礁膜(Monostroma nitidum)多糖的提取分离、结构和抗凝血活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
礁膜(Monostroma nitidum)隶属于绿藻门,绿藻纲,礁膜科,礁膜属。多糖是其主要的生物活性物质。本文以礁膜为原料,对礁膜多糖进行提取、分离纯化,研究其理化性质、结构和抗凝血活性。
     礁膜藻体粉末依次经冷水、热水、稀碱和浓碱液提取,得到五种粗多糖CW、HW1、HW2、AM1和AM2,提取得率分别是9.1%、30.6%、5.3%、5.5%和3.7%,总提取率达54.2%。采用苯酚-硫酸法、硫酸钡明胶比浊法、薄层层析、气相色谱、高效液相色谱等方法对其中三种水提取粗多糖CW、HW1和HW2的理化性质和单糖组成进行了比较分析。结果表明:总糖含量HW2最高,CW最低;蛋白含量以CW最高,HW1最低;硫酸基含量以HW1最高,CW最低。三种粗多糖的单糖组成均以鼠李糖为主,含有少量葡萄糖和木糖,CW含有微量甘露糖,HW1含有微量的半乳糖和甘露糖;糖醛酸的类型均为葡萄糖醛酸。
     在对粗多糖理化性质和单糖组成测定的基础上,选取HW1作为研究对象,采用离子交换色谱和凝胶排阻色谱相结合对其进行分离纯化得到两种纯化多糖WF1和WF3。采用高效液相色谱法、气相色谱法、红外光谱法对两种多糖的重均分子量、纯度及单糖组成进行研究。结果表明:多糖WF1和WF3经SB-804HQ柱洗脱呈单一对称峰,表明两种多糖的纯度较高,重均分子量分别是870 kD和70 kD,WF1的分子量明显大于WF3;两种多糖的单糖组成均以鼠李糖为主,含有少量木糖和葡萄糖,另外,WF1含有微量半乳糖,WF3含有微量甘露糖;糖醛酸类型是葡萄糖醛酸。红外光谱图在1250 cm-1左右有S=O的伸缩振动吸收峰,表明了两种多糖均是带有硫酸基的鼠李聚糖。
     采用脱硫酸基反应、高碘酸氧化、Smith降解、甲基化反应、气相色谱、高效液相色谱、红外光谱、核磁共振波谱和气质联用等方法对多糖WF1和WF3的结构进行研究。结果表明:WF1的糖链中是以1, 2-Rha为主,含有有1, 4和1, 3-Rha,硫酸基的位置以C-3、C-4较多,C-2位相对较少,也可能C-3、C-4和C-2均带有硫酸基。WF3的糖链中是以1, 3-Rha为主,含有1, 2-Rha,存在1→2,3连接的Rha分支点,硫酸基的位置以C-4位较多,C-2、C-3位相对较少,也可能C-3、C-4和C-2均带有硫酸基。脱硫前后的红外谱图对比解析表明两种多糖的构型为α型。核磁共振谱图进一步说明WF3是α构型,C-3位是糖链的连接位点,C-2位、C-4位可能有硫酸基取代。
     通过活化部分凝血活酶时间(APTT)、凝血酶原时间(PT)和凝血酶时间(TT)分析,对礁膜多糖WF1和WF3的抗凝血活性进行研究。结果表明:WF1和WF3对APTT和TT均有延长作用,但对PT作用不明显,说明WF1和WF3主要抑制内源性凝血途径和/或共有凝血途径以及抑制凝血酶活性或纤维蛋白原转化为纤维蛋白,而对外源性凝血途径没有影响。而且,WF1抗凝血活性明显高于WF3,这主要是由于它们的分子量、硫酸基含量和结构的差异所引起的。WF1和WF3的抗凝血活性比肝素低。
     本研究提取、分离纯化得到两种礁膜多糖WF1和WF3,关于这两种多糖的结构到目前为止国内外尚未见研究报道。
     本课题为礁膜多糖的研究提供更多的基础资料,为进一步研究其结构与活性的关系奠定了基础,对促进“海洋糖库”的建设,发展具有我国特色的海洋新药都有重要意义。
Monostroma nitidum is a kind of marine green seaweed. The polysaccharide is its important bioactive substance.
     In this paper, Monostroma nitidum was extracted by cool water, boiling water and alkali liquid successively. Five kinds of polysaccharides were obtained and named as CW, HW1, HW2, AM1 and AM2, respectively. The physicochemical properties and monosaccharide compositions of these three polysaccharides CW, HW1 and HW2 were analysed by Phenol-sulphuric acid method, Folin-phenol reagent method, barium sulfate turbidimetry method, GC and HPLC. The results showed that the total yield of the crude polysaccharides was 54.2%. The yield of HW1 was 30.6%, and it was the highest in the three polysaccharides. The contents of the sulfate group were different, they were 21.8%, 29.1% and 26.9% respectively. These three polysaccharides mainly contained rhamnose with a little glucose and xylose. However, the CW also had trace of mannose and HW1 had trace of galactose and mannose. They all contained glucuronic acid.
     Based on the physicochemical analysis, HW1 was pured by ion-exchange chromatography and low-pressure gel permeation chromatography. WF1 and WF3 were obtained. The physicochemical properties and monosaccharide compositions of WF1 and WF3 were analysed by Phenol-sulphuric acid method, Folin-phenol reagent method, barium sulfate turbidimetry method, IR, GC and HPLC. The results showed that they were high purity, the molecular weights of them were 870 kD and 70 kD, respectively. The molecular weights of WF1 was higher than that of WF3. They both contained rhamnose, a little glucose and xylose. WF1 also had trace of galactose, WF3 had trace of mannose. In their IR spectrum, 1250 cm-1 showed strong absorption peaks of S=O stretching vibration.
     The structures of WF1 and WF3 were studied by desulfate reaction, periodate oxidation, Smith degradation, methylation reaction, HPLC, GC-MS, IR and NMR. The results showed that the main linkage pattern of WF1 was 1, 2-Rha, also had small amount of 1, 4 and 1, 3-Rha. The sulfate group position were mainly at C-3 and C-4, minor at C-2. However, WF3 was mainly consisted by 1, 3-Rha, minor 1, 2-Rha and 1, 2, 3-Rha. The sulfate group was at C-4, minor at C-2, C-3. From the NMR spectrum, the branching point of WF3 was at C-3. The sulfate groups were mainly at C-2 and C-4. The IR spectrum of WF1 and WF3 showed that they were bothαconfiguration.
     The anticoagulant activities of WF1 and WF3 were studied by APTT, TT and PT. APTT and TT were effectively prolonged by WF1 and WF3. WF1 and WF3 were lack of prolongation effect on PT. The prolongation of APTT indicates inhibition of the intrinsic and/or common pathway. TT assay is helpful to investigate the sample effect in thrombin accelerated clot formation in platelet poor plasma, whereas prolongation of TT suggests inhibition of thrombin activity or fibrin polymerization. Thus, WF1 and WF3 inhibited both the intrinsic and/or common pathways of coagulation and thrombin activity or conversion of fibrinogen to fibrin. WF1 and WF3 did not inhibit extrinsic pathway of coagulation. The differences between the anticoagulant activities of WF1 and WF3 were pronounced. WF3 had higher anticoagulant activity than WF1 at the same concentration in the APTT assay. The similar result was observed in the TT assay. The differences of anticoagulant activities between WF1 and WF3 may be directly due to their structural features variation. The anticoagulant activities of WF1 and WF3 were weaker than that of heparin.
     In this paper two polysaccharides WF1 and WF3 were obtained from Monostrom -a nitidum. So far there is no report about their structures.
     This research can supply basic data on polysaccharides from Monostroma nitidum. It is helpful to study structure-activity relationship and enrich‘marine saccharide bank’. It is important to develop marine drug with Chinese features.
引文
[1] Siddhanta A K. Marine algal polysaccharides-functions and utilization[A]. Trends Carbohydr Chem[C]. India: Surya International Publication, Carbohydrate Conference 9th, 1993, 1995. 125-131.
    [2] Matsubara K. Recent advances in marine algal anticoagulants. Current Medicinal Chemistry, 2004, 2(1): 13-19.
    [3] Shanmugam M, Mody K H. Heparinoid-active sulphated polysaccharides from marine algae as potential blood anticoagulant agents. Current Science, 2000, 79(12): 1672-1683.
    [4] Wenjun Mao, Xiaoxue Zang, Yi Li,Huijuan Zhang. Sulfated polysaccharides from marine green algae Ulva conglobata and their anticoagulant activity. Journal of Applied Phycology, 2006, 18: 9-14.
    [5] Hayakawa Y, Hayashi T, Lee J,Srisompo P,Maeda M,Ozawa T,Sakuragawa N. Inhibition of thrombin by sulfated polysaccharides isolated from green algae. Biochimica and biophysica acta, 2000, 1543(1): 86-94.
    [6] Shanmugam M, Mody K H, Ramavat B K. Screening of Codiacean algae (Chlorophyta) of the Indian coasts for blood anticoagulant activity. Indian Journal of Marine Sciences, 2002, 31(1): 33-38.
    [7] Kweon M H, Park M K, Ra K S. Screening of anticoagulant polysaccharides from edible plants. Agricultural Chemistry and Biotechnology, 1996, 39(2): 159-164.
    [8] Matsubara K, Matsuura Y, Bacic A, Liao M, Hori K,Miyazawa K. Anticoagulant properties of a sulfated galactan preparation from a marine green alga, Codium cylindricum. International Journal of Biological Macromolecules, 2001, 28(5): 395-399.
    [9] Matsubara K, Matsuura Y, Hori K, Miyazawa K. An anticoagulant proteoglycan from the marine green alga, Codium pugniformis. Journal of Applied Phycology, 2000, 12(1): 9-14.
    [10] Shanmugam M, Mody K H, Siddhanta A K. Blood anticoagulant sulphated polysaccharides of the marine green algae Codium dwarkense (Boergs.) and C. tomentosum (Huds.)Stackh. Indian Journal of Experimental Biology, 2001, 39(4): 365-370.
    [11] Athukorala Y, Lee K W, Kim S K, Jeon Y J. Anticoagulant activity of marine green and brown algae collected from Jeju Island in Korea. Bioresource Technology, 2007, 98(8): 1711-1716.
    [12] Ghosh P, Adhikari U, Ghosal P K, Pujol C A, Carlucci M J, Damonte E B, Ray B. In vitro anti-herpetic activity of sulfated polysaccharide fractions from Caulerpa racemosa. Phytochemistry, 2004, 65(23): 3151-3157.
    [13]徐明芳,高孔荣,刘婉乔.海藻保健功能的研究进展[J].食品科学,1995, 16(12): 19-22.
    [14]汪开治.海藻含有免疫抑制物[J].生物学通报, 1995, 1: 77.
    [15]姚福汉,蒋伯诚.海藻中具有免疫赋活作用的多糖[J ].中国野生植物资源, 1997, 16(3) : 6-7.
    [16]王文涛.海藻多糖对小鼠淋巴细胞增殖反应及白细胞介素产生的影响[J].中药药理学通讯, 1992, 23(3): 47.
    [17]王庭欣,秦淑贞,赵文等.海藻多糖对环磷酰胺诱发小鼠骨髓微核率的抑制作用[J].癌变·畸变·突变, 1999, 11(2): 106.
    [18]王庭欣,蒋东升,赵文等.海藻多糖对小鼠免疫功能的影响[J].中国老年学杂志, 1999, 19(专刊): 12.
    [19]徐惠,于志洁等.螺旋藻黏多糖的分离及其免疫学作用[J],中国生化药物杂志, 1997, 18 (2): 72-74.
    [20]徐大伦,黄晓春,欧昌荣,薛长湖,杨文鸽,王海洪.浒苔多糖对非特异性免疫功能的体外实验研究.食品科学,2005, 26(10): 232-235.
    [21] Pugh N, Ross S A, Elsohly H N, Elsohly M A, Pasco D S. Isolation of three high molecular weight polysaccharide preparations with potent immunostimulatory activity from Spirulina platensis, aphanizomenon flos-aquae and Chlorella pyrenoidosa. Planta Medica, 2001, 67(8): 737-742.
    [22] Suarez E R, Kralovec J A, Noseda M D, Ewart H S, Barrow C J, Lumsden M D, Grindley T B. Isolation, characterization and structural determination of a unique type of arabinogalactan from an immunostimulatory extract of Chlorella pyrenoidosa. Carbohydrate Research, 2005, 340(8): 1489-1498.
    [23] Nika K, Mulloy B, Carpenter B, Gibbs R. Specific recognition of immune cytokines by sulphated polysaccharides from marine algae. European Journal of Phycology. 2003, 38(3): 257-264.
    [24] Shan B E, Yoshida Y, Kuroda E, Yamashita U. Immunomodulating activity of seaweed extract on human lymphocytes in vitro. International Journal of Immunopharmacology, 1999, 21(1):59-70.
    [25]李妍,田晓华,丛建波等.海藻多糖抑制白细胞呼吸暴发作用的研究[J].生物化学与生物物理进展, 1999, 26(2): 162-164.
    [26]田晓华,丛建波,施定基等.褐藻多糖硫酸酯清除活性氧自由基作用及动力学的ESR研究[J].营养学报, 1997, 19(1): 32-37.
    [27]藤霞,丛建波,田晓华等.海藻硫酸多糖抗氧化与抗肿瘤作用的实验研究[J].营养研究, 1998, 20(1): 48.
    [28]詹林盛,张新生,吴小红等.褐藻多糖对氧化应激诱导的淋巴细胞DNA损伤的保护作用[J].中国海洋药物, 1999, 4: 4-7.
    [29] Guzman S, Gato A, Lamela M, Freire-Garabal M, Calleja J M. Anti-inflammatory and immunomodulatory activities of polysaccharide from Chlorella stigmatophora and Phaeodactylum tricornutum. Phytotherapy Research, 2003, 17(6): 665-670.
    [30] Kaplan D, Christiaen D,Arad SM. Chelating Properties of Extracellular Polysaccharides from Chlorella spp.Applied and Environmental Microbiology, 1987, 53(12): 2 953-2 956.
    [31] Wu S, Pan C. Preparation of algal-oligosaccharide mixtures by bacterial agarases and their antioxidative properties. Fisheries Science, 2004, 70(6): 1164-1173.
    [32] Wu S, Wen T, Pan C. Algal-oligosaccharide-lysates prepared by two bacterial agarases stepwise hydrolyzed and their anti-oxidative properties. Fisheries Science, 2005, 71(5): 1149-1159
    [33] Qi H, Zhang Q, Zhao T,Chen R, Zhang H, Niu X, Li Z. Antioxidant activity of different sulfate content derivatives of polysaccharide extracted form ulva pertusa (chlorophyta) in vitro. International Journal of Biological Macromolecules, 2005, 37(4): 195-199.
    [34] Qi H, Zhang Q, Zhao T, Hu R, Zhang K, Li Z. In vitro antioxidant activity of acetylated and benzoylated derivatives of polysaccharide extracted from Ulva pertusa (Chlorophyta). Bioorganic and Medicinal Chemistry Letters, 2006, 16(9): 2441-2445.
    [35] Qi H M, Zhao T T, Zhang Q B, Hu R G, Zhang K, Li Z. Antioxidant activity of different molecular weight sulfated polysaccharides from Ulva pertusa (Chlorophyta). Journal of Applied Phycology, 2005, 17(6): 527-534.。
    [36] Witvrouw M, De Clercq E. Sulfated polysaccharides extracted from sea algae as potential antiviral drugs. Gen Pharmacol, 1997, 29(4): 497-511.
    [37] Lee J B, Hayashi K, Hayashi T, Sankawa U, Maeda M. Antiviral activities against HSV-1, HCMV, and HIV-1 of rhamnan sulfate from Monostroma latissimum. Planta Medica, 1999, 65 (5): 439-441. [38 ] Lee J B, Hayashi K, Maeda M, Hayashi T. Antiherpetic activities of sulfated polysaccharides from green algae. Planta Medica, 2004, 70(9): 813-817.
    [39] Ivanova V, Rouseva R, Kolarova M, Serkedjieva J, Rachev R, Manolova N. Isolation of a polysaccharide with antiviral effect from Ulva lactuca. Preparative Biochemistry, 1994, 24(2): 83-97.
    [40] Pardee K I, Ellis P, Bouthillier M, Tower G H N, French C J. Plant virus inhibitors from marine algae. Canadian Journal of Botany, 2004, 82(3): 304-309.
    [41] Romnos M, Andrada-Serpa M J, Dos S, Ribeiro A, Yoneshigue-Valentin Y, Costa S S, Wigg M D. Inhibitory effect of extracts of Brazilian marine algae on human T-cell lymphotropic virus type-1 (HTLV-1)-induced syncytium formation in vitro. Cancer Invest, 2002, 20(1): 46-54.
    [42] Vlachos V, Critchley A T, Von Holy. Antimicrobial activity of extracts from selected southern African marine macroalgae. South African Journal of science, 1997, 93(7): 328-332.
    [43] Mao W J, Li Y,Wang H Q, Zhang Y, Zang X X,Zhang H J. Chemical characterization and radioprotective effect of polysaccharide from Monostroma angicava (Chlorophyta). Journal of Applied Phycology, 2005, 17(4): 349-354.
    [44] Tanaka K, Konishi F. Himeno K,Taniguchi K, Nomoto K. Augmentation of antitumor resistance by a strain of unicellular green algae, Chlorella vulgaris. Cancer Immunol Immunother. 1984, 17(2): 90-94.
    [45]赵国华等.活性多糖的研究进展[J].食品与发酵工业,2001,7(27): 45-48.
    [46]陈旋,张翼,张剑波.植物多糖的研究进展[J].中国新药杂志, 2007, 16(13): 1000-1005.
    [47]黄瑞松.中草药多糖含量测定方法概述[J].中国药师, 2005,8(1): 68-70.
    [48]马立田,王式箴.高效液相色谱法测定低热量食品中的葡萄糖、果糖、蔗糖、麦芽糖醇和山梨糖醇的研究.食品与发酵工业,1998,24(4): 12-17.
    [49]孙群,牟世芬.单糖和寡糖的离子色谱法分析研究.化学通报, 1991, 8(3): 39-41.
    [50]董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物研究与开发, 1995, 7(2): 60-65.
    [51]于海妮,严自正.红曲霉葡萄糖淀粉酶N-连接糖链的初步研究.生物化学杂志, 1990, 6(2): 147-152.
    [52]王艳梅,李智恩,徐祖洪.孔石莼化学组分和药用活性研究进展.海洋科学,2000,24(3): 25-28.
    [53]纪明侯.海藻化学[M].北京:科学出版社,1997: 356-366.
    [54] Ramana K S, Rao E V. Structural features of the sulphated polysaccharide from a green seaweed, Cladophora socialis. Phytochemistry, 1991, 30(4): 1183-1186.
    [55] Siddhanta A K, Shanmugam M, Mody K H, Goswami A M, Ramavat B K. Sulphated polysaccharide of Codium dwarkense Boergs from the west coast of India: chemical composition and blood anticoagulant activity. International Journal of Biological Macromolecules, 1999, 26(2-3): 151-154.
    [56] Rao E V, Ramana K S.Structural studies of a polysaccharide isolated from the green seaweed Chaetomorpha anteninna. Carbohydrate Research, 1991, 217: 163-170.
    [57] Rao K V, Sri Ramana K. Structural features of the sulphated polysaccharide from a green seaweed, Spongomorpha indica.Phytochemistry, 1991, 30(4): 1183-1186.
    [58] Lahaye M, Cimadevilla E A C, Kuhlenkamp R, Quemener B,Lognone V, Patrick D. Chemical composition and 13C NMR spectroscopic characterisation of ulvans from Ulva (Ulvales, Chlorophyta). Journal of Applied Phycology, 1999, 11(1): 1-7.
    [59] Lahaye M, Inizan F, Vigouroux J. NMR analysis of the chemical structure of ulvan and of ulvan-boron complex formation. Carbohydrate polymers, 1998, 36(2-3): 239-249.
    [60] Lee J B, Yamagaki T, Maeda M, Nakanishi H. Rhamnan sulfate from cell walls of Monostroma Latissimum. Phytochemistry, 1998, 48(6): 921-925.
    [61] Harada N, Maeda M. Chemical structure of antithrombin-active Rhamnan sulfate from Monostrom nitidum . Bioscience Biotechnology Biochemistry, 1998, 62(9): 1647-1652.
    [62] Ray B. Polysaccharides from Enteromorpha compressa: Isolation, purification and structural features. Carbohydrate Polymers, 2006, 66(3): 408-416.
    [63] Zvyagintseva T, Shevchenko N et al. Inhibition of complement activation by water-soluble polusaccharides of some far-eastern brown seaweed. Comparative Biochemistry and Phsiology PartC: Pharmacology, Toxicology, 2000, 126(3): 209-215.
    [64] Mizumoto K, Sugawara I, Ito W et al. Sulfated homopolysaccharide withimmunommodulating activities are more potent anti-HTLV2 agents than sulfated beteropolysaccharides. Japanese Journal of Experimental Medicine, 1998, 58(3): 145-151.
    [65] Chaidedgumjorn A, Toyoda H, Woo E R et al. Effect of (1→3)-and(1→4)-linkages of fully sulfated polysaccharides their anticoagulant activity. Carbohydrate Research, 2002, 337(10): 925-933.
    [66] Mazumder S, Ghosal P K, Pujol C et al. Isolation,chemical inveatigation and antiviral activity of polysaccharides from Gracilaria coricata .International Journal of Biological Macromolecules, 2002, 31(1-3): 87-95.
    [67] Witvrouw M, Schols D, Andrti G et al. Antiviral activity of low-MW dextran sulphate (derived from dextran MW1000)compated to dextran sulfate sample of higher MW, Antiviral Chemistry Chemother, 1991, 2: 171-179.
    [68] Alban S, Franz G, Characterization of the Anticoagulant Actions of a Semisynthetic Curdlan Sulfate. Thrombosis Research, 2000, 99(4): 377-388.
    [69]冯秀梅,陈邦银,张汉萍.黄芪多糖硫酸酯的合成及其抗病毒活性研究.中国药科大学学报,2002,33(2):146-148.
    [70]陈春英,黄雪华,周井炎等.硫酸酯化箸叶多糖的结构修饰及其抗艾滋病毒活性.药学学报,1998,33(33):264-268.
    [71]方积年.硫酸酯化多糖的研究进展.中国药学杂志,1993,28(7):393-395.
    [72] Burstein ME, Serbin AV, Khakhulina TV et al. Inhibition of HIV1 replication by newly developed adamantine-containing polyanionic agents. Antiviral Research, 1999, 41(3): 135-144.
    [73] Nishmura S, Kai H, Shinada K et al. Regioselective syntheses of sulfated polysaccharides: specific anti-HIV1 activity of novel chitin sulfate, Carbohydrate Research. 1998, 306(3): 427-433.
    [74] Mulloy B, Mourao P A S, Gray E. Structure/function studies of anticoagulant sulphated polysaccharides using NMR. Journal of biotechnology, 2000, 77(1): 123-135.
    [75] Grot h T, Wagenknecht W. Anticoagulant potential of regioselective derivatized cellulose. Biomaterials, 2001, 22(20): 2719-2729.
    [76] Hayakawa Y, Hayashi T, Lee J, Srisompo P, Maeda M, Ozawa T, Sakuragawa N. Inhibition of thrombin by sulfated polysaccharides isolated from green algae. Biochimica and biophysicaacta, 2000, 1543(1): 86-94.
    [77] Mao W J, Li Y, Wang H Q, Zhang Y, Zang X X, Zhang H J. Chemical characterization and radioprotective effect of polysaccharide from Monostroma angicava (Chlorophyta). Journal of Applied Phycology, 2005, 17(4): 349-354.
    [78] Maeda M, Uehara T, Harada N, Sekiguchi M, Hiraoka A. Heparinoid-active sulphated polysaccharides from Monostroma nitidum and their distribution in the chlorophyta. Phytochemistry, 1991, 30(11): 3611-3614.
    [79]吴志军,徐祖洪,李智恩.孔石莼热水提取多糖的研究.海洋科学,2003,27(2): 5-7.
    [80]王艳梅,牛锡珍,张虹,李智恩,张全斌.孔石莼多糖的分离分析.中国海洋药物,2002,6: 4-7,19.
    [81]周慧萍,朱海燕,陈琼华.浒苔多糖的分离、纯化和分析.生物化学杂志,1995,11 (1):91-93.
    [82] Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith F. Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 1956, 28(3): 350-366.
    [83] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 1976, 7: 248 -254.
    [84] Therho T T, Hartiala K. Method for determination of the sulfate content of glycosamino glycans. Analytical Biochemistry, 1971, 41: 471-476.
    [85] Bitter T, Muir H M. A modified uronic acid carbazole reaction. Analytical Biochemistry, 1962, 4: 330-334.
    [86]吴梧桐,陈琼华,徐碧如等.银耳孢子单糖的分离与分析.真菌学报.1982,1(2):119-124.
    [87]吕燕,衬颢,汪水娟等.坛紫菜多糖的分离纯化和化学结构分析.南京中医药大学学报(自然科学版).2000,16(3):159-161.
    [88]张惟杰.糖复合物生化研究技术.第二版.浙江大学出版社.1994: 398,417.
    [89]邓时锋,刘志礼,李兆兰等.极大螺旋藻多糖的分离纯化及化学结构分析.南京大学学报(自然科学).2000, 36(5): 579-584.
    [90] Lloyd A G, Dodgson K S, Price R G, Rose F A. Infrared studies on sulfate esters. I. Polysaccharide sulfates. Biochimica and biophysica acta [J], 1961, 46: 108-115.
    [91] Falshaw R, Richard H. Furneaux. Structural analysis of carrageenans from the tetrasporicstages of the red algae, Gigartina lanceata and Gigartina chapmanii (Gigartinaceae, Rhodophyta). Carbohydrate Research, 1998, 307: 325-331.
    [92] Deng Chenghua, Yang Xiangliang, Gu Xiaoman. Aβ-D-glucan from the sclerotia of Pleurotus tuber-regium(Fr.) Sing. Carbohydrate Research, 2000, 328(4): 629-633.
    [93]杜予民,孔振武,李海萍.生漆多糖的分离与结构研究.高分子学报,1994,3: 301-306.
    [94] Gutierrez A, Prieto A, Martinez A T. Structural characterization of extracellular polysaccharides produced by fungi from genus Pleurotus. Carbohydrate Research, 1996, 281(1): 143-154.
    [95]郑芸,刘柳,方积年.菊花中一个新的多糖的研究.植物学报, 2004,46(8):997-1001.
    [96] Needs P W, Selvendran R R. Avoiding oxidative degradationduring sodium hydroxide/methyl iodide-mediated carbohydrate methylation in dimethyl sulfoxide. Carbohydrate Research, 1993, 245(1): 1-10.
    [97] Mukerjea R, Kim D, Robyt J F. Simplified and improved methylation analysis of saccharides, using a modified procedure and thin-layer chromatography. Carbohydrate Research, 1996, 292(1): 81-89.
    [98]鲍幸峰,方积年.赤芝孢子粉中一个葡聚糖得分离纯化与结构鉴定.植物学报,2001, 43 (3):312-315.
    [99]董群,方积年.寡糖及多糖甲基化方法的发展及现状.天然产物与开发.1995,(2): 60-65.
    [100]王展,方积年.菟丝子多糖H3的研究.药学学报, 2001, 36(3): 192-195.
    [101]王顺春,方积年.徐长卿多糖CPB54的结构及其活性的研究.药学学报, 2000, 35(9): 675-678.
    [102]李波,顾小红,许时婴.硫酸酯多糖结构中硫酸基位置的判断.分析科学学报2004, 20(5): 498-500.
    [103] Mourano P A S, Pereira M S, Pavao MSG, Mulloy B, Tollefsen D M, Mowinckel M C, Abildgaard U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Journal of biological chemistry, 1996, 271(39): 23973-23984.
    [104] Maraganore J M, Chao B, Joseph M L, Jablonski J, Ramachandran K L. Anticoagulant activity of synthetic hirudin peptides. Journal of biological chemistry, 1989, 264(15): 8692-8698.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700