虚拟手术仿真中软组织实时形变模型的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在虚拟手术仿真系统中,软组织形变模型主要用于描述人体器官软组织和手术器械之间的交互过程,它直接决定了手术仿真系统中视觉反馈和力觉反馈的精度、速度和仿真效果。由于软组织是一种具有线性、非线性、不可压缩性、各向异性和粘弹性等复杂性质的特殊弹性材料,解决软组织形变模型的视觉/触觉逼真度和计算实时性之间的矛盾是虚拟手术仿真系统当前重要的研究课题。本论文从研究解决以上难题为根本出发点,主要完成了如下一些研究工作:
     通过引入松弛函数(Relaxation Function)和迭代更新(Iterative Update Scheme)计算方法,基于Tensor-Mass模型(Tensor-Mass Model-TMM)提出了一种改进后的新模型(Improved Tensor Mass Model-ITMM)。ITMM模型主要特点是在原模型的基础上增加了对软组织粘弹性的描述能力,使得它可以比较全面地描述软组织各种材料性质,同时却没有明显地增加计算量,仍然可以满足实时交互要求。通过反求优化算法(Inverse Optimization Algorithm),将ITMM模型仿真的数据与软组织挤压实验数据进行了对比分析,测试结果表明:在经过优化算法找到合适的模型参数后,ITMM模型具有很好的数据拟合能力,准确性高。同时,在一个虚拟肝脏手术仿真系统中,通过蠕变、松弛和Hysteresis等测试项目的检测进一步验证了ITMM模型的性能。
     与TMM模型一样,ITMM模型实际上也是由弹簧质点模型和有限元模型构成的混合模型。由于它对应变能函数(Strain Energy Function-SEF)定义相对简单,尽管ITMM模型在TMM模型在增加了软组织粘弹性的描述能力,ITMM模型描述软组织不可压缩性、各向异性等材料性质的能力仍有待提高。为进一步提高ITMM模型的性能,提出了一种全新基于弹簧质点模型和有限元模型的混合实时形变模型(Hybrid Real-time Deformable Model-HRDM)。HRDM模型是通过重新定义ITMM模型的应变能函数定义得到的,可以看成是ITMM模型的一般化推广。它完全按照连续介质弹性理论的方法导出节点内力计算公式,而在求解运动方程时候则采用与经典的弹簧质点模型相同的方法。因此,HRDM模型可以比较全面的描述软组织各种材料特性并且保持了弹簧质点模型计算结构简单、内存需求少和计算效率高的优势。HRDM模型参照ITMM模型验证和测试方法进行类似的测试,实验仿真数据表明HRDM模型在对软组织材料性质描述能力较ITMM模型更优,运行效率上达到了实时交互的要求。
     为了能够描述软组织表面微观性质,本文提出了一种直接基于视觉纹理图像利用保持边缘特征的彩色图像降噪算法获得触觉纹理(Haptic Texture)的方法。通过基于触觉纹理的微观力反馈渲染算法以摩擦力的形式进一步提高HRDM模型对手术器械和软组织表面交互的渲染效果。这种微观力反馈渲染算法不需要专门设计力反馈硬件设备,仅仅使用通用力反馈设备即可。另外,它最大的特点就是实现视觉和触觉线索紧密融合,到达了“所见即所触”的效果,使得在虚拟手术环境下操作者获得的沉浸感更强。
     手术的过程实际上就是医生的手与眼睛相互协调,共同完成特定操作任务的过程。在虚拟手术仿真系统中提供立体显示的功能,将能在视觉上提供真正的深度感觉,提高训练效果。本文在分析各种立体显示相关技术原理的基础上,提出了一个虚拟手术仿真系统立体显示子系统实现方案。该方案最主要的优点就是它的软硬件兼容性好,对现有程序改动量小和性价比高。
     将本文所研究成果应用到一个气管切开虚拟手术仿真系统中。对该系统的设计与实现细节以及主要功能进行了简要介绍。
The key component of surgery simulation systems is a realistic soft tissue model which has been developed in an attempt to depict interactions between soft tissue and surgical instruments in the virtual environment. The deformable model of soft tissue determines directly the accuracy, speed and effectiveness of both visual feedback and force feedback. Although a significant amount of research efforts have been dedicated to simulating the behaviors of soft tissue, modeling of soft tissue deformation is still a challenging problem due to the complicated linear, nonlinear, anisotropic, nonhomogeneous, and viscoelastic (time, and rate dependent) behaviors of soft tissue. The most difficult problem is to satisfy the conflicting requirements of real-time interactivity and visual/haptic realism. In this thesis, studies were carried out in the following aspects:
     By introducing the relaxation function, internal variables and the iterative update scheme, we proposed an improved Tensor-Mass Model(ITMM). ITMM model is characterized by increasing the model's ability to describe the viscoelasticity of soft tissue, making it have much better description of various material properties of soft tissue. In the meantime, the new model does not compromise much the computation efficiency of original tensor-mass models. ITMM still meets the requirements of real-time interaction. The developed constitutive model was validated by means of the inverse optimization algorithm based on in vitro experimental data measured on cubic tissue samples for which the simulated annealing algorithm was used to obtain numerical values for the biomechanical parameters in compression tests. The quantitative comparison with the experimental results shows that the developed model resembles the real data very well. The proposed model was also used to simulate human liver in a prototype of surgical simulators.
     Like TMM model, ITMM model is actually a mixed model based on the Mass-Spring model and finite element model. Due to its relatively simple definition of strain energy function, its descriptive capability of the material properties, such as incompressibility and anisotropy, is very limited although ITMM model is able to incorpate viscoelasticity. We present a hybrid real-time deformable model (HRDM) in which the internal forces among mass nodes are derived within the framework of continuum mechanics. With the potential (strain energy) function of a classical mass-spring model being replaced with the new proposed one, the new model is able to describe typical behaviors of living tissue such as incompressibility, nonlinearity and anisotropy. In addition, the time-dependence of soft tissue (viscoelasticity) is also considered in the new model. Our approach is distinct from conventional mass-spring models in that a modified strain energy function, in accordance with three-dimensional finite strain elasticity theory, is used to derive internal forces among mass points. The new model can still keep the advantages of the mass-spring model such as a simple architecture, low memory usage, and fast execution speed. In addition, it has strong biomechanical relevance compared with the convention mass-spring model. The capabilities of the model and the efficiency of implementation are assessed by the benchmark problems and human organ simulation.
     In order to describe the microscopic surface properties of the soft tissue, this thesis presented a simple and intuitionistic algorithm of haptic texture generation based on image processing. As such, we proposed a new haptic texture rendering approach which can be called the macro force disturbance rendering algorithm. The approach requires minimal hardware support, and can be implemented on the standard force-feedback mechanism like PHANTOM Omni. The main advantage of our tactile rendering technique is that we can combine visual clue with haptic clue to make the surface of object feel more realistic.
     The operation process is mainly the coordination of the surgeon's hands and eyes. Providing three-dimensional display function in the virtual surgery simulation system will be able to provide real depth in the visual sense and improve training effect. This thesis analyzed a variety of related technologies about binocular stereoscopic display and proposed a framework of real-time rendering and displaying stereoscopic scenes of surgery simulation. The main advantage of the framework is good compatibility and low expense.
     The research results in this thesis were applied to a open cricothyroidotomy virtual surgery simulation system. The design, implementation and main features of the simulation system were prsented in the last chapter.
引文
[1]Basdogan C, Sedef M, and Stefan W. VR-based simulators for training in minimally invasive surgery[J]. IEEE Computer Graphics and Applications.2007,27(2):54-66
    [2]Xu S P, Liu X P, and Zhang H. Simulation of soft tissue using mass-spring model with simulated annealing optimization[C]. IEEE International Conference on Automation and Logistics. ShenYang, China:IEEE,2009.
    [3]Shen X, Zhou J, Hamam A, et al. Haptic-enabled telementoring surgery simulation[J]. IEEE MultiMedia.2008,15(1):64-75
    [4]Basdogan C and De S. Haptics in minimally invasive surgical simulation and training[J]. IEEE Computer Graphics and Applications.2004,24(2):56-64
    [5]Meier U, L'opez O, Monserrat C, et al. Real-time deformable models for surgery simulation:a survey[J]. Computer Methods and Programs in Biomedicine.2005,77(3):183-197
    [6]徐少平,刘小平,张华,等.虚拟手术中软组织实时形变模型的研究进展[J].生物医学工程学杂志.2010,27(2):435-439
    [7]邱峰,张际平,高岩.虚拟手术实验在医学教学领域中的应用[J].现代教育技术.2009,19(7):127-129
    [8]Xu S P, Liu X P, and Zhang H. A non-linear viscoelastic tensor-mass model for surgery simulation[C]. Proceedings of the 8th IEEE International Workshop on Haptic Audio Visual Environments and Games. Lecco, Italy 2009.48-53
    [9]Spencer B S. Incorporating the sense of smell into patient and haptic surgical simulators[J]. IEEE Transactions On Information Technology in Biomedicine.2006,10(1):168-173
    [10]Kuhnapfel U, Cakmak H K, and MaaB H. Endoscopic surgery training using virtual reality and deformable tissue simulation[J]. Computers & Graphics.2000,24(5):671-682
    [11]郭红,柏健鹰,吕伟,等.虚拟手术系统对外科学实践教学的作用探讨[J].西北医学教育.2009,17(4):822-823
    [12]Salisbury K, Conti F, and Barbagli F. Haptic rendering:Introductory concepts[J]. IEEE Computer Graphics & Applications.2004,24(2):24-32
    [13]Lopez-Canoa M, Rodriguez-Navarroc J, Rodriguez-Baezab A, et al. A real-time dynamic 3D model of the human inguinal region for surgical education[J]. Computers in Biology and Medicine 2007,37(9):1321-1326
    [14]Sachdeva A K. Simulation-based surgical education:efforts to advance simulation-based surgical education through the american college of surgeons-accredited education institutes[J]. Surgery.2010,147(5):612-613
    [15]United States National Library of Medicine. The visible human project 2003 [cited 2003; Available from:http://www.nlm.nih.gov/research/visible/visible_human.html.
    [16]Bro-Nielsen M. Finite element modeling in surgery simulation[J]. Proceedings of the IEEE. 1998,86(3):489-503
    [17]Alterovitz R and Pouliot J. Simulating needle insertion and radioactive seed implantation for prostate brachytherapy[J]. Medicine Meets Virtual Reality.2003,11(1):19-25
    [18]Ursino M and Tasto P. CathSim TM:an intravascular catheterization simulator on a PC[C]. 7th Medicine Meets Virtual Reality. Amsterdam, the Netherlands:IOS Press,1999.360-366
    [19]Pena E, Alastrue V, Laborda A, et al. A constitutive formulation of vascular tissue mechanics including viscoelasticity and softening behaviour[J]. Journal of Biomechanics.2010,43(5): 984-989
    [20]Okamura A M, Simone C, and Leary M D O. Force modeling for needle insertion Into soft tissue[J]. IEEE Transactions On Biomedical Engineering 2004,51(10):1707-1716
    [21]Chanthasopeephan T, Desai J P, and Lau A C W. Modeling soft-tissue deformation prior to cutting for surgical simulation:finite element analysis and study of cutting parameters[J]. IEEE Transactions On Biomedical Engineering 2007,54(3):349-359
    [22]Comas O, Taylor Z A, Allard J, et al. Effcient nonlinear FEM for soft tissue modelling and its GPU implementation within the open source framework SOFA[C]. Proceedings of the 4th international symposium on Biomedical Simulation London, UK Springer-Verlag Berlin, Heidelberg 2008.
    [23]孙剑,柴建云,唐泽圣.手术模拟中软组织变形的实时有限元新算法[J].系统仿真学报.2000,12(5):553-556
    [24]张立峰,刘锋,吕维雪.虚拟心脏的研究与应用[J].中国医疗器械杂志.2000,24(2):93-96
    [25]徐凯.基于力反馈的虚拟膝关节镜手术系统的研究与实现[D]国防科技大学,2005
    [26]谭珂,郭光友,潘新华,等.一种鼻内窥镜虚拟手术仿真系统[J].计算机工程.2006,32(16):243-244
    [27]李佑国.虚拟ACL重建手术中肌腱行为模拟技术研究[D]国防科技大学,2008
    [28]任巨.虚拟心脏介入手术中的血流模拟和特效场景处理[D]国防科技大学,2005
    [29]闵小平.鼻咽癌近距离放射治疗手术计划和仿真系统的关键技术研究[D]厦门大学,2008
    [30]谢杰镇.国人虚拟眼角膜建模与仿真研究[D]厦门大学,2007
    [31]贾世宇,潘振宽.虚拟手术中具备触觉功能的软组织交互技术[J].系统仿真学报.2008,20(8):2076-2080
    [32]贾世宇,潘振宽.虚拟手术中基于Tensor-Mass的变形仿真技术[J].系统仿真学报.2008,20(7):1686-1690
    [33]贾世宇,潘振宽.虚拟手术中基于最少单元分裂的切割仿真技术[J].系统仿真学报2008,20(6):1487-1492
    [34]宋卫国,原魁.用于触觉建模的生物组织切割特征多参量采集[J].系统仿真学报.2006,18(1):204-206
    [35]张小瑞,宋爱国,孙伟,等.支持力/触觉反馈的虚拟肝脏手术仿真系统[J].东南大学学报(自然科学版).2009,39(3):490-494
    [36]陆熊,宋爱国.力触觉再现中柔性物体可视化物理形变模型研究进展[J].计算机辅助设计与图形学学报.2008,20(11):1389-1395
    [37]吴涓,宋爱国,李建清.图像的力/触觉表达技术研究综述[J].计算机应用研究.2007,24(5):1-3
    [38]刘佳,宋爱国.虚拟柔性触觉再现技术的研究[J].系统仿真学报.2010,22(2):421-423
    [39]王征.虚拟手术中的软组织形变仿真算法研究[D]东南大学,2006
    [40]Wu W and Heng P A. An improved scheme of an interactive finite elementmodel for 3D soft-tissue cutting and deformation[J]. Visual Comput 2005,21(5):707-716
    [41]叶秀芬,乔冰,郭书祥,等.虚拟手术仿真中人体软组织形变技术的研究[J].计算机应用研究.2009,29(2):568-573
    [42]张吉帅,陈辉,吴雯,等.实时多组织虚拟手术的反馈力模拟[J].计算机辅助设计与图形学学报.2010,22(2):216-225
    [43]谢凯,杨杰.一种基于虚拟手术的三维碰撞检测算法[J].上海交通大学学报.2007,41(6):866-869
    [44]李艳波,印桂生,张菁,等.虚拟手术中基于可碰撞集的软组织自碰撞检测算法[J].计算机应用研究.2009,29(8):2101-2104
    [45]JimeHnez P, Thomas F, and Torras. C.3D collision detection:a survey[J]. Computers & Graphics.2001,25(2):269-285
    [46]Nealen A, Müller M, Keiser R, et al. Physically based deformable models in computer graphics[C]. EUROGRAPHICS. The Eurographics Association,2005.
    [47]Lu X and Song A. Stable haptic rendering with detailed energy-compensating control[J]. Computers & Graphics.2008,32 (5):561-567
    [48]戴培山.虚拟眼组织三维建模与仿真关键技术研究[D]中南大学,2007
    [49]孙家广.计算机图形学[M].北京:清华大学出版社,1998
    [50]Cover S A and Ezquerra N F. Interactively deformable models for surgery simulation[J]. IEEE Computer Graphics & Applications.1993,13(6):68-75
    [51]Sederberg T and Perry S. Free-form deformation of solid geometric models[C]. Proceedings of the 13th annual conference on Computer graphics and interactive techniques Dallas, USA: 1986.151-160
    [52]Sela G, Subaga J, Lindbladb A, et al. Real-time haptic incision simulation using FEM-based discontinuous free-form deformation[J]. Computer-Aided Design,.2007,39(8):685-693
    [53]Gibson S, Fyock C, Grimson E, et al. Volumetric object modeling for surgical simulation[J]. Medical Image Analysis.1998,2(2):121-132
    [54]Gibson S. Using linked volumes to model object collisions, deformation, cutting, carving, and joining[J]. IEEE Trans. Vis. Comput. Graphics.1999,5(4):333-340
    [55]Suzuki S, Suzuki N, Hattori A, et al. Sphere-filled organ model for virtual surgery system[J]. IEEE Transactions On Medical Imaging.2004,23(6):714-722
    [56]Lim Y-J and De S. Real time simulation of nonlinear tissue response in virtual surgery using the point collocation-based method of finite spheres[J]. Computer methods in applied mechanics and engineering.2007,196(31):3011-3024
    [57]TERZOPOULOS D, PLATT J, and BARR A. Elastically deformable models [J]. Computer Graphics.1987,21(4):205-214
    [58]VOllinger U, Stier H, and J. Priesnitz F-L K. Evolutionary optimization of mass-spring models[J]. Journal of Manufacturing Science and Technology.2009,1(3):137-141
    [59]Terzopoulos D and Waters K. Physically based facial modeling, analysis, and animation[J]. Journal of Visualization and Computer Animation.1990,1(2):73-80
    [60]Ch.Kuhn and Kuhnapfel. Karlsruhe endoscopic surgery trainer-a virtual reality based training system for minimally invasive surgery[C]. Computer Assisted Radiology(CAR96),1996.
    [61]蔡及时,孙汉秋,王平安.应用于网上虚拟手术的自适应变形模型[J].软件学报.2002,13(9):1893-1898
    [62]Duysak A, Zhang J J, and Ilankovan V. Efficient modelling and simulation of soft tissue deformation using mass-spring systems[J]. International Congress Series.2003,1256(7): 337-342
    [63]Choi K-S, Sun H, and Heng P-A. An efficient and scalable deformable model for virtual reality-based medical applications[J]. Artificial Intelligence in Medicine.2004,32(1):51-69
    [64]Lloyd B A, kely G b S, and Harders M. Identification of spring parameters for deformable object simulation[J]. IEEE Transactions On Visualization and Computer Graphics. 2007,13(5):1081-1094
    [65]张秋葵,罗立民.一种抗单元逆转的软组织有限元模型[J].计算物理.2009,26(2):169-174
    [66]黄绍辉,王博亮.使用有限元模型仿真可变形物体的研究进展[J].系统仿真学报.2007,19(22):5315-5321
    [67]Berkley J, Turkiyyah G, Berg D, et al. Real-time finite element modeling for surgery simulation:an application to virtual suturing[J]. IEEE Transactions On Visualization and Computer Graphics.2004,10(8):314-325
    [68]Cotin S, Delingtte H, and Ayache N. A hybrid elastic model allowing real-time cutting,deformations and force-feedback for surgery training simulation[J]. VisualComputer. 2000,16(8):437-452
    [69]Peterhk'Ⅰ, MertSedef, Basdogan C, et al. Real-time visio-haptic interaction with static soft tissue model shaving geometric and material nonlinearity[J]. Computers & Graphics. 2010,34(1):43-54
    [70]Tang Y M, Zhou A F, and Hui K C. Comparison of FEM and BEM for interactive object simulation[J]. Computer-Aided Design 2006,38 (8):874-886
    [71]Kamiya N and Iwase H. BEM and FEM combination parallel analysis using conjugate gradient and condensation[J]. Engineering Analysis with Boundary Elements.1997 20 (4): 319-326
    [72]CHOI M G and KO H S. Modal warping:real-time simulation of large rotational deformation and manipulation.[J]. IEEE Transactions on Visualization and Computer Graphics. 2005,11(1):91-101
    [73]Muller M, Dorsey J, McMillan L, et al. Stable real-time deformations. [C]. ACM SIGGRAPH/EG symposium on computer animation.2002.
    [74]Yang M, Lu J, Safonova A, et al. GPU methods for real-time haptic interaction with 3D fluids[C]. The 8th IEEE International Workshop on Haptic Audio Visual Environments and Games. Italy:IEEE,2009.
    [75]Tejada E and Ertl T. Large steps in GPU-based deformable bodies simulation[J]. Simulation Modelling Practice and Theory.2005,13(8):703-715
    [76]Hieber S E and Koumoutsakos P. A lagrangian particle method for the simulation of linear and nonlinear elastic models of soft tissue[J]. Journal of Computational Physics. 2008,227(21):9195-9215
    [77]Pauly M, Keiser R, Adams B, et al. Meshless animation of fracturing solids[C]. ACM Transactions on Graphics (Proceedings of SIGGRAPH). ACM New York, NY, USA 2005. 957-964
    [78]Monaghan J J. SPH without a tensile instability [J]. Journal of Computational Physics. 2000,159(2):290-311
    [79]Monaghan J J. Smoothed particle hydrodynamics[J]. Journal of Computational Physics. 2005,68(8):1703-1759
    [80]Muller M, Schirm S, and Teschner M, Interactive blood simulation for virtual surgery based on smoothed particle hydrodynamics, in Technology and Health Care IOS Press.2004. p. 25-31.
    [81]Picinbono G, Delingette H e, and Ayache N. Non-linear anisotropic elasticity for real-time surgery simulation[J]. Graphical Models.2003,65(5):305-321
    [82]Mollemans W, Schutyser F, Nadjmi N, et al. Predicting soft tissue deformations for a maxillofacial surgery planning system:From computational strategies to a complete clinical validation[J]. Medical Image Analysis.2008,11(3):282-301
    [83]Xu S P, Liu X P, Zhang H, et al. A nonlinear viscoelastic tensor-mass visual model for surgery simulation[J]. IEEE Transactions on Instrumentation & Measurement.2010:
    [84]Xu S P, Liu X P, Zhang H, et al. An improved realistic mass-spring model for surgery simulation[C].9th IEEE International Symposium on Haptic Audio Visual Environments and Games. Phoenix, Arizona, USA:IEEE,2010.
    [85]Shi H, Farag A A, Fahmi R, et al. Validation of finite element models of liver tissue using micro-CT[J]. IEEE Transactions On Biomedical Engineering 2008,55(3):978-984
    [86]Lu M, Yu W, Huang Q H, et al. A hand-held indentation system for the assessment of mechanical properties of soft tissues in vivo[J]. IEEE Trans. Instrum. Meas.2009,58(9): 3079-3085
    [87]Kerdok A E, Ottensmeyer M P, and Howe R D. Effects of perfusion on the viscoelastic characteristics of liver[J]. Journal of Biomechanics.2006,39(2):2221-2231
    [88]Nava A, Mazza E, Furrer M, et al. In vivo mechanical characterization of human liver[J]. Medical Image Analysis.2008,12(4):203-216
    [89]Syllebranque C, Boivin S, Duriez C, et al. Estimation of hookean parameters of deformable bodies from real videos[C]. International Conference on Cyberworlds. IEEE,2007.
    [90]Lei F and Szeri A Z. Inverse analysis of constitutive models:Biological soft tissues [J]. Journal of Biomechanics.2007,40(4):936-940
    [91]Zilles C B, Salisbury, J. K.,. A constraint-based God-object method for haptic display [C]. ASME Haptic Interfaces for Virtual Environment and Teleoperator Systems 1994, Dynamic Systems and Control Chicago, Illinois IEEE,1994.146-150
    [92]徐少平,张华,江顺亮,等.一种改进的快速矢量中值滤波器[J].光电子.激光.2009,20(1):89-93
    [93]徐少平,张华,江顺亮,等.基于颜色分量单独噪声检测的混合中值滤波器[J].光电子.激光.2009,20(7):930-933
    [94]徐少平,张华,江顺亮,等.抗高噪声彩色图像的Canny边缘检测器[J].计算机工程.2009,35(14):22-24
    [95]Ren J, Patel R V, Mclsaac K A, et al. Dynamic 3-D virtual fixtures for minimally invasive beating heart procedures[J]. IEEE Transactions On Medical Imaging 2008,27(8):1061-1070
    [96]Bischoff J E. Continuous versus discrete (invariant) representations of fibrous structure for modeling non-linear anisotropic soft tissue behavior[J]. International Journal of Non-Linear Mechanics 2006,41(2):167-179
    [97]Fung Y. A first course in continuum mechanics for physical and biological engineers and scientists[M]. Englewood Cliffs, New Jersey:PRENTICE HALL 1994
    [98]Fung Y. Biomechanics:mechanical properties of living tissues[M]. Springer-Verlag,1993
    [99]Taylor Z, Comas O, Cheng M, et al. On modelling of anisotropic viscoelasticity for soft tissue simulation:Numerical solution and gpu execution[J]. Medical Image Analysis. 2009,13(2):234-244
    [100]Sedef M, Samur E, and Basdogan C. Real-time finite element simulation of linear viscoelastic tissue behavior based on experimental data[J]. IEEE Computer Graphics & Applications.2006,26(5):58-68
    [101]Bischoff J E, Arruda E M, and Grosh K. A rheological network model for the continuum anisotropic and viscoelastic behavior of soft tissue[J]. Biomechan Model Mechanobiol. 2004,3(1):56-65
    [102]Quaglini V, Previdi F, Contro R, et al. A discrete-time nonlinear Wiener model for the relaxation of soft biological tissues[J]. Medical Engineering & Physics.2002,24(1):9-19
    [103]Samur E, Sedef M, Basdogan C, et al. A robotic indenter for minimally invasive measurement and characterization of soft tissue response[J]. Medical Image Analysis. 2007,11(11):361-373
    [104]Hu T and Desai J. Soft-tissue material properties under large deformation:Strain rate effect[C].26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. USA,San Francisco:2004.2758-2761
    [105]Lee E H and Radok J R M. The contact problem for viscoelasticbodies[J]. Journal of Applied Mechanics.1960,27(11):438-444
    [106]Ahn B and Kim J. Measurement and characterization of soft tissue behavior with surface deformation and force response under large deformations [J]. Medical Image Analysis. 2010,14(2):128-148
    [107]Liu K, VanLandingham M R, and Ovaerta T C. Mechanical characterization of soft viscoelastic gels via indentation and optimization-based inverse finite element analysis[J]. Journal of the Mechanical Behavior of Biomedical Materials.2009,2(4):355-363
    [108]Jeong S, Kim K, and Lee Y. The efficient search method of simulated annealing using fuzzy logic controller[J]. Expert Systems with Applications.2009,36(5):7099-7103
    [109]Liu H, Noonan D P, Zweiri Y H, et al. The development of nonlinear viscoelastic model for the application of soft tissue identification[C]. Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, CA, USA:IEEE, 2007.
    [110]EDP Sciences. Modelling liver tissue properties using a non-linear viscoelastic model for surgery simulation.2002; Available from:http://www.edpsciences.org/proc.
    [111]Mollemans W, Schutyser F, Nadjmi N, et al. Very fast soft tissue predictions with mass tensor model for maxillofacial surgery planning systems[J]. International Congress Series. 2005,1281(May):491-496
    [112]Nicolle S, Vezin P, and Palierne J-F. A strain-hardening bi-power law for the nonlinear behaviour of biological soft tissues[J]. Journal of Biomechanics.2010,43(5):927-932
    [113]Castaneda M A P and Cosio F A. Deformable model of the prostate for TURP surgery simulation[J]. Computers & Graphics 2004,28(5):767-777
    [114]Pioletti D P and Rakotomanana L R. Non-linear viscoelastic laws for soft biological tissues[J]. European Journal of Mechanics-A/Solids.2000,19(5):749-759
    [115]Hartmann S. Computation in finite-strain viscoelasticity:finite elements based on the interpretation as differential-algebraic equations[J]. Computer methods in applied mechanics and engineering.2002,191(13-14):1439-1470
    [116]Pena E, Pena J A, and Doblare M. On modelling nonlinear viscoelastic effects in ligaments[J]. Journal of Biomechanics.2008,41(12):2659-2666
    [117]Brands D W A, Peters G W M, and Bovendeer P H M. Design and numerical implementation of a 3-D non-linear viscoelastic constitutive model for brain tissue during impact[J]. Journal of Biomechanics 2004,27(1):127-134
    [118]Peyraut F, Feng Z-Q, Labed N, et al. A closed form solution for the uniaxial tension test of biological soft tissues[J]. International Journal of Non-Linear Mechanics.2010,45(5): 535-541
    [119]Spencer A J M. Theory of invariants[M]. New York:Academic Press,1971
    [120]Nguyen T D, Jones R E, and Boyce B L. Modeling the anisotropic finite-deformation viscoelastic behavior of soft fiber-reinforced composites[J]. International Journal of Solids and Structures 2007,44(25-26):8366-8389
    [121]Limbert G and Middleton J. A transversely isotropic viscohyperelastic material Application to the modeling of biological soft connective tissues[J]. International Journal of Solids and Structures 2004,41(15):4237-4260
    [122]Limbert G and Taylor M. On the constitutive modeling of biological soft connective tissues A general theoretical framework and explicit forms of the tensors of elasticity for strongly anisotropic continuum fiber-reinforced composites at finite strain [J]. International Journal of Solids and Structures 2002,39(8):2343-2358
    [123]Gibson. J J. The senses considered as perceptual systems[M]. HoughtonMifflin,1966
    [124]Srinivasan M A and Basdogan C. Haptics in virtual environments:taxonomy, research status, and challenges[J]. Computers and Graphics.1997,21(4):393-404
    [125]Palmerius K L, Cooper M, and Ynnerman A. Haptic rendering of dynamic volumetric data[J]. IEEE Transactions On Visualization and Computer Graphics.2007,14(2):263-276
    [126]张小瑞,宋爱国,刘佳,等.虚拟物体的力/触觉模型及再现技术研究进展[J].系统仿真学报.2009,21(15):4555-4560
    [127]刘冠阳,张玉茹,王党校.触觉交互系统中牙齿网格模型被切削过程的图形仿真[J].系统仿真学报.2005,17(5):1129-1131
    [128]王党校,张玉茹,王玉慧,等.实时力觉交互中的虚拟力计算及渲染方法[J].系统仿真学报.2004,16(7):1494-1498
    [129]Mahvash M and Hayward V. High-fidelity passive force-reflecting virtual environments[J]. IEEE Transactions On Robotics.2005,21(1):38-46
    [130]Laycock S D and Day A M. Incorporating haptic feedback for the simulation of a deformable tool in a rigid scene[J]. Computers & Graphics 2005,29(3):341-351
    [131]陈成军,周以齐,杨红娟.基于碰撞检测的触觉渲染优化方法[J].系统仿真学报.2007,19(20):4704-4707
    [132]Kuroda Y, Nakao M, Kuroda T, et al. Interaction model between elastic objects for haptic feedback considering collisions of soft tissue[J]. Computer Methods and Programs in Biomedicine 2005,80(3):216-214
    [133]Choi S and Tan H Z. Aliveness:perceived instability from a passive haptic texture rendering system[C]. Proceedings of the 2003 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems. Las Vegas, Nevada IEEE,2003.
    [134]Ruspini D C, Kolarov K, and Khatib O. The haptic display of complex graphical environments[C]. Computer Graphics Proceedings, Annual Conference Series. Los Angeles, California:ACM,1997.
    [135]Wagner C R, Lederman S J, and Howe R D. A tactile shape display using RC servomotors[C]. Presented at the Tenth Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems. Orlando:2002.
    [136]Yamamoto A, Nagasawa S, Yamamoto H, et al. Electrostatic tactile display with thin film slider and its application to tactile telepresentation systems[J]. IEEE Transactions On Visualization and Computer Graphics 2006,12(2):168-177
    [137]Campion G and Hayward V. On the synthesis of haptic textures[J]. IEEE Transaction On Robotics.2008,24(3):527-536
    [138]Choi S and Tan H Z. Effect of update rate on perceived instability of virtual haptic texture[C]. Proceedings of 2004 IEEE/RSJ Internaltional Conference on Intelligent Robotics and systems. Sendai, Japan:IEEE,2004.
    [139]Mercier B L and Kheddar A. How can stochastic and periodic textures be visuo-haptically rendered[C]. IEEE International Workshop on Haptic Audio Visual Environments and their Applications. Ottawa, Canada:IEEE,2007.130-135
    [140]徐少平,张华,江顺亮,等.基于直觉模糊集的图像相似性度量[J].模式识别与人工智能.2009,22(1):156-161
    [141]徐少平,张华,江顺亮,等.图像区间模糊模型及其在图像检索中的应用[J].光电子.激光.2009,20(4):530-533
    [142]Smolka B and Chydzinski A. Fast detection and impulsive noise removal in color images[J]. Real-Time Imaging.2005,11(5):389-402
    [143]张旭明,徐滨士,董世运,等.去除脉冲噪声的自适应开关中值滤波[J].光电工程.2006,33(6):78-83
    [144]Colgate J E and Schenkel G G. Passivity of a class of sampled-data systems:application to haptic interfaces[J]. Journal of Robotic Systems.1997,14(1):37-47
    [145]Lin T-T, Hsiung Y-K, Hong G-L, et al. Development of a virtual reality GIS using stereo vision[J]. Computer and Electronics in Agriculture.2008,63(1):38-48
    [146]阮邱琦.数字图像处理学[M].北京:电子工业出版社,2007
    [147]梁发云,邓善熙,杨永跃.基于裸眼立体显示的视频变换技术研究[J].应用科学学报.2005,23(4):435-437
    [148]孙超.几种立体显示技术的研究[J].计算机仿真.2008,25(4):213-217
    [149]NUVISION. Perceiva DSD190 Stereoscopic Monitor 2008 [cited 2008; Available from: http://nuvision3d.com/theDSD 190.html.
    [150]iZ3D. iZ3D Products. [cited 2010; Available from:http://www.iz3d.com/products.
    [151]丁见,杨华,陈志俊.气管切开术142例及并发症预防探讨[J].山东大学耳鼻喉眼学报.2009,23(5):52-54
    [152]Chang Y-H, Chen Y-T, Chang C-W, et al. Development scheme of haptic-based system for interactive deformable simulation[J]. Computer-Aided Design 2010,42(5):414-424
    [153]Jerabkova L and Kuhlen T. Stable cutting of deformable objects in virtual environments using XFEM[J]. IEEE Computer Graphics and Applications.2009,29(2):61-71
    [154]Bielser D. A state machine for real-time cutting of tetrahedral meshes[J]. Graphical Models. 2004,66(6):398-417
    [155]Basdogan C, Ho C, and Srinivasan M. Simulation of tissue cutting and bleeding for laparoscopic surgery using auxiliary surfaces[M]. IOS Press,1999
    [156]Steinemann D. Hybrid cutting of deformable solids[C]. IEEE Conf. Virtual Reality (VR 06). IEEE CS Press,2006.35-42
    [157]E.Koop B and L.Lewis J. A model of fracture testing of soft viscoelastic tissues[J]. Journal of Biomechanics 2003,36(4):605-608
    [158]Choi K-S. Interactive cutting of deformable objects using force propagation approach and digital design analogy[J]. Computers & Graphics 2006,30(2):233-243
    [159]Chanthasopeephan T, Desai J P, and Lau A C W. Deformation resistance in soft tissue cutting:a parametric study[C].12th International Symp. Haptic Interfaces for Virtual Environment and Teleoperator Systems (Haptics 04). IEEE CS Press,2004.323-330
    [160]Alastrue'V, Rodn'guez J F, Calvo B, et al. Structural damage models for fibrous biological soft tissues[J]. International Journal of Solids and Structures 2007,44(18-19):5894-5911
    [161]Taylor Z, Cheng M, and Ourselin S. High-speed nonlinear finite element analysis for surgical simulation using graphics processing units[J]. IEEE Trans. Med. Imag.2008,27(5): 650-663
    [162]Qina J, Choi K-S, Poon W-S, et al. A framework using cluster-based hybrid network architecture for collaborative virtual surgery[J]. Computer Methods and Programs in Biomedicine.2010,96(3):205-216

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700