反钙钛矿锰氮化合物Mn_3(A_(1-x)B_x)N的负热膨胀性质的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自2005年反钙钛矿锰氮化合物Mn3(Cu1-xGex)N负热膨胀性质被发现以来,该化合物以其良好的负热膨胀性质,如:各向同性的负热膨胀行为,可调的负热膨胀温区和系数,负热膨胀系数幅度较大,结构稳定且具有较好的机械性质和输运性质等,使其在诸多领域具有非常广泛的应用前景。这引起了人们对这一材料的重视。于是,人们进一步研究了不同掺杂元素以及N空位对这类体系负热膨胀性质的影响,同时也在不断地探索其负热膨胀的机理。已有的研究认为这类材料的反常热膨胀行为是来源于掺杂Ge原了引起的局域结构扭曲,另一种观点认为材料的负热膨胀性质是来源于体系中存在的磁相互作用,然而对于其反常热膨胀的起源和机理依然没有给出清楚的解释。显然对这些问题的研究无论是对于理解这类材料中出现的奇异的负热膨胀性质,还是对于开发新型的负热膨胀材料都具有重要意义。本文着重研究这类材料的反常热膨胀的机理以及Ge在体系负热膨胀性质中的作用。
     本论文一共分为五章。在第一章里,我们简要介绍了负热膨胀的机理、应用前景和一些典型的负热膨胀材料。其中,重点介绍了本论文所要研究的材料Mn3(Cu1-xGex)N的负热膨胀性质、不同掺杂对其负热膨胀行为的影响以及实验上对其负热膨胀机理的研究状况。
     体系中Mn离子是具有磁矩的,因此对这个材料的物理性质的研究就必然涉及到磁性方面的知识。在第二章,我们简要地介绍了本论文中用到的磁性理论以及计算磁响变温度的蒙特罗方法。最后,我们还介绍了在本文计算中采用的密度泛函理论和VASP软件包。
     从第三章开始介绍我们的研究工作。
     对Mn3(Cu1-xGex)N化合物,通过计算体系中不同磁构型(局域磁矩的一种排列)的能量曲线,我们发现体系的基态磁构型Γ5g具有较大的平衡晶格常数,因此当体系从基态磁构型到顺磁态的相变过程中将会伴随着体系体积的收缩。体系的电子结构性质表明,随着温度的升高,掺杂的Ge原子能够向体系费米能级附近的导带提供更多的价电子,这些导带电子一方面增强次近邻Mn离子间的吸引相互作用,同时也极化了Mn离子的局域电子,造成Mn离子局域磁矩的改变,导致体系的体积随温度的升高面减小
     在第三章中,我们还讨论了Ge浓度和N空位对体系负热膨胀性质的影响。计算结果表明随着Ge含量的增大和N空位的出现,体系的基态磁构型Γ5g越来越稳定,而亚稳态磁构型的能量升高,意味着体系的相变温度随着Ge含量的增大而上升。体系在基态磁构型和顺磁态时的体积差随着Ge含量的增大而增大,说明Ge增大了体系在相变时的体积收缩量。最后,我们通过分析交换积分,发现N空位以及Ge浓度对体系的第一近邻和第二近邻交换积分产生较大的影响,从而使Γ5g磁构型更为稳定。
     第四章中总结了我们关于该材料的弹性性质的研究结果。我们的计算发现体系的弹性是各向异性的,掺杂的Ge原子能够增强体系的延展性。另外,我们预测,在Ge浓度较低时(低于50%)体系杨氏模量和体积模量随着Ge浓度的增大而增大,这与实验观测的结果符合得很好。通过对体系的电子结构的分析,我们认为这个变化趋势是由于Ge原子在费米能级处贡献的价电子所造成的。
     在第五章里,我们研究了不同掺杂元素对体系Mn3(A0.5B0.5)N(A=Cu、Zn、 Ag、Cd或Mg; B=Si、Ge或Sn)的负热膨胀性质的影响。计算结果表明:Si、Ge和Sn元素能够稳定体系基态磁构型Γ5g,增大基态磁构型和顺磁态时的体积差,从含Si到含Sn体系,体系的相变温度升高。对于含Cu、Zn或Mg的体系,相变时其体积收缩幅度要比含Ag或Cd的大,其中含Zn或Mg的体系最大;与含Ag或Cd的体系相比,含Mg、Cu或Zn的体系的相变温度较低,而对于这三个体系,含Zn的体系相变温度要高一些。
Since the discovery of the negative thermal expansion (NTE) in the antiperovskite manganese nitrides Mn3(Cu1-xGex)N in2005, these compounds have been paid much attention, because of their excellent NTE behaviors, such as:(1) the coefficient and working temperature of NTE can be tunable;(2) the negative coefficient can reach as large as-25x10-6K-1;(3) the negative thermal expansion is isotropic;(4) the compounds show good mechanical and metallic behaviors. Prompted by this pioneering research, many other groups have studied the doping effect on the NTE behaviors through doping Zn, Sn, Si or some other elements into the compound. At the same times, the origin of the NTE has been studied. Although many efforts have been done, the mechanism of the NTE properties is still a puzzle for the Mn3(Cu1-xGex)N compounds. Obviously, exploring the mechanism is not only important for understanding the fascinating property of such a class of compounds, but also of benefit to the synthesizing of advanced NTE materials in the future. So in this dissertation, we investigate the mechanism of the NTE behaviors and the effect of the doped Ge atoms on the NTE behaviors of the Mn3(Cu1-xxGex)N compounds.
     This dissertation contains five chapters. In the first chapter, we introduce the common NTE materials as well as their applications in brief. Then, the detailed NTE properties and its possible mechanism for Mn3(Cu1-xGex)N compounds are reviewed.
     Since the Mn ions in the compounds have the local magnetic moments, our dissertation will be relevant to the knowledge about the magnetism theory. So in the second chapter, the magnetism theory and the Monte Carlo method that is used to simulate the transition temperature are introduced. In this chapter, we also present the density functional theory and the VASP package used in our theoretical calculations.
     From the third chapter, we start to report our research on Mn3(Cu1-xGex)N compounds.
     In the third chapter, we report our study on the origin and the effect of the Ge atoms on the NTE behaviors in the compounds of Mn3(Cu1-xGex)N. By minimizing the energies of many different magnetic configurations (the arrangements of the local magnetic moments), we find that the antiferromagnetic (AFM) configuration Δ5g have the lowest energy and the largest lattice constant. So, when the compound transforms its magnetic state from the ground state to the paramagnetic (PM) state, the volume of the compound will be contracted. Analyzing the electronic structure of the compound indicates that the doped Ge atoms can easily donate more electrons into the conduction bands nearby the Fermi level of the compound via thermal excitation, enhancing the attractive interaction between the second neighboring Mn ions, as well as polarizing some of the local electrons to change the local magnetic moments of Mn ions, causing a gradual contraction of volume with increasing temperature.
     We also study the influence of the Ge content and the N vacancies on the NTE properties of Mn3(Cu1-xGex)N compounds, which is summarized in Chapter3too. Our results indicate that, as the Ge content and the N vacancies increase, the ground state configuration Γ5g become more stable, and the energies of the matestable configurations increase, meaning that the transition temperature of the compound is elevated. The different values of the volumes between the ground state and the PM state increase as the increment of the Ge content, suggesting that the Ge atoms could enlarge the volume contraction at the magnetic transition. The exchange interactions and the influence of these interactions on the volume of the compound are also extracted, from which we find that the interactions between the first and the second neighboring Mn ions dominate the magnetic interactions and make the configuration Γ5g more stable.
     In the fourth chapter, we study the elastic properties of the compounds of Mn3(Cu1-xGex)N. Through analyzing the results, we find that the compounds have high elastic anisotropy and the doped Ge atoms enhance the ductile character. Furthermore, when the Ge content increases from12.5%to50%, the bulk modulus and the Young's modulus of the compound increase. This is in agreement with the experimental results. Then, we analyze the electronic structures of the compound and propose that these elastic features are essentially attributed to the valence electrons from the doped Ge.
     In the last chapter, we study the influence of different doping elements on the NTE properties of the compound Mn3(A0.5B0.5)N(A=Cu、Zn、Ag、Cd or Mg; B=Si、Ge or Sn). Our results indicate that (1) the doped elements Si, Ge or Sn could stabilize the configuration Γ5g, and make it be the ground state configuration;(2) the doped Si, Ge or Sn enlarge the volume difference between Γ5g and the PM state, which is beneficial to the NTE of the compound;(3) compared to the compound containing Ag or Cd, the NTE behaviors of the compound containing Cu, Zn or Mg are better, among which the compound containing Zn or Mg has the better NTE behaviors than the other one; (4) the transition temperature of the compound containing Ag or Cd is higher than that containing Mg, Cu or Zn, and among Mg, Cu and Zn, the compound containing Zn has a higher transition temperature.
引文
王聪,王天民,沈容等.2001.新型负热膨胀氧化物材料的研究[J].物理,12:38-43.
    蔡方硕,黄荣进,李来风.2008.负热膨胀材料研究进展[J],科技导报26,84.
    罗丰华,陶玉强,戴恩斌等.2005.热致收缩ZrW2O8化合物及其复合材料[J],材料导报,19:73-78.
    姜寿亭,李卫.2003.《凝聚态磁性物理》,科学出版社,pp.229.
    Ahn CH, Tybell T, Antognazza L, et al.1997. Local, nonvolatile electronic writing of epitaxial Pb(Zr0.52Ti0.48)O3/SrRuO3 heterostructures [J]. Science,276:1100-1103.
    Arvanitidis J, Papagelis K, Margadonna S, et al.2003. Temperature-induced valence transition and associated lattice collapse in samarium fulleride [J]. Nature,425:599-602.
    Asano K, Koyama K. Takenaka K.2008. Magnetostriction in Mn3CuN [J]. Appl. Phys. Lett., 92:161909.
    Barrera GD, Bruno JAO, Barron THK, et al.2005. Negative thermal expansion [J]. J.Phys.: Condens. Matter,17:R217-R252.
    Bednorz JG, Muller KA.1986. Possible high Tc superconductivity in the Ba-La-Cu-O system [J]. Phys. B:Condens. Matter.,64:189-193.
    Chapman K.W, Chupas PJ, Kepert CJ.2005. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:an atomic pair distribution function analysis [J]. J. Am. Chem. Soc.,127:15630-15636.
    Chi EO, Kim WS, Hur NH.2001. Nearly zero temperature coefficient of resistivity in antiperovkite compound CuNMn3 [J]. Solid State commun.,120:307-310.
    Ding L, Wang C, Na YY, et al.2011. Preparation and near zero thermal expansion property of Mn3Cu0.5A0.5N (A=Ni, Sn)/Cu composites [J]. Scripta Materialia,65:687-690.
    Duman E, Acet M, Wassermann EF.2005. Magnetic instabilities in Fe3C cementite particles observed with Fe K-edge X-ray circular dichroism under pressure [J]. Phys. Rev. Lett., 94:075502.
    Evans JSO, Mary RA, Vogt T, et al.1996. Negative thermal expansion in ZrW2O8 and HfW2O8 [J]. Chem. Mater.,8:2809-2823.
    Evans JSO, Hu Z, Jorgensen JD, et al.1997a. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8 [J]. Science,275:61-65.
    Evans JSO, Mary TA, Sleight AW.1997b. Negative thermal expansion in a large molybdate and tungstate family [J]. J. Solid State Chem.,133:580-583.
    Evans JSO, Mary TA, Sleight AW.1998. Negative thermal expansion in Sc2(WO4)3 [J]. J. Solid State Chem.,137:148-160.
    Evans JSO.1999. Negative thermal expansion materials [J]. J. Chem. Soc., Dalton Trans., 3317-3326.
    Forster PM, Yokochi A, Sleight AW.1998. Enhanced negative thermal expansion in Lu2W3O12[J]. J. Solid State Chem.,140:157-158.
    Fruchart D, Bertaut EF.1978. Magnetic studies of the metallic perovskite-type compounds of manganese [J]. J. Phys. Soc. Jpn.,44:781-791.
    Goodwin AL, Kepert CJ.2005. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials [J]. Phys. Rev. B,71:140301 (R).
    Granada CM, Da Silva CM, Gomes AA.2002. Magnetic moments of transition impurities in antiperovskites [J]. Solid state commun.,122:269-270.
    Hamada T, Takenaka K.2011. Giant negative thermal expansion in antiperovskite manganese nitrides [J]. J. Appl. Phys.,109:07E309.
    Hayn R, Drchal V.1998. Invar behavior of disordered fcc-FexPt1-x alloys [J]. Phys. Rev. B, 58:4341-4344.
    He T, Huang Q, Ramirez AP, et al.2001. Superconductivity in the non-oxide perovskite MgCNi3 [J]. Nature,411:54-56.
    Helmolt R, Wecker J, Holzapfel B, et al.1993. Giant negative magnetoresistance in perovskitelike La2/3Ba1/3MnOx ferromagnetic films [J]. Phys. Rev. Lett.,71:2331-2333.
    Hua L, Wang L, Chen LF.2010. First-principles investigation of Ge doping effects on the structural, electronic and magnetic properties in antiperovskite Mn3CuN [J]. J. Phys:Condens. Matter,22:206003.
    Hua L, He J.2011. Structural, electronic and magnetic properties of negative thermal expansion material Mn3Cu1-xSnxN [J]. Physica B,406:1222-1225.
    Huang RJ, Li LF, Cai FS, et al.2008. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si [J]. Appl. Phys. Lett., 93:081902.
    Huang RJ, Xu W, Xu XD, et al.2008. Negative thermal expansion and electrical properties of Mn3(Cu0.6NbxGe0.4-x)N(x=0.05-0.25) compounds [J]. Materials Letters,62:2381-2384.
    Huang RJ, Chu XX, Wu ZX, et al.2010. Low thermal expansion behavior and transport properties of Ni and Ge co-doped manganese nitride materials at cryogenic temperatures [J]. Appl. Phys. A,99 (2):465-469.
    likubo S, Kodama K, Takenaka K, et al.2008. Magnetovolume effect in Mn3Cu1-xGexN related to the magnetic structure:Neutron powder diffraction measurements [J]. Phys. Rev. B, 77:020409(R).
    Iikubo S, Kodama K, Takenaka K, et al.2008. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN [J]. Phys. Rev. Lett.,101:205901.
    Kamishima K, Goto T, Nakagawa H, et al.2000. Giant magnetoresistance in the intermetallic compound Mn3GaC [J]. Phys. Rev. B,63:024426
    Kaspar J, Salahub DR.1981. Explanation of the Invar anomalies from molecular-orbital cluster calculations [J]. Phys. Rev. Lett.,47:54-57.
    Khmelevskyi S, Turek I, Mohn P.2003. Large negative magnetic contribution to the thermal expansion in Iron-Platinum alloys:quantitative theory of the Invar effect [J].91:037201.
    Khosrovani N, Sleight AW, Vogt T.1997. Structure of ZrV2O7 from-263 to 470℃ [J]. J. Solid State Chem.,132:355-360.
    Kihara K.1990. An X-ray study of the temperature dependence of the quartz structure [J]. European Journal of Mineralogy,2:63-77.
    Kim WS, Chi EO, Kim JC, et al.2001. Close correlation among lattice, spin, and charge in the manganese-based antiperovskite material [J]. Solid State Commun.,119:507-510.
    Kim WS, Chi EO, Kim JC, et al.2003. Cracks induced by magnetic ordering in the antiperovskite ZnNMn.3 [J]. Phys. Rev. B,68:172402.
    Kobayashi J, Uesu Y, Sakemi Y.1983. X-ray and optical studies on phase transition of PbTiO; at low temperatures [J]. Phys. Rev. B,28:3866-3872.
    Kodama K, Iikubo S, Takenaka K, et al.2010. Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1-xGexN (x-0.5)[J]. Phys. Rev. B,81:224419.
    Korthuis V, Khosrovani N, Sleight AW, et al.1995. Negative thermal expansion and phase transitions in the ZrV2-xPxO7 series [J]. Chem. Mater..7:412-417
    Li JF, Zheng ZQ, Li XW et al.2009. Application of shape memory alloy TiNi in low thermal expansion copper composites [J]. Mater.Design.,30:314-318.
    Lukashev P, Sabirianov RF, Belashchenko K.2008. Theory of the piezomagnetic effect in Mn-based antiperovskites [J]. Phys. Rev. B,78:184414.
    Margadonna S, Prassides K, Fitch AN.2004. Zero thermal expansion in a prussian blue analogue[J]. J.Am.Chem.Soc.,126:15390-15391.
    Mary TA, Evans JSO, Vogt T, et al.1996. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8 [J]. Science,272:90-92.
    Mattens WCM, Holscher H, Tuin GJM, et al.1980. Thermal expansion and magneto-volume effects in the mixed-valent compound YbCuAl [J]. J. Magn. Magn. Mater.,15-18:982-984.
    Mook H, Holtzberg F. Valence fluctuations in solids. International Conference on Valence Fluctuations in Solids, Amsterdam:North-Holland,1981.113.
    Moruzzi VL, Janak JF, Schwarz K.1988. Calculated thermal properties of metals [J]. Phys. Rev. B, 37:790-799.
    Moruzzi VL, Marcus PM.1990a. Magnetovolume transition in ordered Ni3Al [J]. Phys. Rev. B, 42:5529-5543.
    Moruzzi AL.1990b. High-spin and low-spin states in Invar and related alloys [J]. Phys. Rev. B, 41:6939-6946.
    Nakamura Y, Shiga M, Santa S.1969. Invar behavior of face-centered cubic FeCo alloys precipitated from copper [J]. J. Phys. Soc. Jpn.,26:210-210.
    Nakamura Y, Takenaka K, Kishimoto A, et al.2009. Mechanical properties of metallic perovskite Mn3Cu0.5Ge0.5N:high-stiffness isotropic negative thermal expansion material [J]. J. Am. Ceram. Soc.,92:2999-3003.
    Perottoni CA, Jornada ASH.1998. Pressure-induced amorphization and negative thermal expansion in ZrW2O8 [J]. Science,280:886-889.
    Pryde AKA, Hammonds KD, Dove MT, et al.1996. Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7 [J]. J. Phys. Condens Matter.,8:10973-10982.
    Pryde AKA, Hammonds KD, Dove MT, et al.1997. Rigid unit modes and the negative thermal expansion in ZrW2O8[J]. Phase Trans.,61:141-153.
    Ramirez AP, Kowach GR.1998. Large low temperature specific heat in the negative thermal expansion compound ZrW2O8 [J]. Phys. Rev. Lett.,80:4903-4906.
    Ravindran TR, Arora AK, Mary TA.2000. High Pressure Behavior of ZrW2O8:Griineisen Parameter and Thermal Properties [J]. Phys. Rev. Lett.,84:3879-3882.
    Rosner H, Weht R, Johannes MD, et al.2001. Superconductivity near Ferromagnetism in MgCNi3 [J]. Phys. Rev. Lett.,88:027001.
    Sakuntala T, Arora AK, Sivasubramanian V, et al.2007. Pressure-induced amorphization and decomposition in ZrV2O7:A Raman spectroscopic study [J]. Phys. Rev. B,75:174119.
    Salvador JR, Guo F, Hogan T, et al.2003. Zero thermal expansion in YbGaGe due to an electronic valence transition [J]. Nature,425:702-705.
    Schilfgaarde MV, Abrikosov I A, Johansson B.1999. Origin of the Invar effect in iron-nickel alloys [J]. Nature,400:46-49.
    Shim JH, Kwon SK, Min BI.2002. Electronic structure of metallic antiperovskite compound GaCMn3 [J]. Phys. Rev. B,66:020406R.
    Shirane G, Hoshino S, Suzuki K.1950. X-Ray Study of the Phase Transition in Lead Titanate [J]. Phys. Rev.,80:1105-1106.
    Shibayama T, Takenaka K.2011. Giant magnetostriction in antiperovskite Mn3CuN [J]. J. Appl. Phys.,109:07A928.
    Sleight AW.1995. Thermal contraction [J]. Endeavour,19:64-68.
    Song XY, Sun ZH, Huang QZ, et al.2011. Adjustable zero thermal expansion in antiperovskite manganese nitride [J]. Adv. Mater.,23:4690-4694.
    Sun Y, Wang C, Wen YC, et al.2007. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN [J]. Appl. Phys. Lett.,91:231913.
    Sun Y, Wang C, Wen YC, et al. Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1-xSnxN compounds [J]. J. Am. Ceram. Soc.,93:2178-2181.
    Sun ZH, Song XY, Xu LL.2011. Effects of sintering temperature on microstructure, nitrogen deficiency and densification of spark plasma sintered Mn3Cuo.5Geo.5N. Ceramics International, 37:1693-1696.
    Sun ZH, Song XY, Yin FX, et al.2009. Giant negative thermal expansion in ultrafine-grained Mn3(Cu1-xGex)N (x=0.5) bulk[J]. J. Phys. D:Appl. Phys.,42:122004.
    Swainson IP, Dove MT.1995. On the thermal expansion of β-cristobalite [J]. Phys Chem Minerals, 22:61-65.
    Takenaka K, Takagi H.2005. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides [J]. Appl. Phys. Lett.,87:261902.
    Takenaka K, Asano K, Misawa M, et al.2008. Negative thermal expansion in Ge-free antiperovskite manganese nitrides:Tin-doping effect [J]. Appl. Phys. Lett..92:011927.
    Takenaka K, Takagi H.2009. Zero thermal expansion in a pure-form antiperovskite manganese nitride [J]. Appl. Phys. Lett.,94:131904.
    Takenaka K, Shibayama T, Asano K, et al.2010. Magnetostructural Correlations in Nitrogen-Deficient Antiperovskite Mn3CuN1-δ[J]. J. Phys. Soc. Jpn.,79:073706.
    Takenaka K, Ozawa A, Shibayama T, et al.2011. Extremely low temperature coefficient of resistance in antiperovskite Mn3Ag1-xCuxN [J]. Appl. Phys. Lett.,98:022103.
    Tanaka H.1998. Thermodynamic stability and negative thermal expansion of hexagonal and cubic ices [J]. J. Chem. Phys.,108:4887-4893.
    Taylor D.1985. Br. Ceram. Trans. J.84:181.
    Taylor D.1986. Br. Ceram. Trans. J.85:147.
    Taylor D.1991a. Br. Ceram. Trans. J.90:197.
    Taylor D.1991b. Br. Ceram. Trans. J.90:64.
    Versluis A, Douglas WH, Sakaguchi RL.1996. Thermal expansion coefficient of dental composites measured with strain gauges. Dent. Mater.,12:290-294.
    Wang BS, Tong P, Sun YP, et al.2009. Enhanced giant magnetoresistance in Ni-doped antipervoskite compounds GaCMn3-xNix(x=0.05,0.10) [J]. Appl. Phys. Lett.,95:222509.
    Weiss RJ.1963. The origin of the'Invar'effect [J]. Proc. Phys. Soc.,82:281-288.
    Welche PRL, Heine V, Dove MT.1998. Negative thermal expansion in beta-quartz [J]. Phys. Chem. Miner.,26:63-77.
    Winterrose ML, Lucas MS, Yue AF, et al.2009. Pressure-Induced Invar Behavior in Pd3Fe [J]. Phys. Rev. Lett.,102:237202.
    Wright AF, Leadbetter AJ.1975. The structures of the β-cristobalite phases of SiO2 and AlPO4[J]. Philosophical Magazine,31:1391-1401.
    姜寿亭,李卫.2003.凝聚态磁性物理[M].科学出版社.
    李正中,2002.固体理论[M]:第2版.北京:高等教育出版社.
    马文淦.2001.计算物理学[M].中国科学计算大学出版社.
    谢希德,陆栋.2007.固体能带理论[M]:第2版.复旦大学出版社.
    Blochl PE.1994. Projector augmented-wave method[J]. Phys. Rev. B,50:17953-17979.
    Born M and Huang K.1954. Dynamical Theory of Crystal Lattices. Oxford:Oxford University Press.
    Dirac PAM.1930. Note on exchange phenomena in the Thomas-Fermi atom[J], Proc. Cambridge Phil. Roy. Soc.26(3):376-385.
    Fermi E.1927. Atti. accad. nazl. Lincei 6,602(1927)
    Fock V.1930. Naherungsmethode zur Losung des quantenmechanischen Mehrkorperproblems[J]. Z. Phys.,61:209.
    Hartree DR.1928. The wave mechanics of an atom with a non-coulomb central field. Part Ⅰ. Theory and methods[J]. Proc. Cambridge Phil. Soc.24:89-111.
    Hohenberg P and Kohn W.1964. Inhomogeneous electron gas[J], Phys. Rev.136, B864-B871.
    Kresse G and Furthmuller J.1996. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set[J]. Phys. Rev. B,54:11169-11186.
    Kohn W and Sham LJ.1965. Self-consistent equations including exchange and correlation effects [J], Phys. Rev.140, A1133-A1138.
    Kohn W.1999. Nobel Lecture:Electronic structure of matter-wave functions and density functionals[J]. Rev. Mod. Phys.,71:1253-1266.
    Moller C, Plesset MS.1934. Note on an approximation treatment for many-electron systems[J]. Phys. Rev.,46:618-622.
    Perdew JP, Burke K and Ernzerhof M.1996. Generalized gradient approximation made simple[J]. Phys. Rev. Lett.77:3865-3868.
    Rajagopal AK and Callaway J.1973. Inhomogeneous electron gas[J]. Phys. Rev. B,7:1912-1919.
    Wang Y and Perdew JP.1991. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling[J]. Phys. Rev. B,44:13298-13307.
    Thomas LH.1927. Proc. Cambridge Phil. Soc.23:542.
    Von Barth U, Hedin L.1972. A local exchange-correlation potential for the spin polarized case[J]. J. Phys. C:Solid State Phys.
    Betts LR, Taylor CP, Sekuler AB, et al.2005. Aging reduces center-surround antagonism in visual motion processing[J]. Neuron,45:361-366.
    Chapman KW, Chupas PJ, Kepert CJ.2005. Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2:an atomic pair distribution function analysis[J]. J. Am. Chem. Soc.,127:15630-15636.
    Gao X, Zhou YM. Wang DS.2002. Analysis of the determination of magnetic phase transition temperatures by the first-principles calculations[J].J. Magn. Magn. Mater.251:29-37.
    Goodwin AL, Kepert CJ.2005. Negative thermal expansion and low-frequency modes in cyanide-bridged framework materials[J]. Phys. Rev. B,71:140301 (R).
    Iikubo S, Kodama K, Takenaka K, et al.2008a. Magnetovolume effect in Mn3Cu1-xGexN related to the magnetic structure:Neutron powder diffraction measurements[J]. Phys. Rev. B, 77:020409(R).
    Iikubo S, Kodama K, Takenaka K, et al.2008b. Local lattice distortion in the giant negative thermal expansion material Mn3CU1-xGexN[J]. Phys. Rev. Lett.,101:205901.
    Kakehashi Y.1981. A theory of the magnetovolume effect at finite temperaturesfJ]. J. Phys. Soc. Jpn.,50:1925-1933.
    Kaspar J, Salahub DR.1981. Explanation of the Invar anomalies from molecular-orbital cluster calculations[J]. Phys. Rev. Lett.,47:54-57.
    Khmelevskyi S, Turek I, Mohn P.2003. Large negative magnetic contribution to the thermal expansion in Iron-Platinum alloys:quantitative theory of the Invar effect[J].91:037201.
    Kim WS, Chi EO, Kim JC, et al.2003. Cracks induced by magnetic ordering in the antiperovskite ZnNMn3[J]. Phys. Rev. B,68:172402.
    Kodama K, Iikubo S, Takenaka K, et al.2010. Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1-xGexN (x~0.5)[J]. Phys. Rev. B,81:224419.
    Laks DB, Ferreira LG, Froyen S, et al.1992. Efficient cluster expansion for substitutional systems[J]. Phys. Rev. B,46:12587-12605.
    Lukashev P, Sabirianov RF. Belashchenko K.2008. Theory of the piezomagnetic effect in Mn-based antiperovskites[J]. Phys. Rev. B,78:184414.
    Matsuno J, Takenaka K, Takagi H, et al.2009. Local structure anomaly around Ge dopants in Mn3Cu0.7Ge0.3N with negative thermal expansion[J]. Appl. Phys. Lett.,94:181904.
    Rosengaard NM, Johansson B.1997. Finite-temperature study of itinerant ferromagnetism in Fe, Coand Ni[J]. Phys. Rev. B,55:14975-14986.
    Sanchez JM, Ducastelle F, Gratias D.1984. Generalized cluster description of multicomponent systems[J]. Physica A,128:334-350.
    Pascale F, Zicovich-Wilson CM, Lopez Gejo F, et al.2004. The calculation of the vibrational frequencies of crystalline compounds and its implementation in the CRYSTAL code[J]. J Comput Chem.,25:888-897.
    Schilfgaarde MV, Abrikosov I A, Johansson B.1999. Origin of the Invar effect in iron-nickel alloys[J]. Nature,400:46-49.
    Sun ZH, Song XY, Xu LL.2011. Effects of sintering temperature on microstructure, nitrogen deficiency and densification of spark plasma sintered Mn3Cuo.5Geo.5N. Ceramics International, 37:1693-1696.
    Takenaka K, Takagi H.2005. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Appl. Phys. Lett.,87:261902.
    Takenaka K, Takagi H.2009. Zero thermal expansion in a pure-form antiperovskite manganese nitride[J]. Appl. Phys. Lett.,94:131904.
    Pryde AKA, Hammonds KD, Dove MT, et al.1997. Rigid unit modes and the negative thermal expansion in ZrW2O8[J]. Phase Trans.,61:141-153.
    Wang JT, Zhou L, Wang DS, et al.2000. Exchange interaction and magnetic phase transition in layered Fe/Au(001) superlattices[J], Phys. Rev. B,62:3354-3360.
    Weiss RJ.1963. The origin of the'Invar'effect[J]. Proc. Phys. Soc.,82:281-288.
    Zhou YM, Wang DS, Kawazoe Y.1999. Effective ab initio exchange integrals and magnetic phase transition in fec Fe and Mn antiferromagnets[J]. Phys. Rev. B,59:8387-8390.
    Barberon M, Madar R, Mme E. Fruchart, et al.1970. Les deformations quadratiques T1 et T4 dans les carbures et nitrures perowskites du manganese[J]. Mat. Res. Bull.5:1-7.
    Hill R.1952. Proc. Phys. Soc. London, Sect. A 65:349.
    Huang RJ, Wua ZX, Yang HH, et al.2010. Mechanical and transport properties of low-temperature negative thermal expansion material Mn3CuN co-doped with Ge and Si[J]. Cryogenics,50:750-753.
    Iikubo S, Kodama K, Takenaka K, et al.2008. Magnetovolume effect in Mn3Cu1-xGexN related to the magnetic structure:Neutron powder diffraction measurements [J]. Phys. Rev. B, 77:020409(R).
    Nakamura Y, Takenaka K, Kishimoto A, et al.2009. Mechanical properties of metallic perovskite Mn3Cu0.5Ge0.5N:high-stiffness isotropic negative thermal expansion material [J]. J. Am. Ceram. Soc.,92:2999-3003.
    Ravindran P, Lars Fastl, Korzhavyi PA, et al.1998. Density functional theory for calculation of elastic properties of orthorhombic crystals:Application to TiSi2 [J]. J. Appl. Phys., 84:4891-4904.
    Reuss A and Angew Z.1929. Math. Mech.9:55.
    Voigt DW.1928. Lehrbuch der Kristallphysik, Teubner, Leipzig.
    Fruchart D, Bertaut EF.1978. Magnetic studies of the metallic perovskite-type compounds of manganese [J]. J. Phys. Soc. Jpn.,44:781-791.
    Garcia J, Bartolome J, Gonzalez D.1983. Thermophysical properties of the intermetallic Mn3MN perovskites Ⅱ. Heat capacity of manganese zinc nitride:Mn3ZnN and manganese gallium nitride:Mn3GaN [J]. The Journal of Chemical Thermodynamics,15:1041-1057.
    Hamada T, Takenaka K.2011. Giant negative thermal expansion in antiperovskite manganese nitrides [J]. J. Appl. Phys.,109:07E309.
    Huang RJ, Li LF, Cai FS, et al.2008a. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si [J]. Appl. Phys. Lett., 93:081902.
    Huang RJ, Xu W, Xu XD, et al.2008b. Negative thermal expansion and electrical properties of Mn3(Cuo.6NbxGe0.4-x)N(x=0.05-0.25) compounds[J]. Materials Letters,62:2381-2384.
    Huang RJ, Chu XX, Wu ZX, et al.2010. Low thermal expansion behavior and transport properties of Ni and Ge co-doped manganese nitride materials at cryogenic temperatures [J]. Appl. Phys. A,99 (2):465-469.
    Iikubo S, Kodama K, Takenaka K, et al.2008a. Magnetovolume effect in Mn3Cu1-xGexN related to the magnetic structure:Neutron powder diffraction measurements [J]. Phys. Rev. B, 77:020409(R).
    Iikubo S, Kodama K, Takenaka K, et al.2008b. Local lattice distortion in the giant negative thermal expansion material Mn3Cu1-xGexN[J]. Phys. Rev. Lett.,101:205901.
    Kim WS, Chi EO, Kim JC, et al.2003. Cracks induced by magnetic ordering in the antiperovskite ZnNMn3 [J]. Phys. Rev. B,68:172402.
    Kodama K, Iikubo S, Takenaka K, et al.2010. Gradual development of Γ5g antiferromagnetic moment in the giant negative thermal expansion material Mn3Cu1-xGexN (x-0.5)[J]. Phys. Rev. B,81:224419.
    Lukashev P, Sabirianov RF, Belashchenko K.2008. Theory of the piezomagnetic effect in Mn-based antiperovskites [J]. Phys. Rev. B,78:184414.
    Matsuno J, Takenaka K, Takagi H, et al.2009. Local structure anomaly around Ge dopants in Mn3Cu0.7Ge0.3N with negative thermal expansion [J]. Appl. Phys. Lett.,94:181904.
    Song XY, Sun ZH, Huang QZ, et al.2011. Adjustable zero thermal expansion in antiperovskite manganese nitride [J]. Adv. Mater.,23:4690-4694.
    Sun Y, Wang C, Wen YC, et al.2007. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN [J]. Appl. Phys. Lett.,91:231913.
    Sun Y, Wang C, Wen YC, et al.2010. Negative thermal expansion and magnetic transition in anti-perovskite structured Mn3Zn1-xSnxN compounds [J]. J. Am. Ceram. Soc.,93:2178-2181.
    Takenaka K, Takagi H.2005. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides [J]. Appl. Phys. Lett.,87:261902.
    Takenaka K, Asano K, Misawa M, et al.2008. Negative thermal expansion in Ge-free antiperovskite manganese nitrides:Tin-doping effect [J]. Appl. Phys. Lett.,92:011927.
    Takenaka K, Takagi H.2009. Zero thermal expansion in a pure-form antiperovskite manganese nitride [J]. Appl. Phys. Lett.,94:131904.
    Wijn HRJ, Bornstein L.1988. Alloys and Compounds of d-Elements with Main Group Elements [M]. New Series, Group Ⅲ,1:195-196.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700