掺杂改性锰铜基氮化物负热膨胀材料低温热物性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对低温工程和航空航天领域诸方面对材料热膨胀性能的特殊要求,探索了在低温区具有优良负热膨胀性能的掺杂锰铜基氮化物材料,探讨了宽温区负热膨胀行为的机理,并将所发现的在低温区具有优良负热膨胀性能的材料进行了应用初探。
     以Mn3CuN材料为基础,设计并制备了五种掺杂锰铜基氮化物,包括:Mn3(Cu0.6Ge0.4)N1-xCx , Mn3(Cu0.8-xAgxGe0.2)N , Mn3(Cu0.6-xNixGe0.4)N ,Mn3(Cu0.6SixGe0.4-x)N和Mn3(Cu0.5SixGe0.5-x)N。采用X射线衍射仪和热膨胀测试仪分别测试了样品的物相结构和热膨胀性能,分析了热膨胀性能与掺杂元素种类和含量的关系。研究结果表明Mn3(Cu0.6Ge0.4)N1-xCx材料的负热膨胀温区可以通过C元素含量来调节,而负热膨胀温区宽度和负热膨胀温区内线膨胀率?L/L(300K)变化量基本不受C元素的影响;随Ag元素的增加,Mn3(Cu0.8-xAgxGe0.2)N材料负热膨胀温区向高温区移动,负热膨胀温区内线膨胀率?L/L(300K)变化量减小,对负热膨胀温区的宽度几乎没有影响;同时用Ge和Ni元素部分替代Mn3CuN中的Cu元素后,样品中出现Mn-Ni第二相。Ni元素可以有效地使负热膨胀温区向低温移动,但对负热膨胀温区的宽度几乎没有影响。Mn-Ni第二相导致负热膨胀温区内线膨胀率?L/L(300K)变化量随Ni元素的增加而减小,最终得到“零膨胀”材料;随Si元素的增加,Mn3(Cu0.6SixGe0.4-x)N材料负热膨胀温区宽度增加,在负热膨胀温区内线膨胀率?L/L(300K)变化量受Si元素影响而略微减小。其中,Mn3(Cu0.6Si0.15Ge0.25)N样品的负热膨胀温区为90-190K,负热膨胀温区宽度可达100K,热膨胀系数为-16×10-6K-1;随着Si元素的增加,Mn3(Cu0.5SixGe0.5-x)N(x=0.1, 0.15)材料在室温到液氮温度温区内的平均膨胀系数较小,分别为:1.3×10-6K-1和1.65×10-6K-1。这些在低温区性能优良的负热膨胀、零膨胀和低热膨胀材料的发现为解决低温工程中热膨胀问题和促进低温工程进一步发展奠定了基础。
     基于对负热膨胀温区较宽样品的变温原位XRD、磁化率和比热等测试结果,分析了宽温区负热膨胀行为的机理。研究结果表明:Mn3(Cu0.6SixGe0.4-x)N材料在负热膨胀温区内会发生磁相变,磁相变类型随Si和Ge含量变化而变化,Mn3(Cu0.6Si0.15Ge0.25)N材料表现出典型的自旋玻璃特征。结合理论分析认为:硅元素分布微观不均匀性导致了自旋玻璃出现,而自旋玻璃是宽温区负热膨胀行为的内在原因。对此机理的认识为进一步研究开发出负热膨胀温区更宽的材料提供理论依据和实验指导。
     用机械球磨法将Mn3(Cu0.6Si0.15Ge0.25)N材料制备成纳米粉末,经等离子有机表面改性后与环氧树脂复合,调节其膨胀系数和热导率。研究结果表明:Mn3(Cu0.6Si0.15Ge0.25)N负热膨胀材料与环氧树脂复合可以有效地降低热膨胀系数和提高导热能力。其中,Mn3(Cu0.6Si0.15Ge0.25)N体积百分比为32%时,复合材料在Mn3(Cu0.6Si0.15Ge0.25)N材料负热膨胀出现的温区的平均膨胀系数达到了22×10-6K-1,比纯环氧树脂平均膨胀系数(37.9×10-6K-1)减小了42%。复合材料在室温和液氮温度时热导率分别为:0.48 W(m·K)-1和0.28 W(m·K)-1,分别是纯环氧树脂在温室和液氮温度热导率的2.8倍和4倍。此应用研究为解决低温工程中的热膨胀问题提供了新思路。
Due to the special requirements for thermal expansion properties in cryogenic engineering and space technology, doped manganese nitride materials with excellent negative thermal expansion (NTE) properties at cryogenic temperatures have been explored, and the mechanism of the broadening of the NTE operation-temperature window has been investigated. Moreover, application studies on doped manganese nitride materials with excellent negative thermal expansion properties at cryogenic temperatures have been also carried out.
     Based on the Mn3CuN, a series of doped manganese nitride materials, including Mn3(Cu0.6Ge0.4)N1-xCx, Mn3(Cu0.8-xAgxGe0.2)N, Mn3(Cu0.6-xNixGe0.4)N, Mn3(Cu0.6SixGe0.4-x)N and Mn3(Cu0.5SixGe0.5-x)N, were designed and prepared. Their crystal structures and thermal expansion properties were investigated, and the relationship between thermal expansion properties and doping element was discussed. The results show that (1) The NTE operation-temperature window of Mn3(Cu0.6Ge0.4)N1-xCx shifts toward lower temperature region with increasing C content, but the width of NTE operation-temperature window (?T) and the change value of ?L/L(300K) in the NTE operation-temperature window are independent of C. (2) The NTE operation-temperature window of Mn3(Cu0.8-xAgxGe0.2)N shifts toward higher temperature region and the change value of ?L/L(300K) in the NTE operation-temperature window decreases with increasing Ag content, ?T is independent of Ag. (3) The second phase of Mn-Ni alloy appears in the Ni and Ge co-doped manganese nitride materials. The NTE operation-temperature window shifts toward lower temperature region with increasing Ni content and ?T is independent of Ni. The change value of ?L/L(300K) in the NTE operation-temperature window decreases and results to zero with increasing Ni content. (4) The ?T of Mn3(Cu0.6SixGe0.4-x)N increases with increasing Si content. Especially for Mn3(Cu0.6Si0.15Ge0.25)N, the temperature range of NTE behavior of is 90-190K (?T=100K), coefficient of thermal expansion (CTE) is -16×10-6K-1. (5) The average CTEs of Mn3(Cu0.5SixGe0.5-x)N(x=0.1, 0.15) in the temperature range of room temperature to liquid nitrogen temperature are very small, which are 1.3×10-6K-1 and 1.65×10-6K-1 , respectively. The discoveries of nearly zero and negative thermal expansion materials prepare the ground for further development of cryogenic engineering.
     The mechanism of the broadening of the NTE operation-temperature window was investigated though situ X-ray diffraction, magnetic susceptibility and special heat experiments. The results show that magnetic phase transition appears in the NTE operation-temperature window, and the type of magnetic phase transition gradually changes with increasing Si content. Mn3(Cu0.6Si0.15Ge0.25)N shows a typical characteristic of spin-glass systems. After theoretical analysis, it is concluded that spin-glass which results from the hyperdispersion of Si at micro scale is the reason for the broadening of the NTE operation-temperature window. This investigation provides theoretical and experimental foundations for exploring new NTE materials with broader NTE operation-temperature window.
     The composite materials made from nano-Mn3(Cu0.6Si0.15Ge0.25)N modified by a plasma treatment and epoxy resin were prepared. Their thermal expansion properties and thermal conductivities were investigated. The results show that the addition of Mn3(Cu0.6Si0.15Ge0.25)N can significantly decrease CTE and increase thermal conductivity. The average CTE of composite contains 32vol% Mn3(Cu0.6Si0.15Ge0.25)N is 22×10-6K-1 in the temperature range of 190-77 K, which is 42% lower than that of pure epoxy resin. The thermal conductivities are 0.48 W(m·K)-1 at 298K and 0.28 W(m·K)-1 at 77K, respectively, which are 2.8 and 4 times as large as that of pure epoxy resin, respectively. This application study provides a new method for resolving thermal expansion problem and simultaneously improving thermal conductivity of materials in cryogenic engineering.
引文
[1]黄昆,韩汝琦.固体物理学[M].北京:高等教育出版社, 2004.
    [2] C Kittel, P McEuen. Introduction to solid state physics[M]. Wiley New York, 1971.
    [3] FA Hummel. Thermal expansion properties of some synthetic lithia minerals[J]. Journal of the American Ceramic Society, 1951 (8): 235-239.
    [4] V Korthuis, N Khosrovani, AW Sleight. Negative thermal-expansion and phase-transitions in the ZrV2-xPxO7 series [J]. Chemistry of Materials, 1995: 412-417.
    [5] AW Sleight, TA Mary, JSO Evans. Negative thermal expansion of ZrW2O8. U.S. Patent, 1995.
    [6] TA Mary, JSO Evans, T Vogt, AW Sleight. Negative thermal expansion from 0.3 to 1050 Kelvin in ZrW2O8[J]. Science, 1996 (5258): 90-92.
    [7] JSO Evans, TA Mary, AW Sleight. Negative thermal expansion in a large molybdate and tungstate family[J]. Journal of Solid State Chemistry, 1997: 580-583.
    [8] JSO Evans, TA Mary, AW Sleight. Negative thermal expansion in Sc2(WO4)3[J]. Journal of Solid State Chemistry, 1998: 148-160.
    [9] PM Forster, A Yokochi, AW Sleight. Enhanced negative thermal expansion in Lu2W3O12[J]. Journal of Solid State Chemistry, 1998 (1): 157-158.
    [10]谭强强、张中太、方克明.复合氧化物负热膨胀材料研究进展[J].功能材料, 2003 (4): 353-356.
    [11] JSO Evans, Z Hu, JD Jorgensen, DN Argyriou, S Short, AW Sleight. Compressibility, phase transitions, and oxygen migration in zirconium tungstate, ZrW2O8 [J]. Science 1997: 61 - 65.
    [12] G Ernst, C Broholm, GR Kowach, AP Ramirez. Phonon density of states and negative thermal expansion in ZrW2O8[J]. Nature, 1998: 147 - 149.
    [13] CA Perottoni, JAH Jornada. Pressure-induced amorphization and negativethermal expansion in ZrW2O8 [J]. Science 1998 ( 5365): 886 - 889.
    [14] K Takenaka, H Takagi. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Applied Physics Letters, 2005: 261902.
    [15] AW Sleight. Negative thermal expansion materials[J]. Current opinion in solid state & materials science, 1998 (2): 128-131.
    [16] GK White. Solids: thermal expansion and contraction [J]. Contemporary Physics, 1993 (4): 193-204.
    [17] AW Sleight. Compounds that contract on heating[J]. Inorganic Chemistry, 1998 (12): 2854-2860.
    [18] ID Brown, RD Shannon. Empirical bond-strength-bond-length curves for oxides[J]. Acta Crystallographica Section A, 1973 (3): 266-282.
    [19] MF Hochella, GE Brown. Structural mechanisms of anomalous thermal expansion of cordierite-Beryl and other framework silicates[J]. Journal of the American Ceramic Society, 1986 (1): 13-18.
    [20]张振禹、刘蔚玲、耿建刚.堇青石低热膨胀机理研究[J].地质科学, 1997: 308-312
    [21] AI Lichtenstein, RO Jones, H Xu, PJ Heaney. Anisotropic thermal expansion in the silicate beta -eucryptite: A neutron diffraction and density functional study[J]. Physical Review B, 1998 (10): 6219.
    [22] AW Sleight. Thermal contraction [J]. Endeavour, 1995 (2): 64-68.
    [23] AP Giddy, MT Dove, GS Pawley, V Heine. The determination of rigid-unit modes as potential soft modes for displacive phase transitions in framework crystal structures[J]. Acta Crystallographica Section A, 1993 (5): 697-703.
    [24] MT Dove, V Heine, KD Hammonds. Rigid unit modes in framework silicates[J]. Mineralogical Magazine, 1995 (4): 629-639.
    [25] KD Hammonds, MT Dove, AP Giddy, V Heine, B Winkler. Rigid-unit phonon modes and structural phase transitions in framework silicates[J]. American Mineralogist, 1996 (9-10): 1057-1079.
    [26] JSO Evans, TA Mary, T Vogt, MA Subramanian, AW Sleight. Negative thermal expansion in ZrW2O8 and HfW2O8[J]. Chemistry of Materials, 1996 (12):2809-2823.
    [27] JSO Evans, WIF David, AW Sleight. Structural investigation of the negative-thermal-expansion material ZrW2O8[J]. Acta Crystallographica Section B, 1999 (3): 333-340.
    [28] MG Tucker, AL Goodwin, MT Dove, DA Keen, SA Wells, JSO Evans. Negative thermal expansion in ZrW2O8: Mechanisms, rigid unit modes, and neutron total scattering[J]. Physical Review Letters, 2005 (25): 255501.
    [29] AKA Pryde, KD Hammonds, MT Dove, V Heine, JD Gale, MC Warren. Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7 [J]. Journal of Physics: Condensed Matter, 1996: 10973-10982
    [30] D Fruchart, EF Bertaut. Magnetic studies of the metallic perovskite-type compounds of manganese[J]. Journal of the Physical Society of Japan, 1978: 781-791.
    [31] WS Kim, EO Chi, JC Kim, NH Hur, KW Lee, YN Choi. Cracks induced by magnetic ordering in the antiperovskite ZnNMn3[J]. Physical Review B (Condensed Matter and Materials Physics), 2003 (17): 172402-4.
    [32] K Takenaka, H Takagi. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Applied Physics Letters, 2005 (26): 261902.
    [33] K Takenaka, H Takagi. Magnetovolume effect and negative thermal expansion in Mn3(Cu1-xGex)N[J]. Materials transactions, 2006: 471-474.
    [1] EO Chi, WS Kim, NH Hur. Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3[J]. Solid State Communications, 2001 (7-8): 307-310.
    [2] D Fruchart, EF Bertaut. Magnetic studies of the metallic perovskite-type compounds of manganese[J]. Journal of the Physical Society of Japan, 1978: 781-791.
    [3] K Takenaka, H Takagi. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Applied Physics Letters, 2005 (26): 261902.
    [4] NA Gokcen. The Mn-N (Manganese-Nitrogen) system [J]. Journal of Phase Equilibria, 1990 (1): 33-42.
    [5] PDF#65-3536, JCPDS-ICDD, JCPDS-international Center for Diffraction Data, 12 Campus Bouleavard, Newtown Square, PA 197073-3273,USA, (2004).
    [6] D Shi, J Lian, P He, LM Wang, F Xiao, L Yang, MJ Schulz, DB Mast. Plasmacoating of carbon nanofibers for enhanced dispersion and interfacial bonding in polymer composites[J]. Applied Physics Letters, 2003 (25): 5301-5303.
    [7] ZN Utegulov, DB Mast, P He, D Shi, RF Gilland. Functionalization of single-walled carbon nanotubes using isotropic plasma treatment: Resonant Raman spectroscopy study[J]. Journal of Applied Physics, 2005 (10): 104324.
    [8] D Shi, J Lian, P He, LM Wang, WJ van Ooij, M Schulz, Y Liu, DB Mast. Plasma deposition of Ultrathin polymer films on carbon nanotubes[J]. Applied Physics Letters, 2002 (27): 5216-5218.
    [9] Contents: (Adv. Funct. Mater. 17/2008)[J]. Advanced Functional Materials, 2008 (17): 2463-2470.
    [10] D Shi, J Lian, W Wang, G Liu, P He, Z Dong, L Wang, RC Ewing. Luminescent carbon nanotubes by surface functionalization[J]. Advanced Materials, 2006 (2): 189-193.
    [11] D Shi, Y Guo, Z Dong, J Lian, W Wang, G Liu, L Wang, RC Ewing, . Quantum-dot-activated luminescent carbon nanotubes via a nano scale surface functionalization for in vivo imaging [J]. Advanced Materials, 2008 (8): 4033-4037.
    [12] RP Reed, AF Clark. Materials at low temperatures[M]. American society for metals, 1983: 75.
    [13] TE Finke, TG Heberling. Determination of thermal-expansion characteristics of metals using strain gages[J]. Experimental Mechanics, 1978 (4): 155-158.
    [14] MW Poore, KF Kesterson. Measuring the thermal expansion of solids with strain gauges[J]. Journal of Testing and Evaluation Subject Index to Volume, 1978 (2): 98.
    [15] R.K.Kirby, T.A.Hahn. Standard Reference Material 739 fused-silica thermal expansion[J]. Certificate of analysis, 1971.
    [16]阎守胜,陆果.低温物理实验的原理与方法[M].北京:科学出版社, 1985: 391-397.
    [17] RP Reed, AF Clark. Materials at low temperatures[M]. United States: American Society for Metals,Metals Park, OH, USA, 1984: 590.
    [18]朱贤,冀勇夫,党震.绝热材料低温热导率测定方法研究[J].低温工程, 1981.
    [19]喻宏.绝热材料低温热导率测试装置[J].低温工程, 2004: 28-34.
    [1] D Fruchart, EF Bertaut. Magnetic studies of the metallic perovskite-type compounds of manganese[J]. Journal of the Physical Society of Japan, 1978: 781-791.
    [2] WS Kim, EO Chi, JC Kim, NH Hur, KW Lee, YN Choi. Cracks induced by magnetic ordering in the antiperovskite ZnNMn3[J]. Physical Review B (Condensed Matter and Materials Physics), 2003 (17): 172402-4.
    [3] EV Gomonaj, VA L'Vov. A theory of spin reorientation and piezomagnetic effect in noncollinear Mn3AgN antiferromagnet[J]. Phase Transitions, 1992 (1): 225 - 237.
    [4] K Kamishima, T Goto, H Nakagawa, N Miura, M Ohashi, N Mori, T Sasaki, T Kanomata. Giant magnetoresistance in the intermetallic compound Mn3GaC[J]. Physical Review B (Condensed Matter and Materials Physics), 2000 (2): 024426.
    [5] YB Li, WF Li, WJ Feng, YQ Zhang, ZD Zhang. Magnetic, transport and magnetotransport properties of Mn3+xSn1-xC and Mn3ZnySn1-yC compounds[J]. Physical Review B (Condensed Matter and Materials Physics), 2005 (2): 024411.
    [6] EO Chi, WS Kim, NH Hur. Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3[J]. Solid State Communications, 2001 (7-8): 307-310.
    [7] T Tohei, H Wada, T Kanomata. Negative magnetocaloric effect at the antiferromagnetic to ferromagnetic transition of Mn3GaC[J]. Journal of Applied Physics, 2003 (3): 1800-1802.
    [8] K Takenaka, H Takagi. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Applied Physics Letters, 2005 (26): 261902.
    [9] J Garcíaa, J Bartoloméa, D González, R Navarrob, D Fruchart. Thermophysical properties of the intermetallic Mn3MN perovskites I. Heat capacity of themanganese nitride Mn4N[J]. The Journal of Chemical Thermodynamics, 1983 (5): 465-473.
    [10] Y Sun, C Wang, Y Wen, K Zhu, J Zhao. Lattice contraction and magnetic and electronic transport properties of Mn3Zn1-xGexN[J]. Applied Physics Letters, 2007 (23): 231913-3.
    [1] D Fruchart, EF Bertaut. Magnetic studies of the metallic perovskite-type compounds of manganese[J]. Journal of the Physical Society of Japan, 1978: 781-791.
    [2]陈国良,林均品.有序金属间化合物结构材料物理金属学基础[M].冶金工业出版社, 1999.
    [3] K Takenaka, H Takagi. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Applied Physics Letters, 2005 (26):261902.
    [4] JL Wang, SJ Campbell, O Tegus, C Marquina, MR Ibarra. Magnetovolume effect and magnetic properties of Dy2Fe17-xMnx[J]. Physical Review B (Condensed Matter and Materials Physics), 2007 (17): 174423.
    [5] R Roy, DK Agrawal, HA McKinstry. Very low thermal expansion coefficient materials[J]. Annual Review of Materials Science, 1989: 59-81.
    [6] AW Sleight, TA Mary, JSO Evans. Negative thermal expansion of ZrW2O8[J]. U.S. Patent, 1995.
    [7] TA Mary, JSO Evans, T Vogt, AW Sleight. Negative Thermal Expansion from 0.3 to 1050 Kelvin in ZrW2O8[J]. Science, 1996 (5258): 90-92.
    [8] D R.Askeland, PP Phulé. The Science and Engineering of Materials Fourth Edition(影印版)[M].北京:清华大学出版社, 2005.
    [1] D Fruchart, EF Bertaut. Magnetic studies of the metallic perovskite-type compounds of manganese[J]. Journal of the Physical Society of Japan, 1978: 781-791.
    [2] K Takenaka, H Takagi. Giant negative thermal expansion in Ge-doped anti-perovskite manganese nitrides[J]. Applied Physics Letters, 2005 (26): 261902.
    [3] K Takenaka, H Takagi. Magnetovolume effect and negative thermal expansion in Mn3(Cu1-xGex)N[J]. Materials transactions, 2006: 471-474.
    [4] D Fruchart, EF Bertaut, R Madar, G Lorthioir, R Fruchart. Structure magnetique et rotation de spin de Mn3NiN[J]. Solid State Communications, 1971 (21): 1793-1797.
    [5] EO Chi, WS Kim, NH Hur. Nearly zero temperature coefficient of resistivity in antiperovskite compound CuNMn3[J]. Solid State Communications, 2001 (7-8): 307-310.
    [6] WS Kim, EO Chi, JC Kim, NH Hur, KW Lee, YN Choi. Cracks induced by magnetic ordering in the antiperovskite ZnNMn3[J]. Physical Review B (Condensed Matter and Materials Physics), 2003 (17): 172402-4.
    [7]江超华. X射线粉末衍射实验技术基础[D].
    [8] PDF#23-0220, JCPDS-ICDD, JCPDS-international Center for Diffraction Data, 12 Campus Bouleavard, Newtown Square, PA 197073-3273,USA, (2004).
    [9]田莳.材料物理性能[M].北京航空航天大学, 2001: 258-259.
    [10]磁性物理的基础-相互作用(中国科学院物理研究所讲义).
    [11]曹烈兆.低温物理学[M].中国科学技术大学出版社, 1999.
    [12] M Ohta, A Fujita, K Fukamichi, Y Obi, H Fujimori. Spin-glass behaviour, thermal expansion anomaly and spin fluctuations in Y20(Mn1-xFex)80 amorphous alloys[J]. Journal of Physics: Condensed Matter, 1999: 4053-4062.
    [13] F Kazuaki, F Asaya, S Takeshi. Concentrated Spin-Glass Behavior and Thermal Expansion Anomaly in Amorphous Y-Fe Alloys[J].
    [14] T Suzuki, A Fujita, TH Chiang, K Fukamichi. Thermal expansion anomaly in amorphous Y-Fe spin glasses[J]. Materials Science and Engineering, 1987: 954.
    [15]詹文山,沈保根,赵见高,郭慧群.非晶态Fecr合金在临界浓度附近的磁特性[J].低温物理, 1984 (1): 41-45.
    [1] F Sawa, S Nishijima, T Okada. Molecular design of an epoxy for cryogenic temperatures[J]. Cryogenics, 1995 (11): 767-769.
    [2] F Sawa, S Nishijima, Y Ohtani, K Matsushita, T Okada. Fracture toughness and relaxation of epoxy resins at cryogenic temperatures[J]. Advances in Cryogenic Engineering, 1994: 1113-1119.
    [3] R Heydenreich. Cryotanks in future vehicles[J]. Cryogenics, 1998 (1): 125-130.
    [4] H Bansemir, O Haider. Fibre composite structures for space applications: recent and future developments[J]. Cryogenics, 1998 (1): 51-59.
    [5] H Holzer, DC Dunand. Phase transformation and thermal expansion of Cu/ZrW2O8 metal matrix composites[J]. Journal of materials research 1999 (3): 780-789
    [6] PL Teh, M Mariatti, HM Akil, CK Yeoh, KN Seetharamu, ANR Wagiman, KS Beh. The properties of epoxy resin coated silica fillers composites[J]. Materials Letters, 2007 (11-12): 2156-2158.
    [7] T Ueki, S Nishijima, Y Izumi. Designing of epoxy resin systems for cryogenic use[J]. Cryogenics, 2005 (2): 141-148.
    [8] D Ratna. Toughened FRP composites reinforced with glass and carbon fiber[J]. Composites Part A: Applied Science and Manufacturing, 2008 (3): 462-469.
    [9] W Nhuapeng, W Thamjaree, S Kumfu, P Singjai, T Tunkasiri. Fabrication and mechanical properties of silicon carbide nanowires/epoxy resin composites[J]. Current Applied Physics, 2008 (3-4): 295-299.
    [10] Sudarisman, IJ Davies, H Hamada. Compressive failure of unidirectional hybrid fibre-reinforced epoxy composites containing carbon and silicon carbide fibres[J]. Composites Part A: Applied Science and Manufacturing, 2007 (3): 1070-1074.
    [11] A Bjorneklett, L Halbo, H Kristiansen. Thermal conductivity of epoxy adhesives filled with silver particles[J]. International Journal of Adhesion and Adhesives, 1992 (2): 99-104.
    [12] M Rong, M Zhang, H Liu, H Zeng. Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin[J]. Polymer, 1999 (22): 6169-6178.
    [13] B Wetzel, F Haupert, M Qiu Zhang. Epoxy nanocomposites with high mechanical and tribological performance[J]. Composites Science and Technology, 2003 (14): 2055-2067.
    [14] CB Ng, LS Schadler, RW Siegel. Synthesis and mechanical properties of TiO2-epoxy nanocomposites[J]. Nanostructured Materials, 1999 (1-4): 507-510.
    [15] YS Song, JR Youn. Influence of dispersion states of carbon nanotubes on physical properties of epoxy nanocomposites[J]. Carbon, 2005 (7): 1378-1385.
    [16] PC LeBaron, Z Wang, TJ Pinnavaia. Polymer-layered silicate nanocomposites: an overview[J]. Applied Clay Science, 1999 (1-2): 11-29.
    [17] CJ Huang, SY Fu, YH Zhang, B Lauke, LF Li, L Ye. Cryogenic properties of SiO2/epoxy nanocomposites[J]. Cryogenics, 2005 (6): 450-454.
    [18] S Kang, SI Hong, CR Choe, M Park, S Rim, J Kim. Preparation and characterization of epoxy composites filled with functionalized nanosilica particles obtained via sol-gel process[J]. Polymer, 2001 (3): 879-887.
    [19] JF Timmerman, BS Hayes, JC Seferis. Nanoclay reinforcement effects on the cryogenic microcracking of carbon fiber/epoxy composites[J]. Composites Science and Technology, 2002 (9): 1249-1258.
    [20] S Palaniandy, K Azizi Mohd Azizli, M Jaafar, FN Ahmad, H Hussin, S Fuad Saiyid Hashim. Effect of structural changes of silica filler on the coefficient of thermal expansion (CTE) of underfill encapsulant[J]. Powder Technology, 2008 (1): 54-57.
    [21] T Zhou, X Wang, GU Mingyuan, X Liu. Study of the thermal conduction mechanism of nano-SiC/DGEBA/EMI-2,4 composites[J]. Polymer, 2008 (21): 4666-4672.
    [22] A Di Gianni, E Amerio, O Monticelli, R Bongiovanni. Preparation of polymer/clay mineral nanocomposites via dispersion of silylated montmorillonite in a UV curable epoxy matrix[J]. Applied Clay Science, 2008 (1-2): 116-124.
    [23] WS Wang, HS Chen, YW Wu, TY Tsai, YW Chen-Yang. Properties of novel epoxy/clay nanocomposites prepared with a reactive phosphorus-containing organoclay[J]. Polymer, 2008 (22): 4826-4836.
    [24] R Huang, L Li, F Cai, X Xu, L Qian. Low-temperature negative thermal expansion of the antiperovskite manganese nitride Mn3CuN codoped with Ge and Si[J]. Applied Physics Letters, 2008 (8): 081902.
    [25] Y Nagai, GC Lai. Thermal conductivity of epoxy resin filled with particulate aluminum nitride powder[J]. Nippon seramikkusu kyokai gakujutsu ronbunshi, 1997 (3): 197-200.
    [26] H Lee, K Neville. Handbook of epoxy resins[M]. McGraw-Hill New York, 1967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700