蛇毒型神经生长因子促进大鼠脑缺血再灌注损伤后神经可塑性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨经侧脑室给予蛇毒型神经生长因子(vNGF)对脑缺血再灌注损伤后大鼠内源性神经前体细胞增殖与迁移的影响。
     方法:取健康清洁级雄性Wistar大鼠,按随机分组原则分为2天组(N=30)、7天组(N=30)、14天组(N=30)。每个时间点再分为五个亚组vNGF 25u、vNGF 50u、vNGF 100u、生理盐水对照组、以及假手术组,每个亚组6只大鼠。生理盐水对照组和vNGF组大鼠采用大脑中动脉线栓法建立局灶性脑缺血一再灌注损伤模型,术后各时间点vNGF亚组在规定的时间段每日采用改良的侧脑室置管术法给予相应剂量蛇毒型神经生长因子,生理盐水对照组给予等渗盐水。在术后每个时间点对脑缺血再灌注损伤后大鼠神经功能恢复的程度进行神经功能评分。采用免疫组织化学法测定术后第2天、第7天以及第14天缺血皮质周围和海马CA3/DG区神经前体细胞标志物Doublecortin(DCX)阳性细胞数以及细胞信号调节激酶(ERK)阳性细胞数
     结果:1、与对照组相比,经侧脑室给予蛇毒型神经生长因子各组第2天开始,大鼠神经功能就显著恢复。各组比较经分析,差异有统计学意义(P<0.05)。显示了外源性补充蛇毒型神经生长因子的明显正性干预作用。假手术组大鼠无缺血再灌注损伤。2、DCX免疫组织化学结果显示:经侧脑室给予vNGF各亚组DCX阳性细胞在缺血皮质周围和海马CA3/DG区第2天就开始增加,第7天达到高峰,第14天有所下降。与相应时间点对照组相比,呈明显增高趋势。各时间点中vNGF各亚组以vNGF50u表达最多呈现出vNGF干预的量效关系;其中以第7天vNGF 50uDCX阳性细胞数目最高,与第2、第14天vNGF 50u相比,差异明显(P<0.03)呈现出vNGF干预的时效关系。3、ERK免疫组织化学结果显示:经侧脑室给予vNGF各亚组ERK阳性细胞在缺血皮质周围和海马CA3/DG区第2天表达为高峰,第7天明显下降,第14天恢复基线水平。与相应时间点对照组相比,呈明显下降趋势。对照组中ERK表达水平,初步体现了ERK的表达趋势。各时间点中vNGF各亚组以vNGF50u表达最少,以第7天vNGF 50u为著,呈现出vNGF负性干预的量效关系。
     结论:1、脑缺血再灌注损伤可以诱导神经前体细胞在缺血皮质周围及海马CA3/DG增殖,同时还可以激活ERK信号转导途径。2、经侧脑室给予蛇毒型神经生长因子可以有效逆转脑缺血再灌注损伤后神经生长因子匮乏局面,并促进缺血皮质周围及海马CA3和齿状回神经前体细胞增殖与迁移。3、ERK阳性细胞在各组间的表达差异,提示了NGF可以负性调节ERK而发挥促进血管再生和神经发生的作用。4、ERK与DCX阳性细胞在相同时间点相同部位相同干预措施的情况下,表达的明显差异,提示ERK可能对DCX增殖和迁移有一定影响。
Objective:To investigate the effect of intracerebroventricular administra tion of vevom nerve growth factor on proliferation and migration of endogenous neural progenitor cells in rats with cerebral ischemia/reperfusion injury.
     Methods:Wistar rats were randomly divided into three groups:2 days group, 7 days group and 14 days group (n= 30 in each group), then each group randomly assigned to vNGF 25u, vNGF 50u, vNGF 1OOu, sham-operation, and ischemia/reperfusion control subgroups (n=6 in each subgroup). After that a focal cerebral ischemia/reperfusion model was induced by middle cerebral artery intraluminal suture occlusion (MCAO) method in the I/R control and vNGF subgroups. Normal saline or Different concentrations vNGF was administered via intracerebroventricular to the I/R control or vNGF subgroups rats per day according to the corresponding time points. After cerebral ischemia /reperfusion injury was established, the degree of neurological functional recovery of rats was assessed by longa score, and the numbers of positive cells of DCX+ cells and ERK+ cells in the Peri-ischemic cortex and Hippocampus CA3/DG were assessed by immunohistochemical method in the corresponding time points.
     Result:1, As compared with control subgroups, snake venom nerve growth factor subgroups which was administered via intracerebroventricular, the neurological function began to recover in the first two days. Each subgroups by statistical analysis, the statistically difference was significant (P<0.05), which showed its positive intervention effects markedly. However, there were no ischemia/reperfusion injury in Sham-operated subgroups.The results of DCX immuno-histochemistry showed that:the numbers of DCX positive cells in Peri-ischemic cortex and Hippocampus CA3/DG of snake venom nerve growth factor subgroups began to increase at 2 days after the procedures, reach the peak at 7 days, the first decline in 14 days. As compared with the I/R control subgroups, the trend was markedly higher. The vNGF50u subgroups expressed much more DCX+ cells than other subgoups at the corresponding time points, which showed its positive intervention of dose-response effects markedly; Among them, the numbers of DCX positive cells vNGF 50u subgroup in the 7th day were significantly higher than those vNGF 50u subgroups in 2 day or 14 day, which showed its positive intervention of aging-response effects markedly. The differences aresignificant (P<0.03).3、The results of ERK immunohisto-chemistry showed that:the numbers of ERK positive cells in Peri-ischemic cortex and Hippocampus CA3/DG of snake venom nerve growth factor subgroups reach the peak at 2 days after the procedures, began to decline at 7 days, then restored baseline levels at 14 days. As compared with the I/R control subgroups, snake venom nerve growth factor subgroups showed a clear down-ward trend. The vNGF50u subgroups expressed much less ERK positive cells than other subgoups at the corresponding time points, Especially at the 7days, which showed its negative intervention of dose-response effects markedly.
     Conclusions:1, The cerebral ischemia/repufusion injury can induce proliferation and migration of endogenous neural progenitor cells in the Peri-ischemic cortex and Hippocampus CA3/DG.2, Exogenous snake venom nerve growth factor can effectively compensate for the insufficient of endogenous nerve growth factor after cerebral ischemia/repufusion injury, as well as facilitate proliferation and migration of endogenous neural progenitor cells in the Peri-ischemic cortex and Hippocampus CA3/DG.3,The significant differences expression levels of ERK-positive cells among the three groups, suggesting that NGF may play a negative regulator in ERK, which provide a possible theoretical source for NGF on vascular regeneration and the role of neurogenesis.4,The significant differences expression of ERK and DCX-positive cells in the Peri-ischemic cortex and Hippocampus CA3/DG suggesting that there maybe had an association between ERK and the prolife-ration and migration of the DCX after reperfusion.
引文
[1]Lo EH, Dalkara T, Moskowitz MA et al. Mechanisms, challenges and opportunities in stroke [J]. Nat RevNeurosci,2003,4(5):399-415.
    [2]Lee SR, Wang X, Tsuji K, et al. Extracellular proteolytic pathophy-siology in the neurovascular unit after stroke [J]. Neurol Res,2004, 26(8):854-861.
    [3]Hawkins BT, Davis TP. The blood brain barrier/neurovascular unit in health and disease [J]. Pharmacol Rev,2005,57(2):173-185.
    [4]Wiltrout C, Lang B, Yan Y, et al. Repairing brain after stroke:a review on post-ischemic neurogenesis [J]. Neurochem Int,2007,50(7):1028-1041
    [5]Darsalia V, Heldmann U, LindvallO, et al. Stroke-induced neuro-genesis in aged brain [J]. Stroke,2005,36(7):1790-1795
    [6]Sgubin D, Aztiria E, Perin A, et al. Activation of endogenous neural stem cells in the adult human brain following subarachnoid hemorrhage [J]. J Neurosci Res,2007,85 (8):1647-1655
    [7]Romanko MJ, Rola R, Fike JR, et al. Roles of the mammalian subventricular zone in cell replacement after brain injury [J]. Prog Neurobiol,2004,74(2):77-99.
    [8]Lichtenwalner RJ, Parent JM. Adult neurogenesis and the ischemic forebrain [J]. J Cereb Blood Flow Metab,2006,26(1):1-20.
    [9]Lin S, Fan LW, Rhodes PG, et al. Intranasal administration of IGF-1 attenuates hypoxic-ischemic brain injury in neonatal rats [J]. Exp Neurol, 2009,217(2):361-70.
    [10]Jin-qiao S, Bin S,Wen-hao Z, et al. Basic fibroblast growth factor stimulates the proliferation and differentiation of neural stem cells in neonatal rats after ischemic brain injury [J]. Brain Dev,2009,31(5): 331-340.
    [11]Ozbal S, Erbil G, Kocdor H, et al. The effects of selenium against cerebral ischemia reperfusion injury in rats [J]. Neurosci Lett,2008; 438(3):265-269.
    [12]Jang SW,Okada M, Sayeed I, et al. Gambogic amide, a selective agonist for TrkA receptor that possesses robust neurotrophic activity, prevents neuronal cell death [J].2007,104 (41):
    [13]Chen J, Jin K, Chen M, et al. Early detection of DNA strand breaks in the brain after transient focal ischemia: implications for the role of DNA damage in apoptosis and neuronal cell death [J]. J Neurechem,1997,69 (1):232-245.
    [14]Wang X, Wang H, Xu L, et al. Significant neuroprotection against ischemic brain injury by inhibition of the MEK1 protein kinase in mice: exploration of potential mechanism associated with apoptosis [J]. J Pharmacol Exp Ther,2003,304(1):172-178.
    [15]Segal RA, Greenberg ME. Intracellular signaling pathways activated by neurotrophic factors [J]. Annu Rev Neurosci,1996,19 (3) 463-489.
    [16]Chang L, Karin M. Mammalian MAP kinase signalling cascades [J] Nature,2001,410 (6824):37-40.
    [17]Yang JP, Liu XF, Liu HJ et al. Extracellular signal-regulated kinase involved in NGF/VEGF-induced neuroprotective effect [J]. Neurosci Lett. 2008,434(2):212-217.
    [18]Lois C, Alvarez-Buylla A. Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia [J]. Proc Natl Acad Sci USA,1993,90(5):2074-2077.
    [19]Eriksson PS, Perfilieva E, Bjork-Eriksson T, et al. Neurogenesis in the adult human hippocampus [J]. Nature Medicine,1998,4:1313-1317.
    [20]Liu XS, Chopp M, Zhang XG, et al. Gene profiles and electrophysiology of doublecortin-expressing cells in the subventricular zone after ischemic stroke [J]. Journal of Cerebral Blood Flow and Metabolism,2009,29(2):297-307.
    [21]Thored P, Arvidsson A, Cacci E, et al.Persistent production of neurons from adult brain stem cells during recovery after stroke [J]. Stem Cells 2006,24(3):739-747.
    [22]Smith DO, Rosenheimer JL, Kalil RE,et al. Delayed rectifier and a-type potassium channels associated with kv 2.1 and kv 4.3 expression in embryonic rat neural progenitor cells [J]. PLoS ONE,2008,3(2):e1604.
    [23]Kojima T, Hirota Y, Ema M et al. Subventricular Zone-Derived Neural Progenitor Cells Migrate Along a Blood Vessel Scaffold Toward The Post-stroke Striatum [J]. Stem Cells,2010,28(3):545-554.
    [24]Wei L, Yu SP, Gottron F, et al. Potassium channel blockers attenuate hypoxiaand ischemia-induced neuronal death in vitro and in vivo. Stroke 2003;34:1281-1286.
    [25]Ocbina PJ, Dizon ML, Shin L, et al. Doublecortin is necessary for the migration of adult subventricular zone cells from neurospheres [J]. Mol Cell Neurosci,2006,33(2):126-135.
    [26]Hwang IK, Yoo KY, Park OK, et al.Comparison of density and morphology of neuroblasts in the dentate gyrus among variously aged dogs, German shepherds[J]. The Journal of veterinary medical science 2009,71 (2):22-25
    [27]O'Rourke NA, Sullivan DP, Kaznowski CE, et al. Tangential migration of neurons in the developing cerebral cortex [J]. Development,1995,121 (7): 2165-2176.
    [28]Hua R, Doucette R, Walz W. Doublecortin-Expressing Cells in the Ischemic Penumbra of a Small-Vessel Stroke [J]. Journal of Neuroscience Research 2008,86(4):883-893.
    [29]Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain [J]. J Neurosci,1997,17(13),5046-5061.
    [30]Nam SC, Kim Y, Dryanovski D, et al. Dynamic features of postnatal subventricular zone cell motility:a 2-photon time-lapse study [J]. J Comp Neurol,505(2):190-208.
    [31]Kang SS, Kook JH, Hwang S, et al. Inhibition of matrix metalloproteinase-9 attenuated neural progenitor cell migration after photothrombotic ischemia [J].2008, 1(3):20-26.
    [32]Zhou T, Xu B, Que H, et al. Neurons derived from PC 12 cells have the potential to develop synapses with primary neurons from rat cortex [J]. Acta Neurobiol Exp,2006,66(2):105-112.
    [33]Radak Z, Toldy A, Szabo Z, et al. The effects of training and detraining on memory, neurotrophins and oxidative stress markers in rat brain[J]. Neurochem Int,2006,49(4):387-392.
    [34]Ozbal S, Erbil G, Kocdor H, et al. The effects of selenium against cerebral ischemia reperfusion injury in rats [J]. Neurosci Lett,2008, 438(3):265-269.
    [35]Gaughwin PM, Caldwell MA, Anderson JM, et al. Astrocytes promote neurogenesis from oligodendrocyte precursor cells [J]. Eur J Neurosci 2006,23(4):945-956.
    [36]Sofroniew MV, Howe CL, Mobley W. Nerve growth factor signalling, neuroprotection and neural repair [J]. Annu Rev Neurosci,2001; 24: 1217-1281.
    [37]CalzaL, GiardinoL, Giuliani A, et al. Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors [J]. Proc Natl Acad Sci USA 2001,98(7):4160-4165.
    [38]Zigova T, Pencea V, Wiegand SJ, et al. Intraventricular administration of BDNF increases the number of newly generated neurons in the adult olfactory bulb [J]. Mol Cell Neurosci,1998,11(4):234-24.
    [39]Couillard-Despres S, Winner B, Schaubeck S, et al. Doublecortin expression levels in adult brain reflect neurogenesis [J]. Eur J Neurosci 2005,21(1):1-14.
    [40]Dolle JP, Rezvan A, Allen FD, et al. Nerve growth factor-induced migration of endothelial cells [J]. J Pharmacol Exp Ther 2005, 315(3):1220-1227
    [41]Moser KV, Reindl M, Blasig I, et al. Brain capillary endothelial cells proliferate in response to NGF, express NGF receptors and secrete NGF after inflammation[J]. Brain Res,2004,1017(2):53-607.
    [42]Emanueli C, Salis MB, Pinna A, et al. Nerve growth factor promotes angiogenesis and arteriogenesis in ischemic hindlimbs [J]. Circulation, 2002,106(17):2257-2262.
    [43]Chiaretti A, Genovese O, Riccardi R, et al. Intraventricular nerve growth factor infusion:A possible treatment for neurological deficits following hypoxic-ischemic brain injury in infants [J]. Neuro Res 2005,27(7): 741-746.
    [44]Zhang G, Zhang L, Logan R, et al. Decreased expression and impaired function of muscarinic acetylcholine receptors in the rat hippocampus following transient forebrain ischemia [J]. Neurobiol Dis 2005,20(3): 805-813.
    [45]Lee SR, Kim HY, Roquwska J, et al. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke [J]. J Neurosci,2006,26(13):3491-3495.
    [46]Wang L, Zhang ZG, Zhang RL et al. Matrix metalloproteinase 2 (MMP2) and MMP9 secreted by erythropoietin-activated endothelial cells promote neural progenitor cell migration[J]. J Neurosci,2006,26(22):5996-6003.
    [47]Kang SS, Kook JH, Hwang S et al. Inhibition of matrix metalloproteinase-9 attenuated neural progenitor cell migration after photothrombotic ischemia [J] Brain Research,2008,1228 ():20-26.
    [48]Zhao BQ, Wang S, Kim HY, et al. Role of matrix metalloprotei-nases in delayed cortical responses after stroke[J]. Nat Med,2006,12(4):441-445.
    [49]Mizutani K, Yoon K, Dang L, et al. Differential Notch signalling distinguishes neural stem cells from intermediate progenitors [J]. Nature. 2007,449(7160):351-355.
    [50]Xia Z, Dickens M, Raingeaud J, et al. Opposing effect s of ERK and JN K-p38 MAP kinases on apoptosis [J]. Science,1995,270 (5240): 1326-1331.
    [51]Lee SR, Kim HY, Roquwska J, et al. Involvement of matrix metalloproteinase in neuroblast cell migration from the subventricular zone after stroke [J]. J Neurosci,2006,26(13):3491-3495.
    [52]Yang JP, Liu XF, Liu HJ, et al. Extracellular signal-regulated kinase involved in NGF/VEGF-induced neuroprotective effect [J]. Neuroscience Letters,2008,434 (2):212-217.
    [53]Lad SP, Peterson DA, Bradshaw RA, et al. Individual and combined effects of TrkA and p75NTR nerve growth factor receptors. A role for the high affinity receptor site [J]. J Biol Chem,2003,278(27):24808-24817.
    [54]Song B, Ma C,Gong S, et al.Extracellular signal-regulated kinases are not involved in activity-dependent survival or apoptosis in cerebellar granule neurons [J]. Neurosci,2006,407(3):214-218.
    [55]Zhao BQ,Wang S, Kim HY, et al. Role of matrix metalloproteinases in delayed cortical responses after stroke [J]. Nat Med.2006,12(4):441-445.
    [56]Mehta SL, Manhas N, Raghubir R, et al. Molecular targets in cerebral ischemia for developing novel therapeutics [J]. Brain Res Rev,2007, 54(1):34-66.
    [57]Smith DO, Rosenheimer JL, Kalil RE, et al. Delayed rectifier and a-type potassium channels associated with kv 2.1 and kv 4.3 expression in embryonic rat neural progenitor cells [J]. PLoS One,2008,3(2):e1604.
    [58]Yasuda T, Bartlett PF, Adams DJ et al. K(ir) and K(v) channels regulate electrical properties and proliferation of adult neural precursor cells[J]. Mol Cellr Neurosci,2008,37(2):284-297.
    [59]Xiaohan Hu, Xiangyang Wu, Jiali Xu. Src kinase up-regulates the ERK cascade through inactivation of protein phosphatase 2A following cerebral ischemia[J]. BMC Neuroscience,2009,10():74-
    [1]Lo EH, Dalkara T, Moskowitz MA. Mechanisms, challenges and opportunities in stroke[J]. Nat Rev Neurosci,2003,4(5):399-415.
    [2]Lee SR, Wang X, Tsuji K, Lo EH. Extracellular proteolytic pathophysiology in the neurovascular unit after stroke [J]. Neurol Res,2004,26(8):854-861.
    [3]Hawkins BT, Davis TP. The blood brain barrier/neurovascular unit in health and disease [J]. Pharmacol Rev,2005,57(2):173-185.
    [4]Rao VR, Finkbeiner S. NMDA and AMPA receptors:old channels, new tricks[J].Trends Neurosci,2007,30(6):284-291.
    [5]Kriz J. Infammation in ischemic brain injury:timing is important[J]. Crit Rev Neurobiol,2006,18(1-2):145-157.
    [6]Nighoghossian N, Wiart M, Berthezene Y. Novel applications of magnetic resonance imaging to image tissue inflammation after stroke [J] J Neuroimaging,2008,18(4):349-52.
    [7]Farooqui AA, Horrocks LA, Farooqui T. Modulation of inflammation in brain:a matter of fat [J]. J Neorocbem,2007,101 (3):577-599.
    [8]Rosell A,Ortega-Aznar A, Alvarez-Sabin J, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke [J]. stroke,2006,37(6):1399-1406.
    [9]Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs [J]. Cardiovasc Res,2006,69(3):562-573.
    [10]Vukasovic I, Tesija-Kuna A, Topic E,et al. Matrix metalloproteinases and their inhibitors in different acute stroke subtypes [J]. Clin Chem Lab Med, 2006,44(4):428-434.
    [11]Ning M, Furie KL, Koroshetz WJ, et al.Association between tPA therapy and raised early matrix metalloproteinase-9 in acute stroke[J]. Neurology, 2006,66(10):1550-1555.
    [12]Alvarez-Buylla A, Garcia-Verdugo JM. Neurogenesis in adult subventricular zone [J].J Neurosci,2002,22(3):629-634.
    [13]Doetsch F, Garcia-Verdugo JM, Alvarez-Buylla A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain[J]. J Neurosci,1997,17(13):5046-61.
    [14]Minger SL, Ekonomou A, Carta EM,et al. Endogenous neurogenesis in the human brain following cerebral infarction[J].Regen Med,2007,2(1):69-74.
    [15]Zhang RL, Zhang ZG, Roberts C, et al. Lengthening the G phase of neural progenitor cells is concurrent with an increase of symmetric neuron generating division after stroke[J]. J Cereb Blood Flow Metab,2008,28(3):602-611
    [16]Zhang Z.G, Chopp M. Neurorestorative therapies for stroke:underlying mechanisms and translation to the clinic [J]. Lancet Neurol,2009,8(5) 491-500.
    [17]Wang L, Zhang Z, Wang Y, et al. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats[J]. Stroke,2004,35(7):1732-1737.
    [18]Jiang Q, Zhang ZG, Ding GL, et al. Investigation of neural progenitor cell induced angiogenesis after embolic stroke in rat using MRI[J]. Neuroimage, 2005,28(3):698-707.
    [19]Jin K, Zhu Y, Sun Y,et al. Vascular endothelial growth factor (VEGF) stimulates neurogenesis in vitro and in vivo[J]. Proc Natl Acad Sci USA, 2002,99(18):11946-11950.
    [20]During MJ, Cao L. VEGF, a mediat or of the effect of experience on hippocampal neurogenesis [J]. J Curr Alzheimer Res,2006,3(1):29-33
    [21]Nelson TJ, Sun MK, Hongpaisan J, et al. Insulin, PKC signaling pathways and synaptic remodeling during memory storage and neuronal repair [J]. Eur J Pharmacol,2008,585(1):76-87.
    [22]Hedou GF, Koshibu K, Farinelli M, et al. Protein phosphatase 1-dependent bidirectional synaptic plasticity controls ischemic recovery in the adult brain[J]. J Neurosci,2008,28(1):154-62.
    [23]Shyu WC, Lin SZ, Chiang MF, et al. Secretoneurin promotes neuroprotection and neuronal plasticity via the Jak2/Stat3 pathway in murine models of stroke[J]. J Clin Invest,2008,118(1):133-148.
    [24]Wang XL, Yang YJ, Xie M, et al.Proliferation of neural stem cells correlates with Wnt-3 protein in hypoxic-ischemic neonate rats after hyperbaric oxygen therapy[J]. Neuroreport,2007,18(16):1753-1756.
    [25]Morris DC, Zhang ZG, Wang Y, et al.Wnt expression in the adult rat subventricular zone after stroke[J]. Neurosci Lett,2007,418(2):170-174.
    [26]MacDonald E, Vander Lee H, Pocock D, et al.A novel phosphodiesterase type 4 inhibitor, HT-0712, enhances rehabilitation-dependent motor recovery and cortical reorganization after focal cortical ischemia[J]. Neurorehabil Neural Repair,2007.21(6):486-96.
    [1]Grysiewicz RA, Thomas K, Pandey DK. Epidemiology of Ischemic and Hemorrhagic Stroke:Incidence,Prevalence, Mortality, and Risk Factors[J]. Neurol Clin,2008,26(4):871-95.
    [2]Dittmar MS, Vatankhah B, Fehm NP, et al. The role of ECA transection in the development of masticatory lesions in the MCAO filament model[J]. Exp Neurol,2005,195(2):372-378.
    [3]Chen Y, Ito A, Takai K, et al. Blocking pterygopalatine arterial blood flow decreases infarct volume variability in a mouse model of intraluminal suture middle cerebral artery occlusion[J]. J Neurosci Methods,2008, 174(1):18-24.
    [4]Chu X,Qi C,Zou L,et al. Intraluminal suture occlusion and ligation of the distal branch of internal carotid artery:an improved rat model of focal cerebral ischemia-reperfusion[J]. J Neurosci Methods,2008,168(1):1-7.
    [5]Zausinger S, Baethmann A, Schmid-Elsaesser R. Anesthetic methods in rats determine outcome after experimental focal cerebral ischemia:mechanical ventilation is required to obtain controlled experimental conditions[J]. Brain Res Brain ResProtoc,2002,9(2):112-121.
    [6]Zhang PB, Liu Y, Li J, et al. [Comparison of pentobarbital and propofol on the outcome of focal cerebral ischemia model in rats] [J]. Zhong Nan Da Xue Xue Bao Yi Xue Ban,2004,29(6):671-674.
    [7]Tamura A, Graham D I, McCulloch J, et al. Focal cerebral ischemia in the rat: Description of technique and early neuropathological consequences following middle cerebral artery occlusion[J]. J Cereb Blood FlowMetab, 1981,1(1):53-60.
    [8]Kobayashi T, Kawamata T, Mitsuyama T, et al.Modified permanent middle cerebral artery occlusion rat model aiming to reduce variability in infarct size[J]. Neurol Res,2007,29(8):884-887.
    [9]Watson BD,Dietrich WD,Busto R,et al. Induction of reproducible brain in farction by photochemically initiated thrombosis [J]. Ann Neurol,1985,17 (5):497-504.
    [10]Sugimori H, Yao H, Ooboshi H,et al. Krypton laser-induce photothrombotic distal middle cerebral artery occlusion without craniectomy in mice[J]. Brain Res Protocols,2004,13(3):189-196.
    [11]Lozano JD,Abulafia DP, Danton GH, et al. Characterization of athromboembolic photochemical model of repeated stroke in mice[J].J Neurosci Methods,2007,162 (1-2):244-254.
    [12]Traystman RJ.Animal models of focal and global cerebral ischemia [J]. ILAR J,2003,44(2):85-95.
    [13]Dinapoli VA, Rosen CL, Nagamine T, et al. Selective MCA occlusion: a precise embolic stroke model [J]. J Neurosci Methods,2006,154(1-2): 233-238.
    [14]Yang Y, Rang T, Li Q, et al. A new reproducible focal cerebral ischemia model by introduction of polyvinylsiloxaneinto the middle cerebral artery: a comparion study [J]. J Neurosci Methods,2002,118(2):199-206.
    [15]Gerriets T, Li F, Silva MD, et al.The macrosphere model:evaluation of a new stroke model for permanent middle cerebral arter occlusion in rats [J]. J Neurosci Methods,2003,122(2):201-211.
    [16]Koizumi J,Yoshida Y, Nakazawa T, et al. Experimental studies of ischemicbrain edema:a new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area [J]. Stroke,1986(8):1-8.
    [17]Traystman RJ. Animal models of focal and global cerebral ischemia [J]. ILAR J,2003,44(2):85-95.
    [18]Zea Longa EL,Weinstein PR,Carlson S,et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J].Stroke,1989,20(1):84-81.
    [19]Palmer GC, Peeling J, Corbett D, et al. T2-weighted MRI correlates with long-term histopathology, neurology scores, and skilled motor behavior in a rat stroke model [J]. Ann N Y Acad Sci,2006,283-296.
    [20]Gerriets T, Stolz E, Walberer M, et al. Complications and pitfalls in rat stroke models for middle cerebral artery occlusion:a comparison between the suture and the macrosphere model using magnetic resonance angiography[J]. Stroke,2004,35(10):2372-2377.
    [21]Dittmar MS, Fehm NP, Vatankhah B, et al.Adverse effects of the intraluminal filament model of middle cerebral artery occlusion[J]. Stroke, 2005,36(3):530-532.
    [22]Shimamura N, Matchett G, Tsubokawa T, et al. Comparison of silicon-coated nylon suture to plain nylon suture in the rat middle cerebral artery occlusion model[J]. J Neurosci Methods,2006,156(1-2):161-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700