塞可抑制人结肠癌细胞的生长,培美曲塞对人结肠癌细胞的生长抑制作用与细胞TS基因表达成负相关。培美曲塞在结肠癌病人治疗中拥有一定的治疗前景。
     2.吉非替尼可抑制人结肠癌细胞的生长。提高剂量吉非替尼对结肠癌病人的治疗可能也拥有一定的治疗前景。
     3.培美曲塞联合吉非替尼对于人结肠癌细胞具有协同增效作用。两药联合在结肠癌治疗中前景广阔。
     4.培美曲塞、吉非替尼及二者联合可阻滞人结肠癌的细胞周期,影响人结肠癌细胞的凋亡百分率。
     5.吉非替尼可降低人结肠癌细胞培美曲塞相关基因表达,提高人结肠癌细胞对培美曲塞化疗的敏感性,两药联合增效。
     6.培美曲塞可提高人结肠癌细胞吉非替尼相关蛋白的表达,吉非替尼可显著降低培美曲塞引起的蛋白表达增高,两药联合增效。
Objectives
     1. To study the antitumor effects of pemetrexed on human colon cancr cells and the correlation of antitumor effects of pemetrexed and expressions of genes related with pemetrexed in human colon cancer cells.
     2. To study the antitumor effects of gefitinib on human colon cancer cells and the correlation of antitumor effects of gefitinib and EGFR signal pathway gene mutations in human colon cancer cells.
     3. To study the pharmacodynamic effects of pemetrexed combined with gefitinib on human colon cancer cells.
     4. To study the effects of pemetrexed, gefitinib, and their combination on cell cycles and apoptosis cell percentages in human colon cancer cells.
     5. To study the effects of pemetrexed, gefitinib, and their combination on expressions of genes related with pemetrexed in human colon cancer cells.
     6. To study the effects of pemetrexed, gefitinib, and their combination on the expressions of proteins of EGFR signal pathway in human colon cancer cells.
     Materials and Methods
     1. Antitumor effects of pemetrexed on human colon cancer cells HT-29, LoVo, SW620, HCT116, SW1116 and WiDr were detected by drug sensitivity test in vitro (MTT method); the mRNA expressions of RFC, FPGS, TS, and DHFR genes related with pemetrexed in six human colon cancer cells were detected by Real-Time Quantitive RT-PCR method; the correlation of antitumor effects of pemetrexed and expressions of genes related with pemetrexed in human colon cancer cells were analyzed.
     2. Antitumor effects of gefitinib on human colon cancer cells HT-29, LoVo, SW620, HCT116, SW1116 and WiDr were detected by drug sensitivity test in vitro (MTT method); EGFR and K-RAS gene mutations of six human cancer cells were detected by gene sequences detection; the correlation of antitumor effects of gefitinib and EGFR and K-RAS gene mutations in human colon cancer cells were analyzed.
     3. The pharmacodynamic effects of concurrent pemetrexed and gefitinib and sequential pemetrexed followed by gefitinib in human colon cancer cells HT-29, LoVo, SW620 and SW1116 cells were detected by drug sensitivity test in vitro (MTT method).
     4. The effects of pemetrexed, gefitinib, concurrent pemetrexed and gefitinib and sequential pemetrexed followed by gefitinib on cell cycles and apoptosis cell percentages of HT-29 and LoVo cells were studied by Flow cytometry detection,
     5. The effects of pemetrexed, gefitinib, concurrent pemetrexed and gefitinib on the mRNA expressions of RFC, FPGS, TS, and DHFR genes of HT-29 and LoVo cells were detected by Real-time quantitive RT-PCR method.
     6. The effects of pemetrexed, gefitinib, concurrent pemetrexed and gefitinib on the protein expressions of pEGFR, pAKT and pERK genes of HT-29 and LoVo cells were detected by western blot method.
     Results
     1. Pemetrexed inhibited the growth of HT-29, LoVo, SW620, HCT116, SW1116 and WiDr cells (P<0.01). The antitumor effects of pemetrexed were negatively correlated with TS gene expressions in six human colon cells (r=-0.886, P<0.05)
     2. Gefitinib inhibited the growth of HT-29, LoVo, SW620, HCT116, SW1116 and WiDr cells (P<0.01). Sequence analysis showed that the exon 19 of EGFR gene were deleted in LoVo cells, and exon 20 of EGFR gene in HT-29, SW1116 and WiDr cells were mutated. Because of cells having mutation are less, we did not find correlation between gefitinib's effect on and EGFR and K-RAS gene mutations of six colon cancer cells (P>0.05).
     3. Pemetrexed combined with gefitinib showed synergistic effects on human colon cancer cells HT-29, LoVo, SW620 and SW1116 (P<0.01).
     4. Pemetrexed, gefitinib, concurrent pemetrexed combined with gefitinib and sequential pemetrexed followed by gefitinib affected the cell cycles and apoptosis of HT-29 and LoVo cells(P<0.01).
     5. Gefitinib decreased TS and DHFR gene expressions of HT-29 and LoVo cells (P<0.01).
     6. Pemetrexed increased pEGFR, pAKT and pERK protein expressions of HT-29 and LoVo cells (P<0.01).
     Conclusions
     1. Pemetrexed can inhibit the growth of human colon cancer cells. The sensitivities to pemetrexed are negatively correlated with TS gene expressions in colon cancer cells.
     2. Gefitinib can inhibit the growth of human colon cancer cells.
     3. Pemetrexed combined with gefitinib has synergistic effects on human colon cancer cells.
     4. Pemetrexed, gefitinib and their combination affect the cell cycles and apoptosis of human colon cancer cells.
     5. Gefitinib reduces the gene expressions of TS and DHFR, and increases the sensitivities of human colon cancer cells to pemetrexed.
     6. Pemetrexed increases the protein expressions of pEGFR, pAKT and pERK, and gefitinib can reduce the increase caused by pemetrexed.
引文
1. Jemal A, Center MM, DeSantis C, et al. Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev,2010,19(8): 1893-1907.
    2. Jemal A, Siegel R, Ward E, et al. Cancer statistics,2009. CA Cancer J Clin, 2009,59(4):225-249.
    3. Longley DB, Harkin DP, Johnston PG.5-Fluorouracil:mechanisms of action and clinical strategies. Nat Rev Cancer,2003,3(5):330-338.
    4. Porschen R, Bermann A, Loffler T, et al. Fluorouracil Plus Leucovorin as Effective Adjuvant Chemotherapy in Curatively Resected Stage III Colon Cancer:Results of the Trial adjCCA-01. J Clin Oncol,2001,19(6): 1787-1794.
    5. Wolmark N, Rockette H, Mamounas E, et al. Clinical Trial to Assess the Relative Efficacy of Fluorouracil and Leucovorin, Fluorouracil and Levamisole, and Fluorouracil, Leucovorin, and Levamisole in Patients With Dukes'B and C Carcinoma of the Colon:Results From National Surgical Adjuvant Breast and Bowel Project C-04. J Clin Oncol,1999,17(11): 3553-3559.
    6. Meta-analysis Group in Cancer. Efficacy of intravenous continuous infusion of fluorouracil compared with bolus administration in advanced colorectal cancer. J Clin Oncol,1998,16(1):301-308.
    7. Walko CM, Lindley C. Capecitabine:A review. Clinical Therapeutics,2005, 27(1):23-44.
    8. Levi F, Perpoint B, Garufi C, et al. Oxaliplatin activity against metastatic colorectal cancer. A phase Ⅱ study of 5-day continuous venous infusion at circadian rhythm modulated rate. Eur J Cancer,1993,29A(9):1280-1284.
    9. Machover D, Diaz-Rubio E, de Gramont A, et al. Two consecutive phase Ⅱ studies of oxaliplatin (LOHP) for treatment of patients with advanced colorectal carcinoma who were resistant to previous treatment with fluoropyrimidines. Ann Oncol,1996,7(l):95-98.
    10. Cunningham D, Pyrhonen S, James RD, et al. Randomised trial of irinotecan plus supportive care versus supportive care alone after fluorouracil failure for patients with metastatic colorectal cancer. The Lancet,1998,352(9138): 1413-1418.
    11. Rougier P, Van Cutsem E, Bajetta E, et al. Randomised trial of irinotecan versus fluorouracil by continuous infusion after fluorouracil failure in patients with metastatic colorectal cancer. The Lancet,1998,352(9138):1407-1412.
    12. de Gramont A, Figer A, Seymour M, et al. Leucovorin and Fluorouracil With or Without Oxaliplatin as First-Line Treatment in Advanced Colorectal Cancer. J Clin Oncol,2000,18(47):2938-2947.
    13. Saltz LB, Cox JV, Blanke C, et al. Irinotecan plus Fluorouracil and Leucovorin for Metastatic Colorectal Cancer. N Engl J Med,2000,343(13): 905-914.
    14. Saltz LB, Clarke S, Diaz-Rubio E, et al. Bevacizumab in combination with oxaliplatin-based chemotherapy as first-line therapy in metastatic colorectal cancer:a randomized phase III study. J Clin Oncol,2008,26(12):2013-2019.
    15. Van Cutsem E, Rivera F, Berry S, et al. Safety and efficacy of first-line bevacizumab with FOLFOX, XELOX, FOLFIRI and fluoropyrimidines in metastatic colorectal cancer:the BEAT study. Ann Oncol,2009,20(11): 1842-1847.
    16. Saltz LB, Lenz HJ, Kindler HL, et al. Randomized phase Ⅱ trial of cetuximab, bevacizumab, and irinotecan compared with cetuximab and bevacizumab alone in irinotecan-refractory colorectal cancer:the BOND-2 study. J Clin Oncol,2007,25(29):4557-4561.
    17. Bokemeyer C, Bondarenko I, Makhson A, et al. Fluorouracil, leucovorin, and oxaliplatin with and without cetuximab in the first-line treatment of metastatic colorectal cancer. J Clin Oncol,2009,27(5):663-671.
    18. Van Cutsem E, Peeters M, Siena S, et al. Open-label phase III trial of panitumumab plus best supportive care compared with best supportive care alone in patients with chemotherapy-refractory metastatic colorectal cancer. J Clin Oncol,2007,25(13):1658-1664.
    19. Van Cutsem E, Kohne CH, Hitre E, et al. Cetuximab and chemotherapy as initial treatment for metastatic colorectal cancer. N Engl J Med,2009, 360(14):1408-1417.
    20. Amado RG, Wolf M, Peeters M, et al. Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer. J Clin Oncol,2008,26(10):1626-1634.
    21. Venook A. Critical evaluation of current treatments in metastatic colorectal cancer. Oncologist,2005,10(4):250-261.
    22. Tonkinson JL, Worzalla JF, Teng CH, et al. Cell cycle modulation by a multitargeted antifolate, LY231514, increases the cytotoxicity and antitumor activity of gemcitabine in HT29 colon carcinoma. Cancer Res,1999, 59(15):3671-3676.
    23. Tesei A, Ricotti L, De Paola F, et al. In Vitro schedule-dependent interactions between the multitargeted antifolate LY231514 and gemcitabine in human colon adenocarcinoma cell lines. Clin Cancer Res,2002,8(1):233-239.
    24. Raymond E, Louvet C, Tournigand C, et al. Pemetrexed disodium combined with oxaliplatin, SN38, or 5-fluorouracil, based on the quantisation of drug interactions in human HT29 colon cancer cells, Int J Oncol,2002,21(2): 361-367.
    25. Kano Y, Akutsu M, Tsunoda S, et al. Schedule-dependent synergism and antagonism between pemetrexed and paclitaxel in human carcinoma cell lines in vitro. Cancer Chemother Pharmacol,2004,54(6):505-513.
    26. Nannizzi S, Veal GJ, Giovannetti E, et al. Cellular and molecular mechanisms for the synergistic cytotoxicity elicited by oxaliplatin and pemetrexed in colon cancer cell lines. Cancer Chemother Pharmacol,2010,66(3):547-558.
    27. John W, Picus J, Blanke CD, et al. Activity of multitargeted antifolate (pemetrexed disodium, LY231514) in patients with advanced colorectal carcinoma:results from a phase Ⅱ study. Cancer,2000,88(8):1807-1813.
    28. Atkins JN, Jacobs SA, Wieand HS, et al. Pemetrexed/oxaliplatin for first-line treatment of patients with advanced colorectal cancer:a phase Ⅱ trial of the National Surgical Adjuvant Breast and Bowel Project Foundation Research Program. Clin Colorectal Cancer,2005,5(3):181-187.
    29. Costa DB, Kobayashi S, Tenen DG, et al. Pooled analysis of the prospective trials of gefitinib monotherapy for EGFR-mutant non small cell lung cancers. Lung Cancer,2007,58(1):95-103.
    30. Wu YL, Zhong WZ, Li LY, et al. Epidermal growth factor receptor mutations and their correlation with gefitinib therapy in patients with non-small cell lung cancer:a meta-analysis based on updated individual patient data from six medical centers in mainland China. J Thorac Oncol,2007,2(5):430-439.
    31. Yoshida K, Yatabe Y, Park JY, et al. Prospective validation for prediction of gefitinib sensitivity by epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer. J Thorac Oncol,2007,2(1):22-28.
    32. Azzariti A, Porcelli L, Xu JM, et al. Prolonged exposure of colon cancer cells to the epidermal growth factor receptor inhibitor gefitinib (Iressa(TM)) and to the antiangiogenic agent ZD6474:Cytotoxic and biomolecular effects. World J Gastroenterol,2006,12(32):5140-5147.
    33. Koyama M, Matsuzaki Y, Yogosawa S, et al. ZD1839 induces p15INK4b and causes G1 arrest by inhibiting the mitogen-activated protein kinase/ extracellular signal-regulated kinase pathway. Mol Cancer Ther,2007,6(5): 1579-1587.
    34. Zhang X, Nagahara H, Mimori K, et al. Mutations of epidermal growth factor receptor in colon cancer indicate susceptibility or resistance to gefitinib. Oncol Rep,2008,19(6):1541-1544.
    35. Solmi R, Lauriola M, Francesconi M, et al. Displayed correlation between gene expression profiles and submicroscopic alterations in response to cetuximab, gefitinib and EGF in human colon cancer cell lines. BMC Cancer, 2008,8:227.
    36. Zhao R, Qiu A, Tsai E, et al. The proton-coupled folale transporter:impact on pemetrexed transport and on antifolates activities compared with the reduced folate carrier. Mol Pharm,2008,74 (3):854-862.
    37. Baldwin CM, Perry CM. Pemetrexed:a review of its use in the management of advanced non-squamous non-small cell lung cancer. Drugs,2009,69(16): 2279-2302.
    38. Moran RC. Roles of folypoyl--glutamate synthetase in therapeutics with tetrahydrofolate antimetabolites:an overview. Semin Oncol,1999,26 (Suppl 6):24-32.
    39. Chattoopadhyay S, Moran RG, Goldman ID. Pemetrexed:biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer, 2007,6 (2):404-417.
    40. Von Hoff DD. Human tumor cloning assays:applications in clinical ncology and new antineoplastic agent development. Cancer Metastasis Rev.1988,7(4): 357-371
    41. Shih C, Chen VJ, Gossett LS, et al. LY231514, a pyrrolo [2,3-d] pyrimidine-based antifolate that inhibits multiple folate-requiring enzymes. Cancer Res, 1997,57(6):1116-1123.
    42. Mosmann T. Rapid colorimetric assay for cellular growth and survial: application to proliferation and cytotoxicity assay. J Immunol Methods,1983, 65(1-2):55-63.
    43. Sumantran VN. Cellular chemosensitivity assays:an overview. Methods Mol Biol,2011,731:219-236.
    44. Van Meerloo J, Kaspers GJ, Cloos J. Cell Sensitivity Assays:The MTT Assay. Methods Mol Biol,2011,731:237-245.
    45. Li T, Ling YH, Goldman ID, et al. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung cancer cells. Clin Cancer Res,13(11):3413-3422.
    46. Giovannetti E, Lemos C, Tekle C, et al. Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Mol Pharmacol,2008,73(4):1290-1300.
    47. Rinaldi DA, Kuhn JG, Burris HA, et al. A phase I evaluation of multitargeted antifolate (MTA, LY231514), administered every2 1 days, utilizing the modified continual reassessment method for dose escalation. Cancer Chemother Pharmacol,1999,44(5):372-380.
    48. Thodtmann R, Depenbrock H, Dumez H, et al. Clinical and pharmacokinetic phase I studyof multitargeted antifolate (LY231514) in combination with cisplatin. J Clin Oncol, 1999,17(10):3009-3016.
    1. Quatrale AE, Porcelli L, Silvestris N, et al. EGFR tyrosine kinases inhibitors in cancer treatment:in vitro and in vivo evidence. Front Biosci,2011, 16:1962-1972.
    2. Modjtahedi H, Essapen S. Epidermal growth factor receptor inhibitors in cancer treatment:advances, challenges and opportunities. Anticancer Drugs,2009, 20(10):851-855.
    3. Kohne CH, Lenz HJ. Chemotherapy with targeted agents for the treatment of metastatic colorectal cancer. Oncologist,2009,14(5):478-488.
    4. Lynch TJ, Bell DW, Sordella R, et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med,2004,350(21):2129-2139.
    5. Daphne WB, Thomas JL, SaraMH, et al. Epidermal growth factor receptor mutations and gene amplification in non-small-cell lung cancer:Molecular analysis of the IDEAL/INTACT gefitinib trials. J Clin Oncol,2005,23(31): 8081-8092.
    6. Sordella R, Bell DW, Haber DA, et al. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science,2004,305 (5687): 1163-1167.
    7. Pao W, Wang TY, Riely GJ, et al. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med,2005,2 (1):el7.
    8. Coldren CD, Helfrich BA, Witta SE, et al. Baseline gene expression predicts sensitivity to gefitinib in non-small cell lung cancer cell lines. Mol Cancer Res, 2006,4(8):521-528
    9. Janmaat ML, Rodriguez JA, Gallegos-Ruiz M, et al. Enhanced cytotoxicity induced by gefitinib and specific inhibitors of the Ras or phosphatidyl inositol-3 kinase pathways in non-small cell lung cancer cells, hit J Cancer, 2006,118(1):209-214.
    10. Cohen MH, Williams GA, Sridhara R, et al. United States Food and Drug Administration Drug Approval summary:Gefitinib (ZD1839; Iressa) tablets. Clin Cancer Res,2004,10(4):1212-1218.
    11. Baselga J, Rischin D, Ranson M, et al. Phase I safety, pharmacokineic, and pharmacodynamic trial of ZD1839, a selective oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with five selected solid tumor types. J Clin Oncol,2002,20(21):4292-4302.
    12. Rothenberg ML, Lafleur B, Levy DE, et al. Randomized phase II trial of the clinical and biological effects of two dose levels of gefitinib in patients with recurrent colorectal adenocarcinoma. J Clin Oncol,2005,23(36):9265-9274.
    13. Kuo T, Cho CD, Halsey J, et al. Phase II study of gefitinib, fluorouracil, leucovorin, and oxaliplatin therapy in previously treated patients with metastatic colorectal cancer. J Clin Oncol,2005,23 (24):5613-5619.
    14. Meyerhardt JA, Clark JW, Supko JG, et al. Phase I study of gefitinib, irinotecan,5-fluorouracil and leucovorin in patients with metastatic colorectal cancer. Cancer Chemother Pharmacol,2007,60 (5):661-670.
    15. Shih JY, Gow CH, Yu CJ, et al. Epidermal growth factor receptor mutations in needle biopsy/aspiration samples predict response to gefitinib therapy and survival of patients with advanced nonsmall cell lung cancer. Int J Cancer, 2006,118(4):963-969.
    16. Zhang XT, Li LY, Mu XL, et al. The EGFR mutation and its correlation with response of gefitinib in previously treated Chinese patients with advanced non-small-cell lung cancer. Ann Oncol,2005,16(8):1334-1342.
    17. Mitsudomi T, Kosaka T, Endoh H, et al. Mutations of the epidermal growth factor receptor gene predict prolonged survival after gefitinib treatment in patients with non-small-cell lung cancer with postoperative recurrence. J Clin Oncol,2005,23(11):2513-2520.
    18. Argiris A, Hensing T, Yeldandi A, et al. Combined analysis of molecular and clinical predictors of gefitinib activity in advanced non-small cell lung cancer: epidermal growth factor receptor mutations do not tell the whole story. J Thorac Oncol,2006,1(1):52-60.
    19. Tokumo M, Toyooka S, Kiura K, et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin Cancer Res,2005,11(3):1167-1173.
    20. Han SW, Kim TY, Jeon YK, et al. Optimization of patient selection for gefitinib in non-small cell lung cancer by combined analysis of epidermal growth factor receptor mutation, K-ras mutation, and Akt phosphorylation. Clin Cancer Res,2006,12(8):2538-2544.
    21. Sasaki H, Shimizu S, Endo K, et al. EGFR and erbB2 mutation status in Japanese lung cancer patients. Int J Cancer,2006,118(1):180-184.
    22. Paez JG, Janne PA, Lee JC, et al. EGFR mutations in lung cancer:correlation with clinical response to gefitinib therapy. Science,2004,304 (5676): 1497-1500.
    23. Eberhard DA, Johnson BE, AmLer LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patientswith non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol,2005,23 (25):5900-5909.
    24. Tomizawa Y, Iijima H, Sunaga N, et al. Clinicopathologic significance of the mutations of the epidermal growth factor receptor gene in patients with non-small cell Lung cancer. Clin Cancer Res,2005,11 (19):6816-6822.
    25. Shigematsu H, Li L, Takahashi T, et al. Clinical and biological features associated with ep idermal growth factor recep tor gene mutations in lung cancers. J Natl Cancer Inst,2005,97(5):339-346.
    26. Li T, Ling YH, Goldman ID, et al. Schedule-dependent cytotoxic synergism of pemetrexed and erlotinib in human non-small cell lung cancer cells. Clin Cancer Res,2007,13(11):3413-3422.
    1. Adams RA, Meade AM, Madi A, et al. Toxicity associated with combination oxaliplatin plus fluoropyrimidine with or without cetuximab in the MRC COIN trial experience. Br J Cancer,2009,100(2):251-258.
    2. Belani CP, Schreeder MT, Steis RG, et al. Cetuximab in combination with carboplatin and docetaxel for patients with metastatic or advanced-stage nonsmall cell lung cancer:a multicenter phase 2 study. Cancer,2008, 113(9):2512-2517.
    3. Ardavanis A, Kountourakis P, Karagiannis A, et al. Biweekly gemcitabine (GEM) in combination with erlotinib (ERL):an active and convenient regimen for advanced pancreatic cancer. Anticancer Res,2009,29(12): 5211-5217.
    4. Bogart JA, Govindan R.A randomized phase Ⅱ study of radiation therapy, pemetrexed, and carboplatin with or without cetuximab in stage III non-small-cell lung cancer.Clin Lung Cancer,2006,7(4):285-287.
    5. Ranson M, Reck M, Anthoney A, et al. Erlotinib in combination with pemetrexed for patients with advanced non-small-cell lung cancer (NSCLC):a phase I dose-finding study. Ann Oncol,2010,21(11):2233-2239.
    6. Konopa K, Jassem J. The role of pemetrexed combined with targeted agents for non-small cell lung cancer. Curr Drug Targets,2010,11(1):2-11.
    7. Pautier P, Joly F, Kerbrat P, et al. Phase II study of gefitinib in combination with paclitaxel (P) and carboplatin (C) as second-line therapy for ovarian, tubal or peritoneal adenocarcinoma (1839IL/0074). Gynecol Oncol,2010, 116(2):157-162.
    8. Cohen EE, Haraf DJ, Kunnavakkam R, et al. Epidermal growth factor receptor inhibitor gefitinib added to chemoradiotherapy in locally advanced head and neck cancer. J Clin Oncol,2010,28(20):3336-3343.
    9. Campos SM, Berlin ST, Parker LM, et al. Phase I trial of liposomal doxorubicin and ZD1839 in patients with refractory gynecological malignancies or metastatic breast cancer. Int J Clin Oncol,2010, 15(4):390-398.
    10. Herbst RS, Prager D, Hermann R, et al. TRIBUTE:A phase Ⅲ trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol,2005, 23(25):5892-5899.
    11. Giaccone G, Herbst RS, Manegold C, et al. Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer:a phase Ⅲ trial--INTACTl. J Clin Oncol,2004,22(5):777-784.
    12. Herbst RS, Giaccone G, SchillerJH, et al. Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer:a phase Ⅲ trial-INTACT 2. J Clin Oncol,2004,22(5):785-794.
    13. Gatzemeier U, Pluzanska A, Szczesna A, et al. Phase Ⅲ study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small-cell lung cancer:the Tarceva Lung Cancer Investigation Trial. J Clin Oncol,2007, 25(12):1545-1552.
    14. Moore MJ, GoldsteinD, Hamm J, et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer. A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J Clin Oncol,2007,25(15):1960-1966.
    15. Shepherd FA, Rodrigues Pereira J, CiuleanuT, et al. Erlotinib in previouslytr eated non-small-cell lung cancer. N Engl J Med,2005,353(2):123-132.
    16. Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer-molecular and clinical predictors of outcome. N Engl J Med,2005,353(5):133-144.
    17. Eberhard DA, Johnson BE, Amler LC, et al. Mutations in the epidermal growth factor receptor and in KRAS are predictive and prognostic indicators in patients with non-small-cell lung cancer treated with chemotherapy alone and in combination with erlotinib. J Clin Oncol,2005,23(25):5900-5909.
    18. Wu MF, Hsiao YM, Huang CF, et al. Genetic determinants of pemetrexed responsiveness and nonresponsiveness in non-small cell lung cancer cells. J Thorac Oncol,2010,5(8):1143-1151.
    19. Piperdi B, LingY, Kroog G, et al. Schedule dependent interaction between epidermal growth factor inhibitors (EGFRI) and G2/M blocking chemotherapeutic agents (G2/MB) on human NSCLC cell lines in vitro. Proc Am Soc Clin Oncol,2004,23:620A.
    20. Davies AM, Ho C, Lara PN Jr, et al. Pharmacodynamic separation of epidermal growth factor receptor tyrosine kinase inhibitors and chemotherapy in non-small-cell lung cancer. Clin Lung Cancer,2006,7(6):385-388.
    21. Piperdi B, Ling Y, Perez-Soler R. Schedule dependent interaction between bortezomib and erlotinib in NSCLC cell lines. Proc Amer Assoc Cancer Res, 2004,45:927A.
    22. Bianco C, Giovannetti E, Ciardiello F, et al. Synergjstic antitumor activity of ZD6474, an inhibitor of vascular endothelial growth factor receptor and epidermal growth factor receptor signaling, with gemcitabine and ionizing radiation against pancreatic cancer. Clin Cancer Res,2006,12(23):7099-7107.
    23. Morelli MP, Cascone T, Troiani T, et al. Sequence-dependent antiproliferative effects of cytotoxic drugs and epidermal growth factor receptor inhibitors. Ann Oncol,2005,16 (Suppl 4):iv61-68.
    24. Mendelsohn J, Baselga J. The EGF receptor family as targets for cancer therapy. Oncogene,2000,19(56):6550-6565.
    25. Chu E, Koeller DM, Casey JL, et al. Autoregulation of human thymidylate synthase messenger RNA translation by thymidylate synthase. Proc Natl Acad Sci U S A,1991,88(20):8977-8981.
    26. Magne N, Fischel JL, Dubreuil A, et al. ZD1839 (Iressa) modifies the activity of key enzymes linked to fluoropyrimidine activity:rational basis for a new combination therapy with capecitabine. Clin Cancer Res,2003, 9(13):4735-4742.
    27. Budman DR, Soong R, Calabro A, et al. Identification of potentially useful combinations of epidermal growth factor receptor tyrosine kinase antagonists with conventional cytotoxic agents using median effect analysis. Anticancer Drugs,2006,17(8):921-928.
    28. Giovannetti E, Lemos C, Tekle C, et al. Molecular mechanisms underlying the synergistic interaction of erlotinib, an epidermal growth factor receptor tyrosine kinase inhibitor, with the multitargeted antifolate pemetrexed in non-small-cell lung cancer cells. Mol Pharmacol,2008,73(4):1290-1300.
    29. Dziadziuszko R, Witta SE, Cappuzzo F, et al, Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non-small cell lung cancer. Clin Cancer Res,2006,12 (10):3078-3084.
    30. Baselga J, Arteaga CL. Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol,2005,23(11): 2445-2459.
    31. Sordella R, Bell DW, Haber DA, et al. Gefitinib-sensitizing EGFR mutations in lung cancer activate anti-apoptotic pathways. Science,2004,305(5687): 1163-1167.
    32. Amann J, Kalyankrishna S, Massion PP, et al. Aberrant epidermal growth factor receptor signaling and enhanced sensitivityt o EGFR inhibitors in lung cancer. Cancer Res,2005,65(1):226-235.
    33. Tracy S, Mukohara T, Hansen M, et al. Gefitinib induces apoptosis in the EGFRL858R non-small-cell lung cancer cell line H3255. Cancer Res,2004, 64(20):7241-7244.
    1. Qiu A, Jansen M, Sakaris A, et al. Identification of an intestinal folate transporter and the molecular basis for hereditary folate malabsorption. Cell, 2006,127(5):917-928
    2. Zhao R, Qiu A, Tsai E, et al. The proton-coupled folale transporter:impact on pemetrexed transport and on antifolates activities compared with the reduced folate carrier. Mol Pharm,2008,74 (3):854-862
    3. Baldwin CM, Perry CM. Pemetrexed:a review of its use in the management of advanced non-squamous non-small cell lung cancer. Drugs,2009,69(16): 2279-302
    4. Chattoopadhyay S, Moran RG, Goldman ID. Pemetrexed:biochemical and cellular pharmacology, mechanisms, and clinical applications. Mol Cancer, 2007,6 (2):404-417
    5. Racanelli AC, Rothbart SB, Heyer CL. et al. Therapeutics by cytotoxic metabolite accumulation:pemetrexed causes ZMP accumulation, AMPK activation and mammalian target or rapamycin inhibition. Cancer Res,2009, 69 (13):5467-5474
    6. Rinaldi DA, Kuhn JG, Burris HA, et al. A phase I evaluation of multitargeted antifolate (MTA, LY231514), administered every 21 days, utilizing the modified continual reassessment method for dose escalation. Cancer Chemother Pharmacol,1999,44(5):372-380.
    7. Thodtmann R, Depenbrock H, Dumez H, et al. Clinical and pharmacokinetic phase I study of multitargeted antifolate (LY231514) in combination with cisplatin. J Clin Oncol,1999,17 (10):3009-3016.
    8. Takimoto CH, Hammond-Thelin LA, Latz JE, et al. Phase I and pharmacokinetic study of pemetrexed with high-dose folic acid supplementation or multivitamin supplementation in patients with locally advanced or metastatic cancer. Clin Cancer Res,2007,13(9):2675-2683.
    9. Hanauske AR, Chen V, Paoletti P, et al. Pemetrexed disodium:a novel antifolate clinically active against multiple solid tumors. Oncologist,2001, 6(4):363-373.
    10. Scagliotti GV, Shin DM, Kindler HL, et al. Phase II study of pemetrexed with and without folic acid and vitamin B12 as front-line therapy in malignant pleural mesothelioma. J Clin Oncol,2003,21(8):1556-1561.
    11. Worzalla JF, Shih C, Shutlz RM. Role of folic acid in modulating the toxicity and efficacy of the multitargeted antifolate, LY231514. Anticancer Res,1998, 18(5A):3235-3239.
    12. Niyikiza C, Baker SD, Seitz DE, et al. Homocysteine and methylmalonic acid: markers to predict and avoid toxicity from pemetrexed therapy. Mol Cancer Ther,2002,1(17):545-552.
    13. Vogelzang NJ, Rusthoven JJ, Symanowski J, et al. Phase III study of pemetrexed in combination with cisplatin versus cisplatin alone in patients with malignant pleural mesothelioma. J Clin Oncol,2003,21(14):2636-2644.
    14. Latz JE, Karlsson MO, Rusthoven JJ, et al. A semimechanistic-physiologic population Pharmacokinetic/pharmacodynamic model for neutropenia following pemetrexed therapy. Cancer Chemother Pharmacol,2006,57(4): 412-426.
    15. Clarke SJ, Abratt R, Goedhals L, et al. Phase Ⅱ trial of pemetrexed disodium (ALIMTA, LY231514) in chemotherapy-napatients with advanced non-small cell lung cancer. Ann Oncol,2002,13(5):737-741.
    16. Rusthoven JJ, Eisenhauer E, Butts C, et al. Multitargeted antifolate LY231514 as first-line chemotherapy for patients with advanced non-small-cell lung cancer:a phase Ⅱ study. J Clin Oncol,1999,17(4):1194-1199.
    17. Gridelli C, Kaukel E, Gregorc V, et al. Single-agent pemetrexed or sequential pemetrexed/gemcitabine as front-line treatment of advanced non-small cell lung cancer in elderly patients or patients ineligible for platinum-based chemotherapy:a multicenter, randomized, phase Ⅱ trial. J Thorac Oncol,2007, 2(3):221-229.
    18. Manegold C, Gatzemeier U, von Pawel J, et al. Front-line treatment of advanced non-small-cell lung cancer with MTA (LY231514, pemetrexed sodium, ALIMTA) and cisplatin:a multicenter phase Ⅱ trial. Ann Oncol, 2000, 11(4):435-440.
    19. Shepherd FA, Dancey J, Arnold A, et al. Phase Ⅱ study of pemetrexed disodium, a multitargeted antifolate, and cisplatin as first-line therapy in patients with advanced nonsmall cell lung carcinoma:a study of the National Cancer Institute of Canada Clinical Trials Group. Cancer,2001,92(3): 595-600.
    20. Zinner RG, Fossella FV, Gladish GW, et al. Phase Ⅱ study of pemetrexed in combination with carboplatin in the first-line treatment of advanced nonsmall cell lung cancer. Cancer,2005,104(11):2449-2256.
    21. Scagliotti GV, Kortsik C, Dark GG, et al. Pemetrexed combined with oxaliplatin or carboplatin as first-line treatment in advanced non-small cell lung cancer:a multicenter, randomized, phase Ⅱ trial. Clin Cancer Res,2005, 11 (2 Pt 1):690-696.
    22. Scagliotti GV, Parikh P, von Pawel J, et al. Phase Ⅲ study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-mall-cell lung cancer. J Clin Oncol, 2008,26(21):3543-3551.
    23. Ye Z, Treat JA. Meta-analysis of pemetrexed (P) plus gemcitabine (G) in first line, advanced (adv) non-small cell lung cancer (NSCLC). J Clin Oncol,2007, 25(18s):18015a.
    24. Clarke SJ, Boyer MJ, Millward M, et al. A phase Ⅰ/Ⅱ study of pemetrexed and vinorelbine in patients with non-small cell lung cancer. Lung Cancer,2005, 49(3):401-412.
    25. Tucker S. The role of pemetrexed in second-line chemotherapy for advanced non-small cell lung cancer. Curr Drug Targets,2010, 11(1):58-60.
    26. Hanna N, Shepherd FA, Fossella FV, et al. Randomized phase Ⅲ trial of pemetrexed versus docetaxel in patients with non-small-cell lung cancer previously treated with chemotherapy. J Clin Oncol,2004,22(9):1589-1597.
    27. Scagliotti G, Hanna N, Fossella F, et al. The differential efficacy of pemetrexed according to NSCLC histology:a review of two Phase Ⅲ studies. Oncologist,2009,14(3):253-263.
    28. Weiss GJ, Langer C, Rosell R, et al. Elderly patients benefit from second-line cytotoxic chemotherapy:a subset analysis of a randomized phase Ⅲ trial of pemetrexed compared with docetaxel in patients with previously treated advanced non-small-cell lung cancer. J Clin Oncol,2006,24(27):4405-4411.
    29. Peterson P, Park K, Fossella F, et al. Is pemetrexed more effective in adenocarcinoma and large cell lung cancer than in squamous cell carcinoma? a retrospective analysis of a phase Ⅲ trial of pemetrexed vs docetaxel in previously treated patients with advanced non-small cell lung cancer (NSCLC). In:European Conference on Clinical Oncology (ECCO), September 23-27,2007, Barcelona, Spain, poster 6521.
    30. Ciuleanu T, Brodowicz T, Zielinski C, et al. Maintenance pemetrexed plus best supportive care versus placebo plus best supportive care for non-small-cell lung cancer:a randomised, double-blind, phase 3 study. Lancet,2009, 374(9699):1432-1440.
    31. Schmid-Bindert G, Chemaissani A, Fischer JR, et al. Pemetrexed in combination with cisplatin or carboplatin as adjuvant chemotherapy in early-stage NSCLC. J Clin Oncol,2009,27(15S):7565.
    32. Vincent M. Pemetrexed:potential role in the adjuvant chemotherapy of non-small cell lung cancer. Curr Drug Targets,2010, 11(1):78-84.
    33. Kreuter M, Vansteenkiste J, Griesinger F, et al. Trial on refinement of early stage non-small cell lung cancer. Adjuvant chemotherapy with pemetrexed and cisplatin versus vinorelbine and cisplatin:the TREAT protocol. BMC Cancer,2007,7:77.
    34. Brade AM, Bezjak A, MacRae R, et al. A Phase I study of concurrent pemetrexed (P)/cisplatin (C)/radiation (RT) for unresectable stage IIIA/B non-small cell lung cancer (NSCLC). J Clin Oncol,2008,26(Suppl.)
    35. Seiwert TY, Connell PP, Mauer AM, et al. A Phase I study of pemetrexed, carboplatin, and concurrent radiotherapy in patient with locally advanced or metastatic non-small cell lung or esophageal cancer. Clin. Cancer Res,2007, 13(2 Pt 1):515-522.
    36. Govindan R, Bogart J, Wang X, et al, A Phase Ⅱ study of pemeteexed, carboplatin and thoracic radiation with or without cetuximab in patients with locally advanced unresectable non-small cell lung cancer:CALGB 30407-early evaluation of feasibility and toxicity. J Clin Oncol,2008,26(15S).
    37. Konopa K, Jassem J. The role of pemetrexed combined with targeted agents for non-small cell lung cancer. Curr Drug Targets,2010,11(1):2-11.
    38. Ceppi P, Volante M, Savlozzi, et al. Squamous cell carcinoma of the lung compared with other histotypes shows higher messenger RNA and protein levels for thymidylate synthase. Cancer,2006,107(7):1589-1596.
    39. Hanauske AR, Eismann U, Oberschmidt O, et al. In vitro chemosensitivity of freshly explanted tumor cells to pemetrexed is correlated with target gene expression Invest New Drugs,2007,25(5):417-423.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700