羟基磷灰石的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,羟基磷灰石(HA)作为一种新型的纳米生物材料得到了国内外的广泛关注。羟基磷灰石规则的立体化学结构和良好的生物相容性使其在催化、蛋白质分离、生物传感等领域倍受瞩目,为高灵敏的生物检测和传感器小型化方面的应用开辟了新的道路。而且基于羟基磷灰石较强的吸附能力和独特的多吸附位点使其在使其处理含重金属离子的废水、污染土壤等方面也得到了迅速的发展。
     本论文在综述部分概述了羟基磷灰石独特的立体化学机构,比较了几种常规制备羟基磷灰石的方法,详细介绍了羟基磷灰石吸附重金属离子的机制以及影响因素,论述了羟基磷灰石在生物传感中的应用,展望了羟基磷灰石的应用前景。实验研究包括以下几个内容:
     1. HA修饰铂电极上对葡萄糖的生物传感
     采用双电位阶跃法在铂电极上电沉积制备羟基磷灰石涂层,研究葡萄糖氧化酶(GOD)在该修饰电极上的直接电化学行为;探讨制备的Nafion-GOD-HA-PVA(聚乙烯醇)/Pt复合电极对葡萄糖的电催化氧化作用,采用计时电流法测定溶液中葡萄糖的含量,并测试了此传感器的稳定性和重现性。
     实验表明在Nafion-GOD-HA-PVA/Pt内, GOD呈现出很好的直接电化学性质,说明羟基磷灰石和Nafion良好的协同作用,有利于GOD的固定,可以促进GOD的电子转移,保持GOD的活性,并对葡萄糖的氧化具有极好的催化作用。该葡萄糖传感器对葡萄糖的电流响应较快检测线性范围为0.02~0.52mmol/L,检测限为1.82μmol/L,灵敏度为56.90mA·L·mol~(-1)。此外,该传感器还具有良好的稳定性和重现性。
     2. HA修饰多孔二氧化钛对葡萄糖的生物传感
     采用阳极氧化法制备多孔二氧化钛,溶胶-凝胶法制备羟基磷灰石,并用羟基磷灰石- Nafion复合膜将葡萄糖氧化酶有效地固定于多孔二氧化钛上,将这种制得的复合电极Nafion/GOD-HA-PVA/TiO_2/Ti对不同浓度的葡萄糖溶液进行检测,考察此复合电极的最佳工作电压,采用计时电流法测定溶液中葡萄糖的含量。并测试了此传感器的稳定性和重现性。实验表明,在Nafion/GOD-HA-PVA/TiO_2/Ti内,羟基磷灰石、多孔二氧化钛和Nafion良好的协同作用,有利于GOD的固定,保持GOD的活性。在最佳工作电压-0.42V下,此复合电极对葡萄糖的氧化具有良好的催化作用。
     3. HA吸附水溶液中Zn~(2+)的研究
     采用液相沉淀法制备羟基磷灰石,研究羟基磷灰石对Zn~(2+)的吸附作用,主要考察Zn~(2+)初始浓度、温度、pH值及反应时间对去除效率的影响,并探讨HA的吸附机理。
     实验表明,利用液相沉淀法合成的HA,对Zn~(2+)有较强的吸附作用,是良好的新型吸附剂;HA对水溶性Zn~(2+)的最佳吸附条件为:pH为6.5,反应时间为50min,温度为35℃;HA对溶液中重金属离子的吸附大致可分开始阶段的表面吸附以及后期阶段离子交换吸附。
Hydroxyapatite (HA) as a new type of nano-biological materials has been widespread concern at home and abroad in recent years. Hydroxyapatite-dimensional chemical structure of the rules and good biocompatibility make it in the catalysis, protein separation, high-profile areas such as bio-sensing for sensitive biological detection and sensor miniaturization has opened up new applications road. Based on the strong adsorption of hydroxyapatite and unique multi-adsorption sites, HA has been used to deal with waste water containing heavy metal ions, contaminated soil, etc.
     This paper outlined the review part of the unique stereochemistry of hydroxyapatite bodies, compared with several conventional method of preparing hydroxyapatite, described in detail the adsorption mechanism of heavy metal ions by hydroxyapatite and discussed influence factors. Hydroxyapatite application in biological sensing had been looked forward. Experimental studies include the following elements:
     1. HA modified platinum electrodes for glucose biosensor
     A novel glucose biosensor was constructed by immobilizing the glucose oxidase(GOD) on hydroxyapatite(HA)-polyvinyl alcohol(PVA) composite film electrodeposited on platinum electrode and applied to the highly selective and sensitive determination of glucose. The GOD adsorbed onto the HA-PVA composite film exhibits a pair of well-defined nearly reversible redox peaks and fine catalysis to the oxidation of glucose. The results demonstrated that with the cooperation of HA-PVA and Nafion, which can enhance the electrochemical activity of GOD and promote electron transfer, the composite film played an important role in enhancing the stability and sensitivity of the biosensor, the decreased reduction current was linear with the concentration of glucose in the range of 0.02- 0.52 mM. The results demonstrated that this modified electrode can achieve highy sensitive determination of glucose.
     2. HA modified TiO_2 for glucose biosensor
     A glucose biosensor was constructed by immobilizing the glucose oxidase(GOD) on hydroxyapatite prepared by sol-gel method on TiO_2 prepared by anodic oxidation to the highly selective and sensitive determination of glucose. In this experiment,we optimized the best work voltage of this composite electrode by chronoamperometry of glucose in the solution and tested the sensor stability and reproducibility. Within the Nafion/GOD-HA-PVA/TiO2/Ti structure, there was a good synergy between hydroxyapatite, titanium dioxide nanotubes and Nafion, to keep the activity of GOD. This composite electrode showed excellent catalyst for the oxidation of glucose at -0.42V voltage.
     3. HA adsorption of Zn~(2+) in aqueous solution
     In this experiment, we prepared hydroxyapatite by liquid phase precipitation and studied the adsorption of Zn~(2+), mainly on the initial concentration of Zn~(2+), temperature, pH, and reaction time on removal efficiency and adsorption mechanism of HA.
     Experimental results showed that HA synthesized by liquid phase precipitation was a good new adsorbent to the adsorption of Zn~(2+). The optimized adsorption conditions for water-soluble Zn~(2+) were as following: pH 6.5, reaction time 50min, the temperature 35℃. HA on the adsorption of heavy metal ions in solution can be divided into roughly the beginning of the late stage of the surface adsorption and ion exchange adsorption.
引文
[1] Li C,Botsaris G D,Kaplan D L. Selective in Vitro Effect of Peptides on Calcium Carbonate Crystallization[J].Cryst Growth Des,2002,2(5):387-393.
    [2] Hadiko G,Han Y S,Fuji M,Takahashi M.Synthesis of hollow calcium Carbonate particles by the bubble templating method[J].Mater Lett, 2005, 59(19):2519-2522.
    [3] Deng S G,Cao J M,Feng J,Guo J,Fang B Q,Zheng M B,Tao J. A Bio-Inspired Approach to the Synthesis of CaCO3 Spherical Assemblies in a Soluble Ternary-Additive System[J]. J Phys Chem B,2005,109(23):11473-11477.
    [4] Wei H,Shen Q,Zhao Y,Zhou Y.On the crystallization of calciumCarbonate modulated by anionic surfactants[J]. J Cryst Growth,2005,279(3):439-446.
    [5] Shen Q,Wei H,Wang L,Zhou Y,Zhao Y,Zhang Z,Wang D,Xu G,Xu D,Crystallization and Aggregation Behaviors of Calcium Carbonate in the Presence of Poly(vinylpyrrolidone) and Sodium Dodecyl Sulfate[J]. J Phys Chem B,2005, 109(39):18342-18347.
    [6] Yu J,Zhao X,Cheng B,Zhang Q.Controlled synthesis of calcium carbonate in a mixed aqueous solution of PSMA and CTAB[J].J Solid State Chem,2005,178(3): 861-867.
    [7] Wan-Joong Kim,Bong Kyu Kim,Ansoon Kim,Chil Seong Ah,Kyung-Hyun Kim, Response to Cardiac Markers in Human Serum Analyzed by Guided-Mode Resonance Biosensor[J]. Analytical Chemistry,2010, 82(23):9686-9693
    [8]梁琼.水热法制备羟基磷灰石的研究[D].北京:北京化工大学,2007:
    [9]天津大学无机化学教研室编制,无机化学(下册)[M],北京:高等教育出版社1997,589-592.
    [10]尹邦跃,纳米时代:现实与梦想[M],北京:中国轻工业出版社,2001,7.
    [11] Yang J,Qi L,Lu C,Ma J,Cheng H.Morphosynthesis of Rhombododecahedral Silver Cages by Self-Assembly Coupled with Precursor Crystal Templating[J].Angew Chem Int Ed,2005,44(4):598-603.
    [12] Pan Y,Zhao X,Guo Y P,Lv X T,Ren S X,Yuan M R,Wang Z C.Controlled synthesis of hollow calcite microspheres modulated by polyacrylic acid and sodium dodecyl sulfonate[J].Mater Lett,2007,61(13):2810-2813.
    [13] Smigelskas A D,Kirkendall E O.Zinc Diffusion in Alpha Brass[J].Trans AIME,1947,171: 130-142
    [14]田明原,施尔畏,郭景坤,纳米陶瓷与纳米陶瓷粉末[J],无机材料学报,1998,3(2): 129-137.
    [15]郭景坤,徐跃萍,纳米陶瓷及其进展[J],硅酸盐学报,1992,20(3):286-291.
    [16] Shuxiang Chen, Weishan Wang, Hirokage Kono, Kensuke Sassa, Shigeo Asai. Abnormal grain growth of hydroxyapatite ceramic sintered in a high magnetic field, Journal of Crystal Growth, 2010,312(2) ,323-326.
    [17] Hande Demirkiran,Yongfeng Hu, Lucia Zuin, Narayana Appathurai, Pranesh Aswath, XANES analysis of calcium and sodium phosphates and silicates and hydroxyapatite–Bioglass?45S5 co-sintered bioceramics[J],Materials Science and Engineering C ,2011,31 (2): 134-143.
    [18] Ruoff R. S., Lorents D. S..Mechanical and thermal properties of carbon nanotube [J],Carcon,1995,33(7):95-97.
    [19] Han W Q, Fan S S,Li Q Q. Synthesis of Gallium Nitride nanorods through a cabon-nanotube-confined reaction[J],Seience,1997,277(29):1287-1289.
    [20] Gustavo A. Zelada-Guillen, Suryakant V. Bhosale, Jordi Riu, and F. Xavier Rius,Real-Time Potentiometric Detection of Bacteria in Complex Samples[J], Anal.Chem. 2010, 82(22), 9254-9260.
    [21] Wei Choon Alvin Koh,Jung Ik Son,Eun Sang Choe,and Yoon-Bo Shim. Electrochemical Detection of Peroxynitrite Using a Biosensor Based on a Conducting Polymer-Manganese Ion Complex, Anal. Chem . ,2010, 82(24), 10075-10082.
    [22] Aelman L M.Molecular computation of solutions to combinatorial problems[J], Seience,1994,266(11):1021-1024
    [23] Wei-Qiao Deng, Richard P. Muller, and William A. Goddard III. Mechanism of the Stoddart-Heath Bistable Rotaxane Molecular Switch[J], J.AM. CHEM.SOC., 2004,126(42), 13562-13563.
    [24] Andrew Frame and Frank E. Osterloh.CdSe-MoS2: A Quantum Size-Confined Photocatalyst for Hydrogen Evolution from Water under Visible Light[J], J. Phys. Chem. C, 2010, 114(23), 10628-10633.
    [25] Nabeen K. Shrestha, Jan M. Macak, Felix Schmidt-Stein, Robert Hahn, Claudia T. Mierke,Ben Fabry, and Patrik Schmuki.Magnetically Guided Titania Nanotubes for Site-SelectivePhotocatalysis and Drug Release[J], Angew. Chem.,2008, 121(5), 1-5.
    [26] Scott S. Dunkle, Richard J. Helmich, and Kenneth S. Suslick,BiVO4 as a Visible-Light Photocatalyst Prepared by Ultrasonic Spray Pyrolysis[J], J.Phys.Chem. C, 2009,113(28), 11981-11983.
    [27] CHOU SREY,SIMON A. HAUGHEY,LISA CONNOLLY. Immunochemical and Mass Spectrometric Analysisof N-(Carboxymethyl)lysine Content of AGE-BSA Systems Prepared with and without Selected Antiglycation Agents[J], J. Agric. Food Chem., 2010,58(22), 11955-11961.
    [28] Shoujiang Xu,Yang Liu,Taihong Wang,and Jinghong Li.Highly Sensitive Electrogenerated Chemiluminescence Biosensor in Profiling Protein Kinase Activity and Inhibition Using Gold Nanoparticle as Signal Transduction Probes[J],Anal. Chem.,2010, 82(22), 9566–9572.
    [29] Mu barak Ali,Reinhard Neumann,and Wolfgang Ensinger. Sequence-Specific Recognition of DNA Oligomer Using Peptide Nucleic Acid (PNA)-Modified Synthetic Ion Channels: PNA/DNA Hybridization in Nano confined Environment [J],Nano,2010,4(12),7267-7274.
    [30] Yongxia Zhang,Lynda N. Mandeng,Nina Bondre,Anatoliy Dragan,and Chris D.Geddes.Metal-Enhanced Fluorescence from Silver-SiO2-Silver Nanoburger Structures[J], Langmuir ,2010, 26(14), 12371-12376.
    [31] Ahmet A.Yanik,MinHuang,Osami Kamohara,Alp Artar,Thomas W. Geisbert, John H. Connor,and Hatice Altug.An Optofluidic Nanoplasmonic Biosensor for Direct Detection of Live Viruses from Biological Media[J], Nano Lett. ,2010, 10 (12), 4962–4969.
    [32] Kristen A. Zimmermann, Jill M. LeBlanc, Kevin T. Sheets, Robert W. Fox, Paul Gatenholm. Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications[J], Materials Science and Engineering C,2011,31(1), 43-49.
    [33] R.Sharma, S.Kwon, R. Baktur, and A.Sharma.Nanotoxicity Assessment toward theApplications of Carbon Nanotubes as a Small Biomolecule Carrier in Drug Delivery Systems[J], NSTI-Nanotech ,2009,2,150-153.
    [34] Seung Jae Yang,Jae Yong Choi,Hee K. Chae,Jung Hyun Cho,Kee Suk Nahm,and Chong Rae Park. Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite,Chem. Mater., 2009,21(9),1893–1897.
    [35] Hong-Zhang Geng, Tae Hyung Kim, Seong Chu Lim, Hae-Kyung Jeong, Mei Hua Jin, Young Woo Jo, Young Hee Lee. Hydrogen storage in microwave-treated multi-walled carbon nanotubes [J],International Journal of Hydrogen Energy, 2010,35 (5), 2073-2082.
    [36] Sanosh Kunjalukkal Padmanabhan,Avinash Balakrishnan, Min-Cheol Chub.Sol -gel synthesis and characterization of hydroxyapatite nanorods[J],Particuology, 2009,7(2), 466–470.
    [37] Greta Gergely,Ferenc Weber,Istvan Lukacs Preparation and characterization of hydroxyapatite from eggshell[J],Ceramics International, 2010,36, 803–806.
    [38] Aihua Yao , Fanrong Ai, Xin Liu, Deping Wang, Wenhai Huang, Wei Xu. Preparation of hollow hydroxyapatite microspheres by the conversion of borate glass at near room temperature[J],Materials Research Bulletin ,2010,45, 25-28.
    [39] Anton Ficai, Ecaterina Andronescu, Georgeta Voicu.The influence of collagen support and ionic species on themorphology of collagen/hydroxyapatite composite materials[J],Materials Characterization,2010,61(4),402-407.
    [40]王桂香,潘芊秀,王怀生,新型DNA电化学传感器的研制及其用于DNA氧化性损伤检测的研究[J],高等学校化学学报,2005,26(10) ,1812-1816.
    [41]汪冰,丰伟悦,赵宇亮,邢更妹,柴之芳,纳米材料生物效应及其毒理学研究进展[J],中国科学B辑化学,2005, 35(1): 1-10.
    [42] Wu Zh J, He L P, Chen Z ,Fabrication and characterization of hydroxyapatite/Al2O3 biocomposite coating to titanium[J] .Trans Nonferrous Met Soc China, 2006, 16 ( 3 ) :259- 266.
    [43] YANG Chun, GUO Ying-kui, ZHANG Mi-lin, Thermal decomposition and mechanical properties of hydroxyapatite ceramic[J], Nonferrous Met. Soc. China,2010,20(2) 254-258.
    [44]叶青,胡仁,林种玉,羟基磷灰石与牛血清白蛋白相互作用的原位红外光谱研究[J],高等学校化学学报,2006, 26 ( 8 ) :946- 950.
    [45]林英光,杨卓如,程江,纳米锶羟基磷灰石的制备和抗菌性能研究[J],化工新型材料,2006, 34( 9) : 52- 64.
    [46]任卫,曹献英,冯凌云,纳米经基磷灰石合成及表面改性的途径与方法[J],硅酸盐通报,2001,l:38-43
    [47]邬鸿彦,HA的结构及物理性能[J],四川师范大学学报(自然科学版), 1996,19(5):55-88.
    [48] KokuboT,eta1..Apatite-and-Wollastonite wntaining glass ceramic for prosthetic application[J],Bull InstChem ResKyoto Uniu,1982,60:260
    [49] Amir Nemati Hayati,H.R.Rezaie,S.M.Hosseinalipour,Preparation of poly (3-hydroxybutyrate)/nano-hydroxyapatite composite scaffolds for bone tissue engineering[J], Materials Letters, 2011,65(4) ,736-739.
    [50] Kawasaki T, Fundamental study of hydroxyapatite high performance liquid chromatography [J], J.Chromatography, l990,515:125-128.
    [51] Abbas Fahami, Reza Ebrahimi-Kahrizsangi,Bahman Nasiri-Tabrizi Mechanochemical synthesis of hydroxyapatite/titanium nanocomposite[J], Solid State Sciences, 2011,13 (1), 135-141.
    [52]黄志良,王大卫,刘羽,张术根等,羟基磷灰石(HA)的制备方法及其研究进展[J],武汉化工学院学报,2001,23(3),49-54.
    [53] Iwasaki H,Fibrous Hydroxyapatite[J] ,Ceram. Jpn.,1989, 24(40):295-299.
    [54] Yoshiota,Iwashita,Kasuga,Novel preparation method of hydroxyapatite fibers[J],J. Am. Ceram .Soc,1998,81:l665-1668.
    [55]伍源,周玉新,用水热法合成羟基磷灰石[J],无机盐工业,1991,1:58-60
    [56] Lim GK,Wang J , Processing of hydroxyapatite via microe mu and emulsion routes[J],Biomaterials,1997,18(21):1433-1439
    [57] L.Levy,J.F.Hochepied,M.P.Pfleni.Control of the size and composition of three dimensionally diluted magnetic semiconductor cluster [J]. J.Phys. Chem,1996,100:18322-18326.
    [58]任卫,李世普,王友法,超细HA颗粒的反相微乳液合成[J],硅酸盐报,2002,21(6):27-31.
    [59] Koumoulidis G.C,Katsoulidis Alexandros P,Ladavos K,Preparation of hydroxyapatite via microemulsion route[J],Journal of Colloid and Interface Science,2003,259(2):254-260.
    [60] Zhang F,Zhou Z,Yang S. Hydrothennal synthesis of hydroxyapatite nanorods in thepresent of anionic starburst dendrimer [J], Mater.Left., 2005,59: 1422- 1425.
    [61] Aqif A. Chaudhry,Haixue Yan, Kenan Gonga, Fawad Inamc, Giuseppe Viola.High-strength nanograined and translucent hydroxyapatite monoliths via continuous hydrothermal synthesis and optimized spark plasma sintering[J]. Acta Biomaterialia, 2011,7 (2), 791-799.
    [62] Kothaalli C R,Wei M,Legeros R Z,Influence of temperature and aging time on HA synthesized by the hydrothennal method[J], J.Mater.Sei., 2005, 16(2): 441- 446.
    [63] Guodong Zhang, Jingdi Chen, Shen Yang, Qifeng Yu, Zhili Wang, Qiqing Zhang,Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method[J]. Materials Letters, 2011,65 (3) :572-574.
    [64] K. Ozekia,H. Aokib, T. Masuzawa. Influence of the hydrothermal temperature and pH on the crystallinity of a sputtered hydroxyapatite film[J].Applied Surface Science, 2010,256 (3):7027-7031.
    [65] Guodong Zhang, Jingdi Chen, Shen Yang, Qifeng Yu, Zhili Wang, Qiqing Zhang.Preparation of amino-acid-regulated hydroxyapatite particles by hydrothermal method[J]. Materialsn Letters, 2011,65 (3):572-574.
    [66] Kinoshita M,ltatani K,Nakamura S.Preparation and Morphology of Carbonate Containing Hydroxyapatite by Homogeneous and Hydrothennal Methods [J],Gysum & Lime,1990,227:19-27
    [67] Hattori T. Hydrothermal preparation of calcium hydroxyapatite powders[J]. Journal of the American Ceranue Soeiety,1990,73(6):1803-1805
    [68] Yoshimura M,Guda H,Okamoto K, Hydrothennal Synthesis of Needle-like Apatite Crystal[J],The Chemiacl Soeiety of Japan,1991,(10):1402-1407.
    [69] Fujishiro Y,Yabuki H,Kawamura K,et al.,Preparation of Needle-like Hydroxyapatie by Homogeneous Preeipitation under Hydrothermal Conditions [J].Chem.Teeh.Bioteehnol,1993,57(4):349-353.
    [70] Li Y B,De G K,De W J et al..Morphology and composition of nanograde ealeium phosphate needle-like crystals formed by simple hydrothermal treat[J].JMater Sci:Mater Med.,1994,5(67):326-331.
    [71]宋江凤,刘咏,张莹.水热法合成不同形貌羟基磷灰石[J],粉末冶金材料科学与工程,2010,15(5),505-510.
    [72] Barbara A. Nellis, Joe H. Satcher Jr., Subhash H. Risbud. Phospholipid bilayer formation on hydroxyapatite sol–gel synthesized films[J], Colloids and Surfaces B: Biointerfaces,2011, 82 (5) :647-650.
    [73] R. Ravarian, F. Moztarzadeh, M. Solati Hashjin, S.M. RabieeP. Khoshakhlagha, M. Tahriri.Synthesis, characterization and bioactivity investigation of hydroxyapatite composite[J], Ceramics International, 2010,36(1):291-297.
    [74] A. Ruban Kumar, S. Kalainathan.Sol-gel synthesis of nano-structured hydroxyapatite powder in presence of polyethylene glycol[J].Physica B, 2010,405 (13) 2799-2802.
    [75] P. Kanchana, C. Sekar.Influence of sodium fluoride on the synthesis of Hydroxyapatite by gel method[J], Journal of Crystal Growth ,2010, 312 (1) ,808-816.
    [76]李建利.羟基磷灰石的制备和性能研究[D],上海:华中科技大学,2006.
    [77] A.Deptula,W.Lada,T.oleZak. Proparation of spherieal powders of hydroxyapatite by sol- gel process[J].Journal of Non-Crystalline Solids, 1992,147&148:537-541.
    [78] R Layrolle, A.Ito ,T. Tateishi.Sol-gel synthesis of amorphous calcium phosphate and sintering into mieroporous hydroxyapatite bioceramies[J] J.Am.Ceram.Soe. ,1998,8(6):1421-1428.
    [79] Y.Masuda,K.Matubara.Synthesis of hydroxyapatite from metal alkoxide through sol-gel techniques [J].J.Pn.Ceram.Soc.,1990,11:1255-1266.
    [80]王峰,李木森.快速溶胶-凝胶法制备纳米级轻基磷灰石[J].生物骨科材料与临床研究,2004,1(4):17-20.
    [81]刘晶冰,汪浩.溶胶-凝胶法制备轻基磷灰石粉末的研究[J].功能材料,2003,(1):106-107.
    [82]南开辉,王迎军.水解时间对溶胶.凝胶法制备羟基磷灰石粉体的影响[J].材料科学与工程学报,2004,22(2) ,175-178.
    [83]孟令科,朱晓丽.溶胶-凝胶法制备经基磷灰石的影响因素[J].现代化工,2002,22(5):136-138.
    [83]邢瑞敏,刘山虎.溶胶凝胶模板法制备羟基磷灰石纳米线[J].化学研究,2010,21(2):7-10.
    [84]黄志良、王大卫、刘羽、张术根等.羟基磷灰石(HA)的制备方法及其研究进展[J],武汉化工学院学报,2001,9,23(3),49-54.
    [85]郝军,石玉龙.溶胶-凝胶法制备羟基磷灰石粉体[J].青岛科技大学学报(自然科学版),2010,31(2):153-155.
    [86] S. Ramesh, C.Y. Tan, W.H. Yeo, R. Tolouei, M. Amiriyan,I. Sopyan, W.D. Teng.Effects of bismuth oxide on the sinterability of hydroxyapatite[J]. Ceramics International,2011,37 (2) :599-606.
    [87] Peipei Wang, Caihong Li , Haiyan Gong, Xuerong Jiang, Hongqiang Wang, Kaixing Li Effects of synthesis conditions on the morphology of hydroxyapatite nanoparticles produced by wet chemical process[J].Powder Technology,2010,203 (2) :315-321.
    [88] F. Ren, Y. Leng, R. Xin, X. Ge. Synthesis, characterization and ab initio simulation of magnesium-substituted hydroxyapatite[J].Acta Biomaterialia,2010, 6 (7) :2787-2796.
    [89] Samir Kumar Ghosh,Sujit Kumar Roy, Biswanath Kundu, Someswar Datta, Debabrata Basu.Synthesis of nano-sized hydroxyapatite powders through solution combustion route under different reaction conditions[J]. Materials Science and Engineering B,2011,176 (1) :14-21.
    [90] Faheem A. Sheikha, Muzafar A. Kanjwalb, Hak Yong Kimc.Fabrication of titanium dioxide nanofibers containing hydroxyapatite nanoparticles[J]. Applied Surface Science ,2010,257 (1) :296-301.
    [91] Anna S,losarczyk, Zofia Paszkiewicz, Aneta Zima.The effect of phosphate source on the sintering of carbonate substituted hydroxyapatite[J],Ceramics International ,2010,36 (2) :577-582.
    [92]门智新,何翔,孙奉娄.沉淀法制备羟基磷灰石反应条件控制研究[J],陶瓷,2010,7(2), 21-24.
    [93] A Osaka,Y Miura,K Takeuchi,et a1..Calcium apatite prepared from calcium hydroxide and orthophosphoric acid[J].J.Mater.Sci.:Mater.Med,1991,2:51-55.
    [94]杨辉,王栋.蔡日强共沉淀法制备高纯度纳米羟基磷灰石的研究[J],精细化工,2010, 27(1), 5-10.
    [95] Liu C S, Huang Y, Shen W, et al, Kinetics of hydroxyapatite precipitation at pH 10 to 11[J ], Biomaterials, 2001,22 (4):301 - 306.
    [96] E.Bouyer.F.Gitzhofer,M.I.Boulos,Morphological study of hydroxyapatite nanocrytal suspension[J], J.Mater.Sci.:Mater.Med.,2000,11(8):523-531.
    [97] Chandrasekhar KotHAalli,Wei M,Vasiliev A, et al, Influence of temperature andconcentration on the sintering behavior and me chanical properties of hydroxyapatite[J], Acta Materialia, 2004, 52(19): 5655-5663.
    [98] A.Tampieri,G.Celotti,S.Sprio,et a1.,Characteristics of synthetic hydroxyapatite and attempts to improve their thermal stability[J], Materials chemistry and physics ,2000,64(1):54-61.
    [99] ZHAO Xuhui,YANG Lingfang, ZUO Yu and XIONG Jinping, Hydroxyapatite Coatings onTitanium Prepared by Electrodeposition in a Modified Simulated Body Fluid[J], Chinese Journal of Chemical Engineering, 2009,17(4):667-671.
    [100] Dong-Yang Lin, Xiao-Xiang Wang,A novel method to synthesize hydroxyapatite coating with hierarchical structure[J], Colloids and Surfaces B: Biointerfaces, 2011,82 (2) :637-640.
    [101] R. Ma, K.N. Sask, C. Shi, J.L. Brash, I. Zhitomirsky, Electrodeposition of polypyrrole-heparin and polypyrrole-hydroxyapatite films[J], Materials Letters,2011,65 (4): 681-684.
    [102] Deliang Qiua, Aiping Wanga, Yansheng Yin, Characterization and corrosion behavior of hydroxyapatite/zirconia composite coating on NiTi fabricated by electrochemical deposition[J], Applied Surface Science, 2010,257(5): 1774- 1778.
    [103] Mardali Yousefpour, Abdollahe Afshar, Jiyong Chen, Xingdong Zhang,Electrophoretic deposition of porous hydroxyapatite coatings using polytetrafluoroethylene particles as templates[J], Materials Science and Engineering C ,2007,27 (5) ,1482-1486.
    [104] Dong-Yang Lin , Xiao-Xiang Wang, Preparation of hydroxyapatite coating on smooth implant surface by electrodeposition[J], Ceramics International, 2011,37(1) :403-406.
    [105] H.X.Wang, S.K. Guan, X. Wang, C.X. Ren, L. Wang, In vitro degradationand mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process[J], Acta Biomaterialia, 2010,6 (5) :1743-1748.
    [106] Dong-Yang Lin,Xiao-Xiang Wang,Anovel method to synthesize hydroxyapatite coating with hierarchical structure[J], Colloids and Surfaces B: Biointerfaces, 2011,82 (2) :637-640.
    [107] Xianghui Hou, Xin L iu, et al,A self-opti-mizing electrodeposition process for fabrication of calcium phosphate coatings[J], Mater. Lett.,2001 (50) :103-107.
    [108] Hu R, Shi H Y, Lin C J, et al., The crystal growth behavior of hydroxyapatite coating on Titanium substrate under electrochem ical deposition conditions [J], Acta Physico-Chimica Sinica (Chinese) , 2005 (21) 2: 197-201.
    [109]刘榕芳,肖秀峰,林岚云,陈古镛,水热电沉积羟基磷灰石涂层的研究[J],高等学校化学学报,2004,25(2):304-308.
    [110]胡仁,时海燕,林理文,庄燕燕,林昌健,电化学沉积羟基磷灰石过程晶体生长行为[J],物理化学学报,2005,21(2):197-201.
    [111]章媛媛,陶杰,庞迎春,王玲,王炜,电化学沉积法制备钛基HA涂层[J],稀有金属材料与工程,2006,35(3):459-462.
    [112]王月勤,陶杰,多孔二氧化钛上电沉积羟基磷灰石[J],材料科学与工程学报,2007,25(2):249-252.
    [113] Muniyap pan Rajiv Gandhia, G.N. Kousalyab, S. Meenakshi. Removal of copper(II) using chitin/chitosan nano-hydroxyapatite composite[J], International Journal of Biological Macromolecules, 2011,48 (1) :119-124.
    [114] M. Jiménez-Reyes, M. Solache-Ríos, Sorption behavior of fluoride ions from aqueoussolutions by hydroxyapatite[J], Journal of Hazardous Materials ,2010, 180(2): 297-302.
    [115] Sheng-Heng Tan,Xue-Gang Chen,Ying Ye,Jie Sun,Ling-Qing Dai,Qian Ding,Hydrothermal removal of Sr2+ in aqueous solution via formation of Sr-substituted hydroxyapatite [J], Journal of Hazardous Materials,2010,179(1): 559-563.
    [116] Lijing Dong, Zhiliang Zhu, Yanling Qiu, Jianfu Zhao, Removal of lead from aqueous solution by hydroxyapatite/magnetite composite adsorbent[J], Chemical Engineering Journal, 2010,165(3):827-834
    [117] Zizhong Zhang, Mengyan Li, Wei Chen, Shuzhen Zhu, Nannan Liu, Lingyan Zhu, Immobilization of lead and cadmium from aqueous solution and Contaminated sediment using nano-hydroxyapatite[J], Environmental Pollution,2010,158(2):514-519.
    [118]张俊,王德平,姚爱华,黄文曷,羟基磷灰石吸附性能与制备工艺研究新进展[J],材料导报,2008,22(11):55-57
    [119] G.N. Kousalyaa, Muniyappan Rajiv Gandhib, C. Sairam Sundaramc, S. Meenakshi, Synthesis of nano-hydroxyapatite chitin/chitosan hybrid biocomposites for the removalof Fe(III) [J],Carbohydrate Polymers,2010,82(3):594-599.
    [120] ShepardSR , et al.,Discoloration of ceramic hydroxyapatite used for protein Chromatography[J], Chromagr A,2000,891:93-96.
    [121]刘斌,寇小丽,王奎,等,人工合成羟基磷灰石对水溶液中Pb2+、Cd2+离子的固定作用[J],应用化工,2005,34(7):415-418.
    [122] I. Mobasherpour, E. Salahi, M. Pazouki, Removal of divalent cadmium cations by means of synthetic nano crystallite hydroxyapatite[J], Desalination,2011, 266(1) :142-148.
    [123]邓迟,翁杰,周绍兵,卢雄,汪建新,羟基磷灰石表面吸附性能的研究综述[J],材料导报,2007,21(9):84-87.
    [124] Vega E D,Pedregosa J C,Narda G E, Interactive of oxovanadium(IV)with crystalline calcium hydroxyl-apatite:surface mechanism with no structural modification[J], J. Phys .Chem. Solids,1999,60,759-764.
    [125]刘羽,胥焕岩等,羟基磷灰石吸附水溶液中Cd的影响因素的研究[J],岩石矿物学杂志,2001,20(4):58.
    [126] Frauchiger L,Tabo relli M,et a1, Ion adsorption on titanium surfaces exposed to a physiological solution[J], Appl Surf Sci.,1999,143:67-71.
    [127] Zhao L P,Gao L.Fabrication and surface characterization of NH4PPA-stabilized HAZ suspensions[J], J .Coll.Interf .Sci,2003,262(3):428-432 .
    [128] Gomez J A,Morando P J,et a1, Natural materials for treatment of industrial effluents: comparative study of the retention of Cd, Zn and Co by calcite and Hydroxyapatite,Part 1: Batch experiments[J], J. Env. Mag,2004,71(2):169-177
    [129] Misra D N, Interaction of some alkali metal citrates with hydroxyapatite ion-exchange adsporption and role of charge balance[J], CoIl Surf(A)Phy Eng Aspects,1998,141(2):173-179.
    [130] Dexiang Liao,Wei Zheng,Xiaoming Li, Qi Yang, Xiu Yue, Liang Guo,Guangming Zeng, Removal of lead(II) from aqueous solutions using carbonate hydroxyapatite extracted fromeggshell waste[J], Journal of Hazardous Materials, 2010, 177 (1) :126-130.
    [131] F. Fernane, M.O. Mecherri, P. Sharrock,M. Fiallo, R. Sipos, Hydroxyapatite interactions with copper complexes[J], Materials Science and Engineering C, 2010,30 (7) :1060-1064.
    [132] Wei Wei, Rong Sun, Jing Cui, Zhenggui Wei, Removal of nitrobenzene from aqueoussolution by adsorption on nanocrystalline hydroxyapatite [J],Desalination ,2010,263 (1):89-96.
    [133] Mahamudur Islam,Prakash Chandra Mishra,Rajkishore Patel, Physicochemical characterization of hydroxyapatite and its application towards removal of nitrate from water[J], Journal of Environmental Management,2010,91(9),1883-1891.
    [134]张力,汪超,苑庆兰等,沉淀法制备羟基磷灰石影响产物结晶和晶粒粒度的因素[J],武警医学院学报,2003,12:143-145.
    [135]吕奎龙,腾立群,李星逸等,工艺因素对纳米羟基磷灰石结晶形态的影响[J],材料科学与工艺,2003,11:254-251.
    [136]王德平,黄文海,周萘,纳米羟基磷灰石球状晶体的合成及其吸附特性的研究[J],功能材料,2003,34(4):476-481.
    [137] Tanaka H,Yasukawa A,et a1, Surface structure and properties of fluoridated calcium hydroxyapatite[J], Colloids and Surfaces A : Physicochem Eng Aspects,2002,204(1):251.-259.
    [138]王德平,纳米羟基磷灰石球状晶体的合成及其吸附特性的研究[J],功能材料.2003,34(4):476-480.
    [139] D. Kumar, J.P. Gittings, I.G. Turner, C.R. Bowen, A. Bastida-Hidalgo, S.H. Cartmell, Polarization of hydroxyapatite: Influence on osteoblast cell proliferation[J], Acta Biomaterialia, 2010,6 (4):1549-1554.
    [140] Peter o’Hare, Brian J. Meenan, George A. Burke, Greg Byrne, Denis Dowling, John A. Hunt, Biological responses to hydroxyapatite surfaces deposited via a co-incident microblasting technique[J], Biomaterials, 2010,31 (3) :515-522.
    [141] K.A. Bhadang, C.A. Holding, H. Thissen, K.M. McLean, J.S. Forsythe, D.R. Haynes, Biological responses of human osteoblasts and osteoclasts to flame- sprayed coatings of hydroxyapatite and fluorapatite blends[J],Acta Biomaterialia, 2010,6 (4) :1575-1583.
    [142] S. Catros , F. Guillemot , E. Lebraud , C. Chanseau , S. Perez ,R. Bareille , J.C.Fricain, Physico-chemical and biological properties of a nano-Hydroxyapatite powder synthesized at room temperature[J], IRBM,2010,31 (4) ,226-233.
    [143]时海燕,胡仁,林昌健等,羟基磷灰石涂层的电化学可控制备及生物性能的初步表征[J],电化学,2005,11(4):440-445.
    [144]秦玉华,张袁健,李景虹,细胞色素c在羟基磷灰石修饰玻碳电极上的直接电化学[J],化学学报,2004,62(9):860-863.
    [145] Huai-Sheng Wang, Gui-Xiang Wang, Qian-Xiu Pan, Electrochemical Study of the Interactions of DNA with Redox-Active Molecule Based on the Immobilization of dsDNA on the Sol-Gel Derived Nano Porous Hydroxyapatite-Polyvinyl Alcohol Hybrid Material Coating[J], Electroanalysis, 2005,17(20):1854-1860.
    [146] Ma R N,Wang B, Direct electrochemistry of glucose oxidase on the hydroxyapatite/Nafion composite film modified electrode and its application for glucose biosensing[J]. Science in China Series B: Chemistry,2009,52 (11): 2013-2019.
    [1] T.S. Wong and U. Schwaneberg,Protein engineering in bioelectrocatalysis[J],Curr. Opin. Biotech., 2003,14(6), 590–596.
    [2] R. Ma, K.N. Sask, C. Shi, J.L. Brash, I. Zhitomirsky, Electrodeposition of polypyrrole-heparin and polypyrrole-hydroxyapatite films[J], Materials Letters,2011,65 (4): 681-684.
    [3] C.M. Yu, J.W. Guo, H.Y. Gu, Direct electrochemical behavior of hemoglobin at surface of Au@Fe3O4magnetic nanoparticles[J], Microchim Acta, 2009,166(4), 215–220.
    [4] M.D. Wang, C.Y. Deng, Z. Nie, X.H. Xu, S.Z. Yao, The direct electrochemistry of glucose oxidase based on the synergic effect of amino acid ionic liquid and carbon[J], Sci China Ser B-Chem., 2009,52(11), 1991-1998.
    [5] K.P. Lee, S. Komathi, N.J. Nam, A.I. Gopalan, Sulfonated polyaniline network grafted multi-wall carbon nanotubes for enzyme immobilization, direct electrochemistry and biosensing of glucose[J],Microchem. J., 2010,95(1), 74–79.
    [6] Y. Lei, X. Yan, N. Luo, Y. Song, Y. Zhang,ZnO nanotetrapod network as the adsorption layer for the improvement of glucose detection via multiterminal electron-exchange[J], Colloid Surfaces A, 2010,361(1), 169–173.
    [7] A.K. Sarma, P. Vatsyayan, P. Goswami, S.D. Minteer,Recent advances in material science for developing enzyme electrodes [J],Biosens. Bioelectron.,2009, 24(8), 2313-2322.
    [8] S. Zuo, Y. Teng, H. Yuan, M. Lan,Direct electrochemistry of glucoseoxidase on screen-printed electrodes through one-step enzyme immobilization process with silica sol–gel/polyvinyl alcohol hybrid film[J], Sens. Actuat. B-Chem., 2008,133(2),555–560.
    [9] F. Yang, L. Jiao, Y. Shen, X. Xu, Y. Zhang, L. Niu, Enhanced response induced by polyelectrolyte-functionalized ionic liquid in glucose biosensor based on sol–gel organic–inorganic hybrid material[J], Electroanal. Chem., 2007,608(1), 78–83.
    [10] D. Ragupathy, A.I. Gopalan, K.P. Lee, Synergistic contributions of multiwall carbon nanotubes and gold nanoparticles in a chitosan–ionic liquid matrix towards improved performance for a glucose sensor[J], Electrochem. Commun., 2009,11(2), 397–401.
    [11] X.J. Chen, J. Xuan, L.P. Jiang, J.J. Zhu,Preparation of the glucose sensor based on three-dimensional ordered macroporous gold film and room temperature ionic liquid[J], Sci China Ser B-Chem,2009, 52(3), 1999-2005.
    [12] M.M. Musameh, R.T. Kachoosangi, L. Xiao, A. Russell, R.G. Compton,Ionic liquid-carbon composite glucose biosensor[J], Biosens. Bioelectron., 2008,24(1), 87–92.
    [13] R.Gao, J.Zheng, Amine-terminated ionic liquid functionalized carbon nanotube-gold nanoparticles for investigating the direct electron transfer of glucose oxidase[J], Electrochem. Commun., 2009,11(3), 608–611.
    [14] P. Santhosh, K.M. Manesh, S. Uthayakumar, S. Komathi, A.I. Gopalan, K.P. Lee,Fabrication of enzymatic glucose biosensor based on palladium nanoparticles dispersed onto poly(3,4-ethylenedioxythiophene) nanofibers[J], Bioelectrochem.,2009, 75(1), 61–66.
    [15] Z. Wang, S. Liu, P. Wu, C. Cai, Detection of Glucose Based on Direct Electron Transfer Reaction of Glucose Oxidase Immobilized on Highly Ordered Polyaniline Nanotubes [J], Anal. Chem., 2009,81(4), 1638–1645.
    [16] G. Wang, N.M. Thai, S.T. Yau, Preserved enzymatic activity of glucose oxidase immobilized on unmodified electrodes for glucose detection[J], Biosens. Bioelectron., 2007,22(9), 2158–2164.
    [17] D. Ivnitski, K. Artyushkova, R.A. Rincon, P. Atanassov, H.R. Luckarift, G.R.Johnson, Entrapmentof enzymes and carbonnanotubes in biologically synthesized silica: glucose oxidase-catalyzed direct electron transfer[J], small, 2008,4(3), 357-364.
    [18] F. Tasca, L. Gorton, W. Harreither, D. Haltrich, R. Ludwig, G. Noll,Direct electron transfer at cellobiose dehydrogenase modifiedanodes for biofuel cells[J], J. Phys. Chem. C,2008,112(), 9956–9961.
    [19] Q. Liu, X. Lu, J. Li, X. Yao, J. Li,Direct electrochemistry of glucose oxidase andelectrochemical biosensing of glucose on quantum dots/carbon nanotubes electrodes[J], Biosens. Bioelectron.,2007 ,22(12), 3203–3209.
    [20] F. Li, J. Song, F. Li, X. Wang, Q. Zhang, D. Han, A. Ivaska, L. Niu,Direct electrochemistry of glucoseoxidase and biosensing for glucose based on carbon nanotubes@SnO2-Au composite[J], Biosens. Bioelectron., 2009,25(4), 883–888.
    [21] S. Komathi, A.I. Gopalan, K.P. Lee,Fabrication of a novel layer-by-layer film based glucose biosensor with compact arrangement of multi-components and glucose oxidase[J], Biosens. Bioelectron., 2009,24(2), 3131–3134.
    [22] H.Z. Zhao, J.J. Sun, J. Song, Q.Z. Yang, Direct electron transfer and conformational change of glucose oxidase on carbon nanotube-based electrodes[J], Carbon, 2010,48(5), 1508-1514.
    [23] C. Shan, H. Yang, J. Song, D. Han, A. Ivaska, L. Niu, Direct Electrochemistry of Glucose Oxidase and Biosensing for Glucose Based on Graphene[J], Anal. Chem., 2009,81(6), 2378–2382.
    [24] X. Luo, A.J. Killard, M.R. Smyth, Reagentless Glucose Biosensor Based on the Direct Electrochemistry of Glucose Oxidase on Carbon Nanotube-Modified Electrodes[J], Electroanal., 2006,18(11), 1131– 1134.
    [25] H.S. Wang, G.X. Wang, Q.X. Pan,Electrochemical Study of the Interactions of DNA with Redox-Active Molecules Based on the Immobilization of dsDNA on the Sol-Gel Derived Nano Porous Hydroxyapatite-Polyviny Alcohol Hybrid Material Coating[J], Electroanal., 2005,17(20), 1854– 1860.
    [26] H. Kawakita, A. Gyotoku, H. Seto, K. Ohto, H. Harada, K. Inoue, Dextran formation on hydroxyapatite by immobilized dextransucrase to control protein adsorption[J], Carbohyd. Polym., 2008,74(3), 627–631.
    [27] J. Chakraborty, S. D. Sarkar, S. Chatterjee, M.K. Sinha, D. Basu,Self-assembled structures of hydroxyapatite in the biomimetic coating on a bioinert ceramic substrate[J], Colloid Surface B, 2008,66(2), 295–298.
    [28] T.F. Stoica, C. Morosanu, A. Slav, T. Stoica, P. Osiceanu, C. Anastasescu, M. Gartner, M. Zaharescu, Hydroxyapatite films obtained by sol–gel and sputtering[J], Thin Solid Films, 2008,516(22), 8112–8116.
    [29] S. Chen, Z. Zhu, J. Zhu, J. Zhang, Y. Shi, K.Yu, W. Wang, X. Wang, X, Feng, L. Luo, L. Shao, Hydroxyapatite coating on porous silicon substrateobtained by precipitation process[J], Appl. Surf. Sci., 2004,230(1), 418–424.
    [30] X. Pang, I. Zhitomirsky,Electrodeposition of hydroxyapatite–silver–chitosan nanocomposite coatings[J], Surf. Coat. Tech., 2008,202(16), 3815–3821.
    [31] P. Yang, Z. Quan, C. Li, X. Kang, H. Lian, J. Lin,Bioactive, luminescent and mesoporous europium-doped hydroxyapatite as a drug carrier[J], Biomaterials, 2008,29(32), 4341– 4347.
    [32] L. Jiang, Y. Li, X. Wang, L. Zhang, J. Wen, M. Gong,Preparation and properties of nano-hydroxyapatite/chitosan/carboxymethyl cellulose composite scaffold[J], Carbohyd. Polym., 2008,74(3), 680–684.
    [33] K.A. Hing, P.A. Revell, N. Smith, T. Buckland, Effect of silicon level on rate, quality and progression of bone healing within silicate-substituted porous hydroxyapatite scaffolds[J], Biomaterials, 2006,27(29), 5014–5026.
    [34] A. Balamurugan, A.H.S. Rebelo, A.F. Lemos, J.H.G. Rocha, J.M.G. Ventura, J.M.F. Ferreira, Suitability evaluation of sol-gel derived Si-substituted hydroxyapatite for dental and maxillofacial applications through in vitro osteoblasts response[J]Dent. Mate., 2008,24(10), 1374–1380.
    [35] Y. Liu, L. Liu, S. Dong, Electrochemical Characteristics of Glucose Oxidase Adsorbed at Carbon Nanotubes Modified Electrode with Ionic Liquid as Binder[J], Electroanal., 2007,19(1), 55-59.
    [36] X. Wu, F. Zhao, J.R. Varcoe, A.E. Thumser, C. Avignone-Rossa, R.C.T. Slade,Direct electron transfer of glucose oxidase immobilized in an ionic liquid reconstituted cellulose–carbon nanotube matrix[J], Bioelectrochem.,2009, 77(1), 64–68.
    [37] R.M. Ianniello, T.J. Lindsay, A.M. Yacynych,Differential Pulse Voltammetric Study of Direct Electron Transfer in Glucose Oxidase Chemically Modified Graphite Electrodes [J], Anal. Chem., 1982,54(7), 1098-1101.
    [1] Xinyu Pang,Dongmei He,Shenglian Luo , An amperometric glucose biosensor fabricated with Pt nanoparticle-decorated carbon nanotubes/TiO2 nanotube arrays composite[J], Sensors and Actuators B,2009,2009,137 (1) :134-138.
    [2] Qing Kang, Lixia Yang, Qingyun Cai,An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array[J], Bioelectrochemistry, 2008,74 (1) :62-65.
    [3] Yibing Xie, Limin Zhou ,Bioelectrocatalytic application of titania Nanotube array for molecule detection[J], Biosensors and Bioelectronics, 2007,22 (12) :2812–2818.
    [4] Yang LiXia, LUO ShengLian, CAI QingYun, YAO ShouZhuo,A review on TiO2 nanotube arrays: Fabrication, properties, and sensing Applications[J], Chinese Sci Bull ,2010,55 (4-5):332-338.
    [5] Daoai Wang, Bo Yu, Chengwei Wang, Feng Zhou,and Weimin LiuA,Novel Protocol Toward Perfect Alignment of Anodized TiO2[J],Adv. Mater. ,2009, 21(19), 1964-1967.
    [6] Kristen A. Zimmermann, Jill M. LeBlanc, Kevin T. Sheets, Robert W. Fox, Paul Gatenholm.Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications[J], Materials Science and Engineering C, 2011,31(1), 43-49.
    [7] R.Sharma, S.Kwon, R. Baktur, and A.Sharma.Nanotoxicity Assessment toward the Applications of Carbon Nanotubes as a Small Biomolecule Carrier in Drug Delivery Systems[J], NSTI-Nanotech ,2009,2(3),150-153.
    [8] Seung Jae Yang,Jae Yong Choi,Hee K. Chae,Jung Hyun Cho,Kee Suk Nahm,and Chong Rae Park.Preparation and Enhanced Hydrostability and HydrogenStorage Capacity of CNT@MOF-5 Hybrid Composite,Chem. Mater., 2009,21(9),1893–1897.
    [1] Ronghai Zhu, Ranbo Yu, Jianxi Yao, Dan Mao, Chaojian Xing, Dan Wang, Removal ofCd~(2+)from aqueous solutions by hydroxyapatite[J],Catalysis Today, 2008,139(1):94-99
    [2] Alessia Corami, Silvano Mignardi,Cadmium removal from single-and multi-metal (Cd + Pb + Zn + Cu)solutions by sorption on hydroxyapatite [J], Journal of Colloid and Interface Science ,2008,317 (2): 402-408.
    [3] Shan Gao, Rong Sun, Zhenggui Wei, Haiyan Zhao, Huixin Li, Feng Hu,Size-dependent defluoridation properties of synthetic hydroxyapatite[J], Journal of Fluorine Chemistry,2009, 130 (6) :550-556.
    [4] Shaik Basha, Z.V.P. Murthy,B. Jha,Sorption of Hg(II) onto Carica papaya: Experimental studies and design of batch sorber[J],Chemical Engineering Journal, 2009,147 (2) :226-234
    [5] I. Smiciklasa, A. Onjiaa, S. Raicevica, Dj. Janackovic,Authors response tocomments on "Factors influencing the removal of divalent cations by hydroxyapatite"[J], Journal of Hazardous Materials, 2009,168 (2): 560-562.
    [6] Franz Georg Simon, Vera Biermann, Burkhard Peplinski,Uranium removal from groundwater using hydroxyapatite[J], Applied Geochemistry, 2008,23(8), 2137-2145.
    [7] I. Smiciklasa, A. Onjiaa, S. Raicevica, Dj. Janackovic,Factors influencing the removal of divalent cations by hydroxyapatite[J], Journal of Hazardous Materials ,2008,152, (2) :876-884
    [8]齐勇,刘羽,羟基磷灰石对水溶液中锌离子的吸附动力学[J],武汉化工学院学报, 2006,28(2),49-51.
    [9] Kristen A. Zimmermann, Jill M. LeBlanc, Kevin T. Sheets, Robert W. Fox, Paul Gatenholm.Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications[J], Materials Science and Engineering C,2011,31(1), 43-49.
    [10] R.Sharma, S.Kwon, R. Baktur, and A.Sharma.Nanotoxicity Assessment toward the Applications of Carbon Nanotubes as a Small Biomolecule Carrier in Drug Delivery Systems[J], NSTI-Nanotech ,2009,2,150-153.
    [11] Seung Jae Yang,Jae Yong Choi,Hee K. Chae,Jung Hyun Cho,Kee Suk Nahm,and Chong Rae Park. Preparation and Enhanced Hydrostability and Hydrogen Storage Capacity of CNT@MOF-5 Hybrid Composite,Chem. Mater. 2009,21(9),1893-1897.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700