多功能清雪车螺旋集雪器结构与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文依托吉林大学与沈阳山河工程机械厂合作的“多功能清雪车研发”项目,对浮雪清除装置——螺旋集雪器的结构和性能进行研究。在阐述其结构和工作原理的基础上,分析螺旋叶片的结构和成形方式,分析雪的物理力学性质,研究螺旋集雪器结构参数,即螺旋外径、螺旋角、螺距、螺旋轴直径对螺旋集雪器性能的影响;在此基础上建立螺旋功耗以及清雪效率的数学模型;借助计算机分析软件,对螺旋功耗和清雪效率进行计算机数值分析,分析螺旋外径、螺旋的螺距、螺旋轴直径等螺旋结构参数以及螺旋转速、清雪车行进速度等性能参数对功耗、清雪效率的影响,并得到相应的特性参数关系曲线;以螺旋集雪器最小功耗和最大清雪作业效率为目标函数,对螺旋集雪器结构参数进行优化分析。理论计算、计算机数值分析和优化分析为多功能清雪车螺旋集雪器结构设计提供了一定的理论参考。
Snow cover on the road is one of the hidden dangers of traffic security, if the snow can not be cleared on time, the safety of people to travel will get harm. The efficiency of manual snow-removing is low, which takes many troubles to pedestrian, so it is more urgent to need mechanized snow-removing.
     Multifunctional snow-removing is the special mechanical equipment of road maintenance in winter which is used to eliminating snow, ensuring patency of traffic and safety of driving. It continuous low temperature in winter in most areas of the northeast and northwest in our country, the important factor to traffic jam and even malignant accident is the wet road surface owing to the snow which can not melt during many months. Especially, with the rapid development of expressway construction in recent years, it seems especially important of the snow-removing of highway and city road. It can not meet the market demand of the production development of snow removing machinery in China, while the price to the imported snow-removing equipment is high, the supply cycle of service and fittings is long, the cost is expensive, which can not completely meet the road condition of our country. So it has great practical significance and huge economic benefit to design and manufacture highly-efficient snow-removing adapted to the snowy district of our country.
     The snow clearing capacity of the snow-remover depends on the properties of snow clearing device, so it is necessary to study the structure and properties of snow clearing device deeply. At present, the mechanical“real-time snow removing”technology is adopted in many countries. Mechanical“real-time snow removing”technology is clearing by using floating snow clearing machinery while it snows, the process of snowing is just process of clearing, so the clearing work can be basically completed. Aiming at this conception, floating snow clearing device with high efficiency, time saving and force saving is needed. The device mainly used for clearing floating snow is spiral snow collection, which is generally used with high speed rotating fan and snow throwing cylinder. Snow is collected by spiral snow collection and threw to roadside or snow truck through snow throwing cylinder driven by rotating fan, which can save time, and the efficiency is high. But the clearing efficiency also has a certain gap while being compared with developed countries, so deep research is needed to improve it.
     This paper relys on the cooperative project“Research and Development of Multifunctional Snow-removing”between Jilin university and Shenyang Shanhe engineering machine factory, mainly studies the snow-removing device spiral snow collection based on the refitted ZL50 loader. Research on optimization of the structure and properties of the spiral snow-collected device is made. The main research contents are as follows:
     (1) Combining with the project, the installation style and working system of spiral snow collection are illustrated, and the structure and working principle are introduced, then the design technical parameters of spiral snow collection and performance parameter of loader are given; the spiral blade is chose and its expansion form is illustrated, which lay a function for subsequent related analysis and calculation ; the physical characteristics of snow is studied, lay a theoretical foundation for the mechanical analysis of snow later.
     (2) Base on the mechanical analysis and velocity analysis of snow, the relationship between various parameters of the spiral snow collection and the working properties was studied, and the helical vane, the pitch of helical vane and helix angle are determined preliminarily. The mathematical models of efficiency of cleaning snow and consumed power of the spiral snow collection were established. According to the press, displacement and power to choose the type of motor for snow plough, and the diameter of helical axis and the rotational speed of the spiral snow collection is determined. In order to avoiding sympathetic vibration, modal analysis of the spiral snow collection is made, the conclusion of which shows that resonance will not occurs to the spiral snow collection in the determined rotational speed.
     (3) According to the mathematics models established, by means of the tool box of Simulink of MATLAB, the system block diagrams are builded. Then according to the related technique parameters and the references and literatures, mathematical models of efficiency of cleaning snow and consumed power of the spiral snow collection were simulated. Which analyzed the influence on the efficiency of cleaning snow and consumed power of the spiral snow collection of the structure parameters such as the helical vane D, the diameter of helical axis d, the pitch of helical vane s and technology parameters such as rotational speed of the spiral snow-collected n device and the marching speed of the snow-removing V. The conclusion of simulation shows that the influence of the structure parameters on the consumed power of the spiral snow-collected device is littile, which can be ignored, but the influence on the efficiency of cleaning snow of helical vane of the spiral snow collection D and the pitch of helical vane s of the spiral snow collection is great, along with the augment of the helical vane of the spiral snow collection D, the efficiency of cleaning snow of the spiral snow collection rises; along with the augment of the pitch of helical vane s of the spiral snow collection, the efficiency of cleaning snow of the spiral snow collection rises. And the influence of the diameter of helical axis d to the efficiency of cleaning snow of the spirial snow collection is not big. The influence of the technology parameters on efficiency of cleaning snow and consumed power of the spiral snow collection are both great, along with the augment of rotational speed of the spiral snow collection, the efficiency of cleaning snow and consumed power of the spiral snow collection both rise, along with the augment of the marching speed of the snow-removing, the consumed power of the spiral snow collection device rises. It has a certain reference value of the analysis above to the structure design and research on properties of the spiral snow collection and so on.
     (4) Combined with the result of the simulation, the least power consumption and the largest productivity are taken synchronously as objective functions. The rigidity limitation, anti-torsion limitation, power limitation, and the boundary restraint of the helical vane D, the pitch of helical vane s, and helical angle of the spiral snow-collected deviceαare taken as constraints. Based on the genetic algorithm, the structure parameters of the spiral snow collection are optimized, and the structure optimized was obtained. The result of optimization is that the helical vane D equals to 0.83m, the pitch of helical vane s equals to 1.6m.
引文
[1]马文星.特种车辆[M].北京:化学工业出版社,2006.
    [2]冯雨芹,于继承,齐晓杰,等.高速公路清冰雪技术研究[J].建筑机械,2006(7):71-75.
    [3]马文星,邓洪超.筑路与养护路机械[M].北京:化学工业出版社,2005.
    [4]田磊.中国北方城市发展需要实时清雪技术[C].2005年第二节道路除冰雪年应急安全处置及环境卫生治理新技术、新设备交流研讨会.
    [5]吴书琴,邵东伟,姜东华,等.城市道路除雪现状及未来发展方向[J].佳木斯大学学报,2006,24(4):556-557.
    [6]崔宪江.除雪机械[M].北京:人民交通出版社,1988.
    [7]崔宪江.抛扬式除雪机的应用[J].建设机械技术与管理,2007(9):98-100.
    [8]张启君,夏磐夫.国内外除雪机械的探讨[J].筑路机械与施工机械化,2005(11):1-5.
    [9]田晋跃.国外道路除雪机械技术发展概况[J].专业汽车,2001(4):43-44.
    [10]张启君.国外除雪设备发展情况概述[J].建设机械技术与管理,2008(3):63-66.
    [11] LANG RENEE M, BLAISDELL GEORGE L. Passive snow removal at the Pagasus Runway, McMurdo Antartica [J].Cold regions science and technology,1999(29):75-88.
    [12] ANON . Small-sized rotary snow-removing equipment[J] . Stroitel'nye i Dorozhnye Mashiny,2005(1):19.
    [13] RANNEV, KOMATSU A V.Snow-removal Loaders[J].Stroitel'nye i Dorozhnye Mashiny,2004(7):25-27.
    [14] Dronov V G.Small-sized snow-clearing machines to clean yard[J].Stroitel'nye i Dorozhnye Mashiny,2004(3):10-17.
    [15] ANON. Development trends of Japanese rotary snow ploughs[J].Stroitel'nye i Dorozhnye Mashiny,2005(2):32-33.
    [16] RANNEV A V.Japanese rotary snow ploughs[J].Stroitel'nye i Dorozhnye Mashiny,2004(5):22-25.
    [17] DAMODARAN,PURUSHOTHAMAN,KRISHNAMURTHI.A continuous simulation model for snow removal[J].International Journal of Industrial Engineering,Theory Applications and Practice,2005,12(2):189-199.
    [18]王振.国内除雪除冰机械现状刍议[J].工程机械,2002(7):46-47.
    [19]张启君.国内除雪机械探讨[J].建设机械技术与管理,2008(4):78-81.
    [20]王健,王钢,林敬东.我国除雪机械现状及发展趋势[J].呼伦贝尔学院学报,2005,13(2):81-83.
    [21]王智明,张连富,张天蔚.中国除雪机械现状及发展趋势[J].Road Machinery & Construction Mechanization,1998(6):4-5.
    [22] CAMPBELL,JAMES F,LANGEVIN,ANDRE.Operations management for urban now removals and disposal[J].Transportation Research,Part A:Policy and Practice1995,29A:359-370.
    [23]齐晓杰.道路与公路冰雪清楚技术发展现状与探讨[J].林业机械与木工设备,2004,32(6):7-12.
    [24]卜小明,田静.除雪机械现状及发展趋势[J].黑龙江交通科技,2006(8):78-80.
    [25]王涛,张永梅.国内外路面养护机械的技术水平及发展趋势[J].建设机械技术与管理,1997,10(3):39-42.
    [26] LI SHENGLIN,MENG XIANGHUAN,OIU XUTING.The road sweeping-snow devices in country and overseas[J].Road machinery & constructionmechanization,2003(1):17-19.
    [27] CAMPBELL J F,LANGEVIN A.Model for urban snow removal operations[J].Presented at the 34th ORSAITIMS Joint National Meeting,1992(3):118-123.
    [28] GLATMAN V I.Snow removal machinery improvement[J].Tyazheloe Mashinostroenie.
    [29] SALTVIK INGAR,ELSTER ANNE C,NAGEL HENRIK R.Parallel Methods for Real-Time Visualiz-ation of Snow [J].Springer-Verlag,2007(4699):218-227.
    [30] THOMPSON BRIAN E,NAKHLA HANY K.Modeling and airborne debris around overplow deflectors during high-speed snowplowing [J] . Journal of Cold Regions Engineering,2002,16(3):119-137.
    [31]金星,纪锋,张明志.大水面鱼类越冬冰面除雪机的研究[J].渔业机械仪器,1996(1):7-12.
    [32]金星,纪锋,张明志,等.冰面除雪机螺旋输送器参数讨论[J].水产学杂志,1998(1):59-64.
    [33]洪致育,林良明.连续运输机[M].北京:机械工业出版社,1981.
    [34]张东海.螺旋输送机的优化研究[D].大连:大连理工大学,2006.
    [35]靳光法.螺旋叶片展开尺寸的集中计算方法[J].机械工程师,2003(2):64-65.
    [36]冯锡兰,郭友寒.冷拉螺旋叶片展开的精确算法[J].航空制造技术,2003(7):72-74.
    [37]穆存远,孙立新,韩家东.城市道路积雪物理机械性能测试研究[J].机械设计与制造,2001(3):73-74.
    [38]侯博文.离心扬雪式除雪机构的研究[D].长春:长春理工大学,2007.
    [39]王国安.除雪机械结构原理和计算要点[J].建筑机械化,1995(1):22-25.
    [40]张恒奇.转子式扫雪机工作装置动力特性的初步讨论[J].工程机械,1983(12):12-17.
    [41]王国安,黄克昌.转子式扫雪机的工作原理和计算要点[J].工程机械,1983(5):12-15.
    [42]李晶.小型螺旋式清雪车的总体设计和三维绘图[D].大连:大连铁道学院,2003.
    [43]杜鸣青.小型螺杆式清雪车研究[D].南京:南京理工大学,2004.
    [44]毛信理.液压传动与液力传动[M].北京:冶金工业出版社,1993.
    [45]陆敏恂,李万莉.流体力学与液压传动[M].上海:同济大学出版社,2006.
    [46]雷天觉.液压工程手册[M].北京:机械工程出版社,1990.
    [47]聂毓琴,孟广伟.材料力学[M].北京:机械工业出版社,2004.
    [48]马晓录,曹宪周,张小勤,等.快速螺旋输送机振动现象与转速设计研究[J].郑州工程学院学报,2002,23(3):66-68.
    [49]袁安富,陈俊.ANSYS在模态分析中的应用[J].中国制造业信息化,2007(11):42-45.
    [50]陈桂明,张明照,戚红雨,等.应用MATLAB建模与仿真[M].北京:科学出版社,2001.
    [51]陈杰.MATLAB宝典[M].北京:电子工业出版社,2007.
    [52]王小平,曹立明.遗传算法、理论、应用与软件实现[M].西安:西安交通大学出版社,1994.
    [53] HAUPT RANDY L.Practical Genetic Algorthms (second Edition) [M].John Wiley&song, Inc,Hoboken,New Jersey,2004.
    [54]玄先男,程润男.遗传算法与工程优化[M].北京:清华大学出版社,2004.
    [55] LI H L,PAPALAMBROS P.A Combined Local-Global Actice Set Strategy for Nolinear Design Optimization[J].Advances in Design Automation,1987(2):49-57.
    [56]张晶,瞿鹏程,张本源.惩罚算法在遗传算法处理约束问题中的应用[J].武汉理工大学学报,2002,24(2):56-59.
    [57]林于一,沈阳.遗传算法在非线性约束优化问题上的应用[J].机械设计与研究,1998(2):13-15.
    [58]李阿南,王三民.圆柱齿轮传动优化设计的遗传算法及Matlab实现[J].机械设计与制造,2006(11):4-6.
    [59]王昀睿,郭卫.用MATLAB优化工具箱求解机械最优化问题[J].煤矿机械,2000(7):6-8.
    [60] GREFENSTETTE , FITZPATRICK J M . Genetic search with approximate function evaluations [C].Proceedings of an international conference on genetic algorithms and their application,1985(6):112-120.
    [61] LETAL LAWER E. The Traveling Salesman Problem[M].New York:John Wiley & song,1985.
    [62]吉军,原思聪,王发展.基于遗传算法的无阀液压冲击旋转型锚杆钻机动力头优化设计[J].煤矿机械,2006,27(11):1-3.
    [63]熊雪峰.基于遗传算法的装载机装置优化设计应用研究[D].西安:西北农林科技大学,2001.
    [64]黎新,王国彪.复摆颚式破碎机的遗传算法优化[J].设计计算,2006(6):55-62.
    [65]黄其柏,周明刚,王勇.基于遗传算法的鼓式制动器结构参数优化设计[J].机械制造,2006,44(507):24-26.
    [66] HOMAIFAR A,GUAN S,LIEPINS G.Schema analysis of the traveling salesman problem using genetic algorithms[J].Comples Sytems,1992,6(1):138-141.
    [67] GARRET N,VANDERP LAATS.Numerical Optimization Techniques for Engineering Design[J].McGraw-Hill Book Company,1984(5):17-18.
    [68]张卫虎,王国彪.旋转装载机工作装置的遗传优化设计[J].机械设计与研究,2006(3):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700