粉末活性炭和好氧颗粒污泥对SMBR中膜污染的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
膜生物反应器是将膜技术应用于污水处理的一项新兴技术,然而,膜污染现象是当前限制该技术广泛应用的主要瓶颈,它将导致膜通量下降或过膜压力的上升,影响出水水质且会对膜组件造成损坏。寻求延缓膜污染的对策将是本领域研究的重点和难点,也是本论文研究的目的。本文采用淹没式膜生物反应器处理模拟生活废水,以过膜压力和胞外聚合物主要为膜污染参数,用平行对比研究的方法,系统研究了两种延缓膜污染的物质—粉末活性炭和好氧颗粒污泥对膜生物反应器运行情况和膜污染情况的影响。
     向膜生物反应器中投加不同量及粒径不同的粉末活性炭,对PAC延缓膜污染的情况进行了考察。结果表明:投加了粉末活性炭的膜生物反应器相比较于传统膜生物反应器而言,膜污染现象得到明显改善(膜污染速率降低40%),其中投量为2g/L,粒径为120-200目的粉末活性炭对膜污染的控制作用较好;粉末活性炭的投加能减少胞外聚合物的含量,相对于传统膜生物反应器,其污泥混合液和膜丝表面上胞外聚合物的含量最多减少了48.58%和49.02%;粉末活性炭的投加对出水水质稍有改善,可使COD和氨氮去除率分别提高2%和5.39%。
     向反应器投加2g/L粒径为120-170目的PAC,考察污泥浓度从5000mg/L提高到10000mg/L时反应器运行情况和膜污染的情况。结果显示:污泥浓度的增加使得胞外聚合物含量的增加,并进一步导致膜污染速率(dP/dt)由0.667kPa/day上升到1.188kPa/day。这一结果证明胞外聚合物的含量与过膜压力的变化速率和膜污染现象正相关。
     以厌氧颗粒污泥为接种污泥,通过SBR法培养使其转化为好氧颗粒污泥,用以引入膜生物反应器中,考察了好氧颗粒污泥的性质及其对膜生物反应器运行效果和膜污染情况的影响。结果表明:好氧颗粒污泥代替普通活性污泥能够有效的减缓膜污染的发展,前者的膜污染速率相对于后者降低了39%;好氧颗粒污泥膜生物反应器同样可高效的去除污水中COD和NH_4~+-N。
The membrane bioreactor (MBR) is commonly regarded as a promising technology for wastewater treatment with the advantage of simultaneous pollutants biodegradation and solid-liquid separation in a compact reactor.However, membrane fouling is a major obstacle for the application of MBRs since it cause a decline in permeate flux and/or an increase in trans-membrane pressure (TMP), loss of permeate quality and deterioration of the membrane. This study hence aims at investigation of comparative methods for controlling membrane fouling with addition of powdered activated carbon (PAC) and aerobic granular sluge into submerged membrane bioreactors (SMBR). TMP and extra polymericl substance (EPS) were monitored as indicators of fouling throughout study.
     PAC addition into SMBRs has shown significant improvement of fouling at 2g/L PAC with 120-200 mesh size which are considered as optimal PAC dosage. The fouling was controlled as low as 40% dP/dt (dTMP/dt) compared with conventional MBR system without PAC. The EPS concentrations also found lower under PAC adding condition since their concentration from the sludge mixture and membrane surface has shown less 48.58% and 49.02% values, respectively compared to conventional MBR. The effluent quality could be slightly improved by the addition of PAC in terms of effluent COD and NH4+-N, which were improved by 2% and 5.39% respectively.
     TMP and EPS were also monitored under different MLSS concentration at 5000 mg/L and 10000 mg/L with the optimal PAC concentration and size. The results showed that with the increase of MLSS from 5000mg/L to 10000mg/L, the EPS concentration was increased and this results in dP/dt increase from 0.667kPa/day to 1.188kPa/day. It proved that the EPS concentration has negative effect on membrane operation which directly propotion to TMP and fouling phenomena.
     The aerobic granular sludge membrane bioreactor (AGMBR) system was studied to understand its fouling condition with EPS concentration. The introduction of aerobic granular sludge can effectively reduce the membrane fouling rate as the dP/dt value was 39% less than in conventional MBR. The effluent quality was also improved compared with the conventional MBR system.
引文
1. G.. Tchobanoglous, F. L. Burton and H. D. Stensel. Wastewater Engineering: Treatment and Reuse. McGraw-Hill, Boston, 2003.
    2. T. G. Casey, G. A. Ekama, M. C. Wentzel, et al. Filamentous Organism Bulking in Nutrient Removal Activated-Sludge Systems.1: A Historical Overview of Causes and Control. Water SA, 21(3): 231-238, 1995.
    3. D. H. Eikelboom, A. Andreadakis and K. Andreasen. Survey of Filamentous Populations in Nutrient Removal Plants in Four European Countries. Water Science and Technology, 37(4-5): 281-289, 1998.
    4. E. V. Musvoto, M. T. Lakay, T. G. Casey, et al. Filamentous Organism Bulking in Nutrient Removal Activated Sludge Systems-Paper 8: The Effect of Nitrate and Nitrite. Water SA, 25(4): 397-407, 1999.
    5. D. Jenkins, M. G. Richard, G. T. Daigger, et al. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems. Lewis Publishers, Boca Raton, Fla., 2004.
    6. Jelena Radjenovic, Marin Matosic, Ivan Mijatovic, et al. Membrane Bioreactor (MBR) as an Advanced Wastewater Treatment Technology. Environmental Chemistry, 5(Part S/2): 37–101, 2008.
    7. T. Stephenson, S. Judd, B. Jefferson, et al. Membrane Bioreactors for Wastewater Ttreatment. IWA Pub., London, UK. 2002
    8. J. J. Beun, M. C. M. van Loosdrecht and J. J. Heijnen. Aerobic Granulation in a Sequencing Batch Airlift Reactor. Water Research, 36: 702–712, 2002.
    9. Y. M. Zheng, H. Q. Yu and G. P. Sheng. Physical and Chemical Characteristics of Granular Activated Sludge from a Sequencing Batch Airlift Reactor. Process Biochemistry, 40: 645-650, 2005.
    10. Z. W. Wang, Z. C. Wu, S. H. Mai, et al. Research and Applications of Membrane Bioreactors in China: Progress and Prospect. Separation and Purification Technology, 62: 249–263, 2008.
    11. Y. H. Chen. Application of MBR for Wastewater Treatment. Technology of Water Treatment (in Chinese), 17: 319–323, 1991.
    12. Y. B. Fan, G. Li, L. L. Wu, et al. Treatment and Reuse of Toilet Wastewater by an Airlift External Membrane Bioreactor. Process Biochemistry, 41: 1364–1370, 2006.
    13. G. Li, Y. B. Fan, L. L. Wu, et al. An Airlift External Membrane Bioreactor for Treatment of Toilet Wastewater. Technology of Water Treatment (in Chinese), 32: 49–53, 2006.
    14. Y. B. Fan, H. F. Xu and H. M. Guo. Wastewater Treatment and Reuse by an Airlift External Membrane Bioreactor. Techniques and Equipment for Environmental Pollution Control (in Chinese), 5: 70–75, 2004.
    15. H. F. Xu and Y. B. Fan. Study on an Airlift External Membrane Bioreactor for Toilet Wastewater Treatment and Reuse. Journal of Environmental Science (in Chinese), 24: 125–129, 2003.
    16. T. Stephenson, S. Judd, B. Jefferson, et al. Membrane Bioreactors for Wastewater Treatment. IWA Publishing, London, UK, 2000.
    17. G. W. Gu and Y. L. He. Membrane Bioreactors: Application and Research in Wastewater Treatment. Chemical Industry Press, Beijing, China, 2002.
    18. A. Oehmen, R. Viegas, S. Velizarov, et al. Removal of Heavy Metals from Drinking Water Supplies through the Ion Exchange Membrane Bioreactor. Desalination, 199: 405–407, 2006.
    19. X. L. Chai and Y. C. Zhao. Study on Bubbleless Aeration in Membrane Bioreactor for Wastewater Treatment. Shanghai Environmental Science (in Chinese), 20: 482–483, 2001.
    20. M. Wang, X. F. Shi and X. L. Chai. Study on Bubbleless Aeration in Membrane Bioreactor for Domestic Wastewater Treatment. Environmental Pollution and Control (in Chinese), 24: 355–356, 2002.
    21. Y. M. Zhang, Y. N. Cheng, Y. L. Shi, et al. Studies on Ceramic Dual Function Membrane Bioreactor for Wastewater Treatment. Environmental Science (in Chinese), 23: 67–70, 2002.
    22. X. Q. Zhang and B. Q. Jiang. Study on Bubbleless Aerated Membrane Bioreactor for Domestic Sewerage Treatment. Journal of Nanchang University (in Chinese), 25: 42–45, 2003.
    23. M. Xiao, J. T. Zhou, Y. Tan, et al. Treatment of Highly-concentrated Phenol Wastewater with an Extractive Membrane Reactor Using Silicone Rubber. Desalination, 195: 281–293, 2006.
    24. J. H. Cao, X. L. Zheng, M. X. Pan, et al. Nitrate Removal in Groundwater Using Extractive Membrane Biological Reactors. Journal of Xi’an University of Architecture and Technology (in Chinese), 38: 574–579, 2006.
    25. H. T. Deng, Z. K. Xu, Z. W. Dai, et al. Immobilization of Candida Rugosa Lipase on Polypropylene Microfiltration Membrane Modified by Glycopolymer:Hydrolysis of Olive Oil in Biphasic Bioreactor. Enzyme Microbial Technology, 36: 996–1002, 2005.
    26. S. C. Cheison, Z. Wang and S. Y. Xu. Use of Response Surface Methodology to Optimize the Hydrolysis of Whey Protein Isolate in a Tangential Flow Filter Membrane Reactor. Journal of Food Engineering, 80: 1134–1145, 2007.
    27. Y. Wu, Z. Y. Xiao, W. X. Huang, et al. Enhancements of Fermentation and Pervaporation in a Coupling Silicone Rubber Membrane Bioreactor. Journal of Chemical Engineering of Chinese Universities (in Chinese), 18: 241–245, 2004.
    28. T. M. LaPara, C. G. Klatt, and R. Chen. Adaptations in Bacterial Catabolic Enzyme Activity and Community Structure in Membrane-coupled Bioreactors Fed Simple Synthetic Wastewater. Journal of Biotechnology, 121(3): 368-380, 2006.
    29. Y. Ye, E. Le Clech, V. Chen, et al. Fouling Mechanisms of Alginate Solutions as Model Extracellular Polymeric Substances. Desalination, 175: 7-20, 2005.
    30. Y. Liu, Z. W. Wang and J. H. Tay. A Unified Theory for Upscaling Aerobic Granular Sludge Sequencing Batch Reactors. Journal of Biotechnology Advances, 23(5): 335–344, 2005.
    31. Y. Liu, J. H. Tay. State of the Art of Biogranulation Technology for Wastewater Treatment. Journal of Biotechnology Advances, 22(7): 533–563, 2004.
    32. X. F. Li, Y. J. Li, H. Liu, et al. Characteristics of Aerobic Biogranules from Membrane Bioreactor System. Journal of Membrane Science, 287(2): 294–299, 2007.
    33. J. J. Beun, M. C. M. van Loosdrecht, J. J. Heijnen. Aerobic Granulation in a Sequencing Batch Airlift Reactor. Water Research, 36(3): 702–712, 2002.
    34. J. H. Ta, P. Yang, W. Q. Zhuang, et al. Reactor Performance and Membrane Filtration in Aerobic Granular Sludge Membrane Bioreactor. Journal of Membrane Science, 304: 24–32, 2007.
    35. Fangang Meng, So-Ryong Chae, Anja Drews, et al. Recent Advances in Membrane Bioreactors (MBRs): Membrane Fouling and Membrane Material. Water research, 43: 1489–1512, 2009.
    36. Chackrit Nuengjamnong, Ji Hyang Kweon, Jinwoo Cho, et al. Membrane Fouling Caused by Extracellular Polymeric Substances during Microfiltration Processes. Desalination, 179: 117-124, 2005.
    37. S. Judd. A Review of Fouling of Membrane Bioreactors in Sewage Treatment. Water Science and Technology, 49 (2): 229–235, 2004.
    38. H. Lee, G. Amy, J. W. Cho, et al. Cleaning Strategies for Flux Recovery of an Ultrafiltration Membrane Fouled by Natural Organic Matter. Water Research, 35(14): 3301-3308, 2001.
    39. J. Lee, W. Y. Ahn, and C. H. Lee. Comparison of the Filtration Characteristics between Attached and Suspended Growth Microorganisms in Submerged Membrane Bioreactor. Water Research, 35(10): 2435-2445, 2001.
    40. C. M. Pang, P. Hong, H. Guo, et al. Biofilm Formation Characteristics of Bacterial Isolates Retrieved from a Reverse Osmosis Membrane. Environmental Science and Technology, 39 (19): 7541–7550, 2005.
    41. S. Wang, G. Guillen and E. M. V.Hoek. Direct Observation of Microbial Adhesion to Membranes. Environmental Science and Technology, 39 (17): 6461–6469, 2005.
    42. Choon Aun Ng, Darren Sun, and G. Anthony Fane. Operation of Membrane Bioreactor with Powdered Activated Carbon Addition. Separation Science and Technology, 41: 1447–1466, 2006.
    43. U. Tatsuki , H. Kenji. Domestic Wastewater Treatment by a Submerged Membrane Bioreactor with Gravitational Filtration. Water Research, 33 (12):2888-2892, 1999.
    44. Xing Kai, Zhang Hongwei, Long Shuyong, et al. Membrane Fouling in Aerobic Granular Sludge Membrane Bioreactor. China Water &Wastewater, 25(5): 32-36, 2009.
    45. Wang Fang, Zhao Yuqing, Sun Hongjie, et al. Aerobic Biosludge Granules for Control of Membrane Fouling. Environmental pollution and control (in China), 28(9): 703-706, 2006.
    46. Hu Linlin, Wang Jianlong, Wen Xianghua, et al The Formation and Characteristics of Aerobic Granules in Sequencing Batch Reactor (SBR) by Seeding Anaerobic Granules. Process biochemistry, 40: 5-11, 2005.
    47. Li Xiufen , Li Yanjun and Liu He. Characteristics of Aerobic Biogranules from Membrane Bioreactor System. Membrane Science, 287: 294– 299, 2007.
    48. B. D. Cho and A. G. Fane. Fouling Transients in Nominally Sub-critical Flux Operation of a Membrane Bioreactor. Journal of Membrane Science, 209: 391–403, 2002.
    49. S. Rosenberger, U. Kruger, R. Witzig, et al. Performance of a Bioreactor with Submerged Membranes for Aerobic Treatment of Municipal Waste Water. Water Research, 36: 413–420, 2002.
    50. In-Soung Chang, Pierre Le Clech, Bruce Jefferson, et al. Membrane Fouling in Membrane Bioreactors for Wastewater Treatment. Journal of Environmental Engineering, 128 (11): 1018–1029, 2002.
    51. Zhu Zhenzhong, Zhou Yan, Li Xiufen, et al. Characteristics of Aerobic Granular Sludge Membrane Bioreactor for Wastewater Treatment. Environmental Science (China), 27(1): 57-62, 2006.
    52. G. Lettinga, A. F. M. van Velsen, S. W. Hobma, et al. Use of the Upflow Sludge Blanket (USB) Reactor Concept for Biological Waste Water Treatment Especially for Anaerobic Treatment. Biotechnology and Bioengineering, 22:629-634, 1980.
    53. E. Morgenroth, T. Sherden, M. C. M. van Loosdrecht, et al. Aerobic Granular Sludge in a Sequencing Batch Reactor. Water Research, 31 3191-3194, 1997.
    54. J. J. Beun, A Hendriks, M. C. M. van Loosdrecht, et al. Aerobic Granulation in a Sequencing Batch Reactor. Water Research, 33 (10): 2283–2290, 1999.
    55. P Dangcong, N Bernet, J. P. Delgenes, et al. Aerobic Granular Sludge—a Case Report. Water Research, 33:890–893, 1999.
    56. S. F. Yang, Y Liu, J. H. Tay. A Novel Granular Sludge Sequencing Batch Reactor for Removal of Organic and Nitrogen from Wastewater. Journal Biotechnology, 106:77–86, 2003.
    57. Y Liu, J. H. Tay. State of the Art of Biogranulation Technology for Wastewater Treatment. Biotechnology Advances, 22:533–563, 2004.
    58. S. S. Adav, M. Y. Chen, D. J. Lee, et al. Degradation of Phenol by Aerobic Granules and Isolated Yeast. Candida tropicalis. Biotechnology and Bioengineering, 96(8): 44–52, 2007.
    59. S. S. Adav, D. J. Lee, J. Y. Lai. Effects of Aeration Intensity on Formation of Phenol-fed Aerobic Granules and Extracellular Polymeric Substances. Application of Microbial Biotechnology, 77(1): 75–82, 2007.
    60. S. S. Adav, D. J. Lee and N. Q. Ren. Biodegradation of Pyridine Using Aerobic Granules in the Presence of Phenol. Water Research, 41:2903–2910, 2007.
    61. S. S. Adav, Duu-Jong Lee and Joo-Hwa Tay. Extracellular Polymeric Substances and Structural Stability of Aerobic Granule. Water Research, 42: 1644-1650, 2008.
    62. S. S. Adav, C. H. Chang and D. J. Lee. Hydraulic Characteristics of Aerobic Granules Using Size Exclusion Chromatography. Biotechnology and Bioengineering, 99:791–799., 2008.
    63. S. S. Adav, Duu-Jong Lee, Kuan-Yeow Show, et al. Aerobic Granular Sludge: Recent Advances. Biotechnology Advances, 26: 411–423, 2008.
    64. J. J. Heijnen, M. C. M. van Loosdrecht. Method for Acquiring Grain-shaped Growth of a Microorganism in a Reactor. European patent EP0826639, 1998.
    65. M. K. de Kreuk, C. Picioreanu, M. Hosseini, et al. Kinetic Model of a Granular Sludge SBR: Influences on Nutrient Removal. Biotechnology and Bioengineering, 97: 801–815, 2007.
    66. M. K. de Kreuk, N. Kishida, M. C. M. van Loosdrecht. Aerobic Granular Sludge—State of the Art. Water Science and Technology, 55: 75–81, 2007.
    67. Robert Field, David Hughes, Zhanfeng Cui, et al. Some Observations on the Chemical Cleaning of Fouled Membranes. Desalination, 227: 132–138, 2008.
    68. Liu Aiping, Li Kaiming, Chen Zhongying, et al. Research Advance in Aerobic Granular Sludge Membrane Bioreactor. Environmental Engineering. 26: 160-162, 2008.
    69. A. G. Fane, C. J. D. Fell and M. T. Nor. Ultrafiltration/ Activated Sludge System—Development of a Predictive Model. Polymeric Science and Technology, 13: 631–658, 1981.
    70. K. Yamamoto, M. Hissa, T. Mahmood, et al. Direct Solid Liquid Separation Using Hollow Fiber Membrane in an Activated Sludge Aeration Tank. Water Science and Technology, 21: 43–54, 1989.
    71. T. Ueda, K. Hata and Y. Kikuoka. Treatment of Domestic Sewage from Rural Settlements by a Membrane Bioreactor. Water Science and Technology, 34: 189–196, 1996.
    72. S. Lubbecke, A. Vogelpohl and W..Dewjanin. Wastewater Treatment in a Biological High-performance System with High Biomass Concentration. Water Research, 29: 793–802, 1995.
    73. K. Brindle and T. Stephenson. The Application of Membrane Biological Reactors for the Treatment of Wastewaters. Biotechnology and Bioengineering, 49: 601–610, 1996.
    74. Li Xiufen , Li Yanjun , Liu He, et al. Characteristics of Aerobic Biogranules from Membrane Bioreactor System. Membrane Science, 287: 294– 299, 2007.
    75. Yamini Satyawali and Malini Balakrishnan. Performance Enhancement with Powdered Activated Carbon (PAC) Addition in a Membrane Bioreactor (MBR) Treating Distillery Effluent. Journal of Hazardous Materials, 170: 457–465, 2009.
    76. Nicolas Lesage, Mathieu Sperandio and Corinne Cabassud. Study of a Hybrid Process: Adsorption on Activated Carbon/Membrane Bioreactor for the Treatment of an Industrial Wastewater. Chemical Engineering and Processing, 47: 303–307, 2008.
    77. Pierre Le-Clech, Vicki Chen and Fane TAG. Fouling in Membrane Bioreactors Used in Wastewater Treatment. Journal of Membrane Science, 284:17–53, 2006.
    78. Li Shaofeng, Wang Hongjie and Wang Xueqin. Impact of Stuff on the Operational Efficacy of Submerged Membrane Bioreactor. Chemical Engineering (China), 35(6): 53-56, 2007.
    79. Zhang Bin, Sun Baosheng, Jin Min, et al. Extraction and Analysis of Extracellular Polymeric Substances in Membrane Fouling in Submerged MBR. Desalination, 227: 286–294, 2008.
    80. H. Nagaoka and H. Akoh. Decomposition of EPS on the Membrane Surface and Its Influence on the Fouling Mechanism in MBRs. Desalination, 231: 150–155, 2008.
    81. M. E. H. Rojas, R. Van Kaam, S. Schetrite, et al. Role and Variations of Supernatant Compounds in Submerged Membrane Bioreactor Fouling. Desalination, 179(1-3): 95-107, 1995.
    82. W. Lee, S. Kang and H. Shin. Sludge Characteristics and Their Contribution to Microfiltration in Submerged Membrane Bioreactors. Journal of Membrane Science, 216(1-2): 217, 2003.
    83. D. T. Sponza. Investigation of Extracellular Polymer Substances (EPS) and Physicochemical Properties of Different Activated Sludge Flocs Under Steady-state Conditions. Enzyme Microbial Technology, 32(3-4): 375-385, 2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700