SiO_2@Al_(13)核壳结构复合材料的制备及其混凝性能
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Al_(13)是Al3+在强制水解过程中形成的具有Keggin结构的铝的形态,其化学式为Al_(13)O_4(OH)_(24)(H_2O)_(12)~(7+),由于其高电荷性质,有利于对水体中颗粒物进行吸附电中和,使颗粒物脱稳、聚集、沉降,从而达到水质净化的目的。人们通常用Al_(13)的含量来评价无机高分子絮凝剂PAC的质量。
     本文通过微量滴碱法,制备了不同碱化度的PAC,并通过SO_4~(2-)/Ba~(2+)沉淀置换法提纯了Al_(13),通过高岭土模拟废水验证了不同碱化度PAC及Al_(13)的混凝性能;通过St(o|¨)ber方法制备了亚微米级的粒度分布均匀的SiO_2球形颗粒;并以此SiO_2作为载体,通过静电自组装的方法制备了SiO_2@Al_(13)核壳结构复合材料,讨论了不同条件对复合材料制备的影响,并通过混凝实验对其性能进行了验证,以期充分发挥颗粒粒度效应,而提高其混凝效果,增加其应用性。。
     研究内容主要包括:
     (1) PAC及Al_(13)的制备及其混凝特性
     通过微量滴碱法制备了PAC,并通过SO42-/Ba2+沉淀置换法提纯了Al_(13),研究了碱化度对Al形态分布的影响。研究表明:对于PAC,在碱化度B=0.5~1.5时,Alb的含量较低,不到50%;随着碱化度的升高,在B=2.0~2.5时,Alb的含量达到了60%以上。经过提纯后的Al_(13)中,Alb的含量达到了90%以上,并且随着碱化度的增加,形成了不同聚集度的Al_(13)聚集体,其Ferron活性降低了,Alb的含量也降低到了60%左右。混凝实验表明,高碱化度的PAC电中和能力较强,其浊度去除效果较好;而对于Al_(13)来说,随着碱化度的增加,Al_(13)聚集体的电中和能力及混凝特性都相对的降低了。
     (2)单分散二氧化硅的制备和表征
     采用St(o|¨)ber方法制备了粒径分布均匀的亚微米级二氧化硅。研究表明:随着加水浓度的增加,二氧化硅的平均粒径从170nm增加到了200nm,这主要受到反应初期不稳定晶核数量的影响造成的;随着氨水浓度的增加,二氧化硅的平均粒径也增加了,这主要是受到水解反应速率的影响;由于TEOS浓度的增加,三维网络链的数量增加了,从而也促进了二氧化硅平均粒径的增加。通过优化调控各种因素,可以制备出所需粒度的均匀的SiO_2球形颗粒。所制备的二氧化硅表面孔多为介孔分布,在pH=4~9时,二氧化硅表面呈负电性。
     (3) SiO_2@Al_(13)核壳结构材料的制备及混凝特性
     通过静电自组装的方法制备了SiO_2@Al_(13)核壳结构材料。研究表明:随着Al/Si的增加,Al_(13)在二氧化硅表面的负载量不断增加,当Al/Si>1:1时,Al_(13)在二氧化硅表面包覆量的增加变化不大;随着反应温度的升高,Al的负载量不断减小,高温不利于Al_(13)在二氧化硅表面的负载;随着碱化度的增加,Al_(13)通过OH-连接成Al_(13)的聚集体,增加了空间位阻效应,同样不利于负载。通过分析表明,Al_(13)在二氧化硅表面的作用属于物理作用。混凝实验表明,复合材料相对于Al_(13)来说,由于颗粒粒度效应,其所形成的颗粒较大,浊度去除效果较好。
Al_(13)(Al_(13)O_4(OH)_(24)(H_2O)_(12)~(7+)) with a Keggin structure is the formation of aluminum in the process of forced hydrolysis of Al3+. Due to the highly charge, it is beneficial for adsorpting and charge neutralizatiing of particles in water. And then, the particles off-steadied, aggregated, settled, so as to achieve the purpose of water purification. The quality of inorganic polymer flocculants polyaluminum chloride(PAC) is used to be evaluated by the content of Al_(13).
     In this paper, we prepare different basic PAC through micro-drops of alkali method and purify Al_(13) by SO_4~(2-)/Ba~(2+) precipitation replacement method. Meantime, we verify coagulation performances of PAC and Al_(13) in the kaolin wastewater. Uniform SiO_2 spherical particles distributing in sub-micron particle sizes are prepared by St(o|¨)ber method. Then, SiO_2@Al_(13) core-shell structure composite material is prepared by electrostatic self-assembly. We discuss the different reacted conditions exerting the effect on the preparation of composite material. Its coagulation performances is tested for playing particle size effect to increase its applicability.
     The study includes the following parts.
     (1) Preparation and coagulation performances of PAC and Al_(13)
     PAC of different basic are prepared by the micro-drops of alkali method and Al_(13) are purified by SO42-/Ba2+ precipitation replacement method. We discuss different basicity producing effect on the Al morphology distribution. Studies have shown that, for PAC, the content of Alb are less than 50% when the basic(B) in ranging from 0.5 to 1.5;as with the increasing of basic up to rang from 2.0 to 2.5,the content of Alb reaches more than 60%. Alb levels reached more than 90% in purified Al_(13).Because of the formation of Al_(13)-aggregates which reduce the Ferron activity,the content Alb reduced to 60%. Coagulation tests show that, highly basic PAC have the stronger capacity of electric-natrual, so it show up better turbidity removal efficiency.While for Al_(13) with the increase in basic, the capacity of electric-natrual of Al_(13)-aggregates are relatively reducing.
     (2) Preparation and Characterization of mono-dispersed silica dioxide
     Uniform size distribution of sub-micron silicon dioxide is prepared with St(o|¨)ber method. Research shows that, with the increasing concentration of water, average particle sizes of silicon dioxide range from 170nm to 200nm mainly effected by the number of unstable nuclei during the initial reaction; average particle sizes also similarly increase with the increasing concentration of ammonia mainly effected by the hydrolysis reaction rate; because of increasing TEOS concentration, the number of three-dimensional network of chains also contributes to the increase in average particles size of silica dioxide. Optimizing the variety of factors, we can prepare the required size of uniform SiO_2 spherical particles. Mesoporous distributes on the spherical surface and the surface possesses negative charge in pH=4~9.
     (3) Preparation and coagulation properties of SiO_2@Al_(13) core-shell structure material
     SiO_2@Al_(13) core-shell structure materials are prepared through electrostatic self-assembly method. Researches show that, with the ratio of Al/Si increasing, the content of Al_(13) loading on silica surface increase; when the ratio up to more than 1:1,Al_(13) coating on the surface have little change. With reaction temperature increasing, the amount of Al decreases, so high temperature have a negative effect on the coating of Al_(13) on the spherical surface. The increasing basic, because of the information of Al_(13)-aggregates connecting by OH-, the steric effect is not beneficial for the loading. The analysis show that, the roles on the silica surface are physical effects. Coagulation experiments show that, relativing to the pure Al_(13), SiO_2@Al_(13) composite materials form large particle size and the turbidity removal effect is better for the particle size effect.
引文
[1]汤鸿霄.无机高分子絮凝理论与絮凝剂[M].中国建筑工业出版社,2006.
    [2] Jander G,Winkel A.über amphotere Oxydhydate,deren w??rige L?sungen und kristallisierende Verbindunger. XII. Hydrolysierende Systeme und ihre Aggregationsprodukte mit besonderer Berücksichtigung der Ersheinungen in w??rigen Aluminiumsaltl?sungen[J]. Z. anorg. allg. Chem.1931,200:257-278.
    [3] Brosset C. Studies on the hydrolysis of metal ions XI: The aluminum ion[J].Acta Chem Scand,1954,(8):1917-1926.
    [4] Johansson G. The crystal structures of [Al2 (OH) 2(H2O) 8](SO4) 2·2H2O and [Al2 (OH) 2(H2O) 8](SeO4) 2·2H2O[J]. Acta Chem Scand,1962,(2):403-420.
    [5] Johansson G. On the crystal structures of some basic aluminum salts[J]. Acta Chem Scand,1960,(3):771-773.
    [6] Sillén L G. On Equilibria in systems with polynuclear complex formation.I. Methods for deducing the composition of the complexes from experimental data.“Core + Links”complexes[J]. Acta Chem Scand,1954,(2):299-317.
    [7] Rausch W V,Bale H D. Small-angle x-ray scattering from hydrolyzed aluminum nitrate solutions[J].Chem Phys,1964,(11):3391-3394.
    [8] Akitt J W,Greenwood N N,Lester G. D. Aluminum-27 nuclear magnetic resonance studies of acidic solutions of aluminum salts[J]. Chem Soc A,1969,(5):803-807.
    [9] Allouche L , Gérardin C , Loiseau T , et al. Al30:A giant aluminum polycation[J].Angew Chem Int Ed,2000,(3):511-514.
    [10] Bertsch P M,Parker D R,In:Sposito G(ed). The environmental chemisty of aluminum,2nd Ed[M]. Lewis Publishers,1995,117-168.
    [11]汤鸿霄.羟基聚合氯化铝的絮凝形态学[J].环境科学学报,1998,18(1):1-10.
    [12]王东升,汤鸿霄,高琼等.All3形态分离纯化方法的初步研究[J].环境化学,2000,19(5):389-394.
    [13]赵华章,栾兆坤,王曙光等.All3形态的分离纯化与表征[J].高等化学学报,2002,23(5):751-755.
    [14]叶长青.Al13的亚稳平衡形成机理及其静电簇混凝效应研究.中国科学院博士论文,2006.
    [15]彭革,胡长文,陈立东等.Keggin结构阳离子[AlO4All2(OH)24(H2O)12]与杂多阴离子构筑的新型无机纳米簇凝胶[J].高等化学学报,2001,22(10):1692-1631.
    [16] Montarges E,Michot L J,Lhote F,et al. Intercalation of Al13-polyethyleneoxide complexes into montmorillonite clay [J].Clays and Clay Minerals,1995,43(4):417-426.
    [17] Occelli M L,Bertrand J A,Gould S A C,et al. Physicochemical characterization of a Texas montmorillonite pillared with polyoxocations of aluminum, PartⅠ: the microporous structure[J] .Microporous and Mesoporous Materials,2000,(34):195-206.
    [18] Williame Dubbin , Garrison Sposito. Copper-Glyphosate Sorption to Microcrystalline Gibbsite in thePresence of Soluble Keggin Al13 Polymers[J]. Environ Sci Technol. 2005,(39):2509-2514.
    [19] Smith R W.Reactions among equilibrium and non- equilibrium aueous species of aluminum hydroxy complexes[J].Adv Chem Ser,1971,106:250.
    [20]王先龙,邹公伟,毕树平.27Al核磁共振波谱法测定环境生物样品中铝研究进展[J].无机化学学报,2000,16(4):548-559.
    [21]张立德,牟季美,纳米材料和纳米结构[M].科学出版社,2002.
    [22]刘转年,金奇庭,周安宁.纳米技术处理废水[J].环境污染治理技术与设备,2002,10(3):75-78.
    [23]王芳,刘剑洪,罗仲宽等.纳米SiO2-聚合物复合材料的研究进展[J].材料导报,2006,5(20):181-184.
    [24]施周,许光眉,李炳.纳米SiO2的分散表征及其强化混凝低温低浊水研究[J].中国给水排水,2006,21(22):43-46.
    [25]施周,王巧,李冬梅等.纳米SiO2与聚氯化铝对含表面活性剂原水的絮凝效果研究[J].中国给水排水,2008,6(34):23-27.
    [26]吴慧英,施周,郑宪明等.城市污水纳米材料混凝强化一级处理研究[J].环境污染治理技术与设备,2006,10(7):69-72.
    [27]李冬梅,王巧,黄文权等.纳米SiO2在含阴离子表面活性剂低浊水处理中的应用[J].环境工程学报,2008,2(2):60-65.
    [28]李群.纳米材料的制备与应用技术[M].北京化学工业出版社,2008.
    [29]聂王焰,徐洪耀,李洋等.微乳液法制备纳米二氧化硅[J].安徽大学学报,2007,6(31):70-73.
    [30] Werner St?ber,Arthur Fink. Controlled Growth of Monodisperse Silica Spheres in the Micron Size Range[J]. Journal of Colloid and Inerface Science,1968,26,62-69.
    [31] J W Lee ,M R Othman,Y Eomc et al.The effects of sonification and TiO2 deposition on the micro-characteristicsof the thermally treated SiO2/TiO2 spherical core–shell particlesfor photo-catalysis of methyl orange[J]. Microporous and Mesoporous Materials,2008,116:561-568.
    [32]任慢慢,周震一,高学平等.核壳结构的锂离子电池材料[J].化学进展,2008,5(20):771-777.
    [33] Tomoya Ohnoa,Shouichiroh Tagawaa,Hidenobu Itoha,et al.Size effect of TiO2–SiO2 nano-hybrid particle[J]. Materials Chemistry and Physics,2009,113:119-123.
    [34] Ke Xu ,Jie-Xin Wang,Xu-Liang Kang,et al.Fabrication of antibacterial monodispersed Ag–SiO2 core–shell nanoparticles with high concentration[J]. Materials Letters,2009,63:31-33.
    [35] Mingde Fan,PengYuan ,JianxiZhuet al. Core-shell structured iron nanoparticles well dispersed on montmorillonite[J]. Journal of Magnetism and Magnetic Materials,2009,321:3515-3519.
    [36] Jiaqi Wan,Hui Li,Kezheng Chena. Synthesis and characterization of Fe3O4@ZnO core–shell structured nanoparticles[J]. Materials Chemistry and Physics,2009,114:30-32.
    [37] J Y Xiang,J P Tu ,Y F Yuan,et al. Improved electrochemical performances of core-shell Cu2O/Cu composite prepared by a simple one-step method[J]. Electrochemistry Communications,2009,11:262-265.
    [38] Xiaodan Su, Jingzhe Zhao,Yunling Li ,ea tl.Solution synthesis of Cu2O/TiO2 core-shell nanocomposites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,349:151-155.
    [39] Liang-Peng Wu,Xin-Jun Li ,Zhen-Hong Yuan,et al.The fabrication of TiO2-supported zeolite with core/shell heterostructure for ethanol dehydration to ethylene[J]. Catalysis Communications, 2009,11:67-70.
    [40] Fleming M S,Mandal T K,Walt D R.Nanosphore-Microsphere Assembly:Methods for Core-Shell Materials Preparation,2001,13.
    [41] Xingwei Li,Gengchao Wanga,Xiaoxuan Li.Surface modification of nano-SiO2 particles using polyaniline[J]. Surface & Coatings Technology ,2005,197:56- 60.
    [42] Jianfei Che,Baoyong Luan,Xujie Yang,et al.Graft polymerization onto nano-sized SiO2 surface and its application to the modification of PBT[J]. Materials Letters ,2005,59 :1603– 1609.
    [43] Aiping Zhu,Zhehua Shi,Aiyun Cai,et al.Synthesis of core-shell PMMA-SiO2 nanoparticles with suspension–dispersion–polymerization in an aqueous system and its effect on mechanical properties of PVC composites[J]. Polymer Testing ,2008,27:540-547.
    [44] Mihaela Rusu ,Dirk Kuckling ,Helmuth M?hwald ,et al.Adsorption of novel thermosensitivegraft-copolymers: Core-shell particlesprepared by polyelectrolyte multilayer self-assembly[J]. Journal of Colloid and Interface Science,2006,298:124–131.
    [45] Shang-Ru Zhaia,Jun-Lin Zhenga,Dong Wua,et al. CTAB-assisted fabrication of mesoporous composite consisting of wormlike aluminosilicate shell and ordered MSU-S core[J]. Journal of Solid State Chemistry,2005,178:85-92.
    [46] Alexander M Kalsin,Anatoliy O Pinchuk,Stoyan K Smoukov,et al. Electrostatic Aggregation and Formation of Core-Shell Suprastructures in Binary Mixtures of Charged Metal Nanoparticles[J].Nano Letters,2006,9(6):1896-1903.
    [47] E L Bizdoacaa,M Spasovaa,M Farlea,et al. Magnetically directed self-assembly of submicron spheres with a Fe3O4 nanoparticle shell[J]. Journal ofMagnetism and Magnetic Materials ,2002,240: 44-46.
    [48] Arnout Imhof. Preparation and Characterization of Titania-CoatedPolystyrene Spheres and Hollow Titania Shells[J]. Langmuir 2001,17:3579-3585.
    [49] Lei Ting. Preparation of novel core-shell nanoparticles by electrochemical synthesis[J]. Trans Nonferrous Met SOC China,2007,17: 1343-1346.
    [50] Yumei Tian,Weihong Zhou,Lianxiang Yu,et al. Self-assembly of monodisperse SiO2-zinc borate core-shell nanospheres for lubrication[J]. Materials Letters ,2007,61:506-510.
    [51] JunWang, Hong-yan Zhang,Qin Hao. Structure and luminescence properties of self-assembled films of lanthanide– polyoxometalates clusters/silica core-shell particles[J]. Journal of Alloys and Compounds,2009,485:826-830.
    [52] Xiao Dong He,Xue Wu Ge,Mo Zhen Wang.The preparation of composite microsphere with hollow core/porous shell structure by self-assembling of latex particles at emulsion droplet interface[J].Journal of Colloid and Interface Science,2006,299: 791–796.
    [53] Jong Hyuk Park,Sangwook Woo ,Jung Hyun Kim,et al. Construction of composite particles with monolayered poly(styrene-co-acrylic acid)spheres on gold surface via heterocoagulation[J]. Materials Letters ,2008,62:3916-3918.
    [54] E Geuzens ,G. Vanhoyland , J D Haen,et al.Synthesis of zirconia–alumina and alumina–zirconia core–shell particles via a heterocoagulation mechanism[J]. Journal of the European Ceramic Society,2006,26:3133-3138.
    [55] Yunxing Li,Dongping Yin,ZhaoqunWang,et al. Controlling the heterocoagulation process for fabricating PS-CoFe2O4 nanocompositeparticles[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2009,339:100-105.
    [56]俞建长.核壳结构的氧化锆包裹氧化铝纳米复合粉体的制备研究[J].无机材料学报,2005,5(20):1054-1058.
    [57] Wenjiao Wang,Jinlong Zhang,Feng Chen,et al. Preparation and photocatalytic properties of Fe3+-doped Ag@TiO2 core–shell nanoparticles[J]. Journal of Colloid and Interface Science ,2008,323:182-186.
    [58]王东升,叶长青,余剑锋.一种纳米型聚合氯化铝[P].中国专利:200610113014.X.
    [59]李国红.Al13分离纯化工艺研究及其凝聚絮凝特性初探.中国地质大学硕士学位论文,2006.
    [60]徐绪筝.纳米IPF的高效形态、混凝性能及粒度效应研究.中国科学院硕士论文,2009.
    [61]冯成洪.羟基聚合铝絮凝剂形态结构及双水解转化模式.中国科学院博士论文,2007.
    [62] Kloprogge JJ.,Seykens D,Geus J W,et al.The effects of concentration and hydrolysis on the oligomerization and polymerization of Al(Ⅲ) as evident from the 27Al NMR chemical shifts and linewidths[J]. Non-Crystal.Solids,1993,160:144-151.
    [63] Tsai P P and Hsu P H.Studies of aged OH-Al solutions using kinetics of Al-ferron reactions and sulfate precipitation[J]. Soil. Sci. Soc,1984,48:59-65.
    [64] Laurent J.Michot,Odile Barres,Eric L.Hegg,et al.Cointercalation of A113 Polycations and Nonionic Surfactants in Montmorillonite Clay[J]. Langmuir,1993,9,1794-1800.
    [65] Liu Shunying,Liang Zhongshi,Zhang Shuyan,et al.Size control of silica nanoparticles by modified St?ber method[J].华东师范大学学报(自然科学版),2009,3(2):112-121.
    [66]赵丽,余家国,程蓓等.单分散二氧化硅球形颗粒的制备与形成机理[J].化学学报,2003,61:562-566.
    [67]李群.纳米材料的制备与应用技术[M].北京:化学工业出版社,2008:194-195.
    [68]高宝玉,孔春燕,岳钦艳等.聚合氯化铝中Al13形态的分离纯化方法及特性[J].化学学报,2005,63(18):1671-1675.
    [69] G Lou,P M Huang.Hydroxy-aluminosilicate interlayers in montmorillonite:implications for acidic environments[J].Letters To Nature,1988,13(335):625-627.
    [70] J Theo Kloprogge,Huada Ruan,Ray L Frost. Near-infrared spectroscopic study of [AlO4Al12(OH)23(H2O)12]7+-O-Si(OH)3 nitrate crystals formed by forced hydrolysis of Al3+ in the presence of TEOS[J]. Spectrochimica Acta Part A:2000,56:2405-2411.
    [71] J Theo Kloprogge,Huada Ruan,Rayl Frost. Near-infrared spectroscopic study of basic aluminum sulfate and nitrate[J]. Journal of Materials Science,2001,36:603- 607.
    [72] Mercedes Mu?z,Carmen I Cabello,Irma L Botto,et al. Synthesis and spectroscopic 27Al NMR and Raman characterization of new materials based on the assembly of [AlO4Al12(OH)24(H2O)12]7+ isopolycation and Co-Cr and [AlMo6O24H6]3- Anderson heteropolyanions[J]. Journal of Molecular Structure, 2007,841:96-103.
    [73] Xiaohong Wu,Dongsheng Wang,Xiaopeng Ge,et al. Coagulation of silica microspheres with hydrolyzed Al(III)-Significance of Al13 and Al13 aggregates[J]. Colloids and Surfaces A:Physicochem Eng Aspects,2008,330:72-79.
    [74] Jr Lin Lin,Chihpin Huang,Ching Ju M Chin,et al. The origin of Al(OH)3-rich and Al13-aggregate flocs composition in PACl coagulation[J]. Water research 2009,1-11.
    [75] Loc V Duong,Barry J Wood,J Theo Kloprogge. XPS study of basic aluminum sulphate and basic aluminium nitrate[J]. Materials Letters 2005,59:1932-1936.
    [76] T N Wittberg,Pu Sen Wang. XPS Study of the Dehydration of Clay and Kaolin Powders[J]. Surf Interface Anal,1999,27:936-940.
    [77] Jr Lin Lin, Ching Ju M Chin,Chihpin Huanga,et al. Coagulation behavior of Al13 aggregates[J]. Water research,2008,42:4281-4290.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700