3,6-二氯-2-甲氧基苯甲酸气液吸收反应过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
3,6-二氯-2-甲氧基苯甲酸(麦草畏)是一类低毒环保的除草剂。目前其制造商主要为巴斯夫以及山道士等外国公司,国内生产较少,随着绿磺隆等高毒高污染制剂的禁用和限制使用,麦草畏的市场前景良好。本文通过基团贡献法麦草畏的合成进行了热力学计算与分析,为工业生产提供理论指导;研究了工艺参数和相转移催化剂对反应的影响;研究了自吸式搅拌桨对临界转速和气液混合的影响。具体研究结果如下:
     (1)采用Benson、Fedors和Rozicka-Domalski基团贡献法对3,6-二氯-2-甲氧基苯甲酸甲酯合成进行热力学计算与分析,得到了反应温度在298.15-383.15K范围内时:该合成反应为吸热反应,反应吉布斯自由能变为负值,反应平衡常数值为1020数量级,从而证实该反应在热力学上是完全可行的。
     (2)研究O-甲基化反应工艺操作参数,发现O-甲基化最佳工艺条件为温度90℃,压力0.6MPa,搅拌速度400rpm, pH值9-10,3,6-二氯水杨酸质量100g,工艺水质量200g,甲醇质量90g。此试验条件下反应时间为7h,氯甲烷单耗为0.554,麦草畏收率在90%以上。
     (3)研究相转移催化剂的加入对反应的影响,发现:O-甲基化最佳相转移催化剂是三乙基苄基氯化铵,质量为5克。此试验条件下反应所需时间为4.5h,氯甲烷单耗为0.544,麦草畏收率在90%以上;并且3,6-二氯-2-甲氧基苯甲酯的水解后处理只需2小时即可完成。
     (4)优化自吸式搅拌桨,出气支管单侧钻孔,孔径为Φ0-Φ5,发现:改进后的自吸式搅拌桨对反应器的临界转速和气含率有显著的影响。临界转速从小到大的排序:Φ3<Φ4<Φ5<Φ2<Φ0;总气含率从大到小的排序:Φ3>Φ4>Φ2>Φ5>Φ0;釜底气含率从大到小的排序:Φ3>Φ2>Φ0>Φ4>Φ5。
3,6-dichloro-2-methoxybenzoic acid is a low toxicity and environmentally friendly herbicide. At present the main producers are foreign companies. Domestic producers are very few. In this work, thermodynamic estimation for synthesis mechanism of dicamba was completed by group contribution method. Theoretical guidance was provided for industrial production; process parameters and phase transfer catalyst which had effects on the reaction was investigated; gas-inducing impeller which had effects on critical impeller speed and gas-liquid mixture was investigated. Specific results of this paper are as follows:
     (1)Thermodynamic estimation for synthesis mechanism of dicamba methyl ester was completed by the method of Benson, Fedors and Rozicka-Domalski group contribution. The results showed that this reaction under 298.15-383.15K is endothermic. The change of Gibbs free energy is negative and the equilibrium constant K is 1020, so the reaction is practicable in thermodynamics.
     (2) Process parameters of O-methylation were investigated. The study showed the optimum condition:temperature is 90℃, pressure is 0.6MPa, stirring speed is 400rpm, pH is 9-10, quality of 3,6-dichloro-salicylic acid is 100g, quality of Process water is 200g, quality of methanol is 90g. Under this test condition, the reaction time is 7h, consumption of methyl chloride is 0.554, dicamba yield is above 90%.
     (3)Influence of phase transfer catalyst on the reaction was investigated. The results showed that the best phase transfer catalyst is triethyl benzyl ammonium chloride. The quality is 5g. Under this test condition, the reaction time is 4.5h, methyl chloride consumption is 0.544, the yield dicamba is above 90%; and hydrolysis time of 3,6-dichloro-2-methoxy methyl ester is 2 hours.
     (4)Gas-inducing impeller and outlet branch were reformed. The results showed that improved self-priming impeller have a significant impact on critical speed of the reactor and gas hold-up. Critical speed in order from large to small:(Φ3<Φ4<Φ5<Φ2<Φ0; the total gas hold-up in order from large to small:Φ3>Φ4>Φ2>Φ5>Φ0; kettle emboldened rate in order from large to small:Φ3>Φ2>Φ0>Φ4>Φ5.
引文
[1]冯维卓,吴建良.我国南方主要作物田的化学除草[J].农药,2000,39(11):1-7.
    [2]Ren Jiangping, Wang Xinguo, Yin Jun. Dicamba and sugar effects on callus induction and plant regeneration from mature embryo culture of wheat[J]. Agricultural Sciences in China, 2010,9(1):31-33.
    [3]Pan Xiangliang, Liu Jin. Binding of dicamba to soluble and bound extracellular polymeric substances from aerobic activated sludge:A fluorescence quenching study[J]. Colloid and Interface Science,2010,345(2):442.
    [4]Telesinski A. The effects of 2,4-D and dicamba on isoproturon metabolism and selected biochemical parameters in clay soil[J]. Electronic Journal of Polish Agricultural Universities, 2010,13(1):210-213.
    [5]Wehtje G. Synergism of dicamba with diflufenzopyr with respect to turfgrass weed control [J]. Weed Control,2008,22(4):679-684.
    [6]Singh R, Sen D. Efficacy of dicamba alone and in combination with isoproturon on wheat (Triticum aestivum) and associated weeds[J]. Indian Journal of Agronomy,2006,51(2): 139-141.
    [7]张咏,陆敏.麦草畏合成工艺研究[J].农药,2002,41(7):15-17.
    [8]张咏,张可.3,6-二氯水杨酸O-烷基化工艺的研究[J].化工时刊,2002,16(12):45-48.
    [9]Patwardhan A W, Joshi J B. Design of gas-inducing reactors[J]. Industrial and Engineering Chemistry Research,1999,38(1):49-80.
    [10]袁履冰.有机化学[M].北京:高等教育出版社,2001:187-220.
    [11]黄培强.有机合成[M].北京:高等教育出版社,2001:136-173.
    [12]张瑞刚,王锦堂.对氨基水杨酸酚羟基甲醚化的研究[J].化工时刊,2003,17(5):24-26.
    [13]龙胜佑,任训和,李绍珊.烷基酚的甲醚化[J].合成化学,1998,6(1):109-110.
    [14]乔华,马永康,李文科.酚类化合物甲醚化方法的研究[J].兰州医学院学报,2000,26(4):5-6.
    [15]户业丽,管春生,陈芬儿.水杨酸醚化反应工艺[J].武汉化工学院学报,1998,20(4):15-17.
    [16]张智勇,陆婉芳,施耀曾等.对苯二酚在K2CO3-A12O3负载型碱试剂作用下的单醚化反应[J].应用化学,1994,11(5):14-17.
    [17]陈晓萌,张咏.3,6-二氯水杨酸O-甲基化工艺的研究[J].河南化工,2002,10(6):19-20.
    [18]Freedman H H. Industrial applications of phase transfercatalysis(PTC):past, present and future[J]. Pure and Applied Chemistry,1986,58(6):857-868.
    [19]王乃兴,李纪生.有机合成中的相转移催化作用[J].化学世界,1994,35(9):450-453.
    [20]陶立丹,赵育明.愈创木酚合成新工艺的研究[J].染料工业,1997,34(6):35-38.
    [21]曾莎莎,唐瑞仁.手性相转移催化剂及其在不对称催化反应中的应用[J].化工进展,2006,18(6):744-750.
    [22]赵地顺,任红威.催化裂化汽油的相转移催化氧化脱硫反应研究[J].化工学报,2006,64(20):2086-2090.
    [23]蔡亮.聚乙二醇400催化醚化反应研究[J].化工中间体,2009,10(8):40-42.
    [24]范琦,程秀华.酮洛芬的相转移催化氧化合成[J].中国医药工业,2005,36(11):664-666.
    [25]Chen Zuxing. Xu Guoyu, Yang Guichun. Preparation of non-cross-linked polystyrene-supported quaternary ammonium salts and use as phase transfer catalysts under microwave[J]. Reactive and Functional Polymers,2004,10(61):139-146.
    [26]Xi Zuwei. Zhou Ning, Sun Yu. Reaction-controlled phase-transfer catalysis for propylene epoxidation to propylene oxide[J]. Science.2001,292(5519):1139-1141.
    [27]Elango S, Venugopal M, Suresh P S, et al. Contrast performance in catalytic ability-new cinchona phase transfer catalysts for asymmetric synthesis of a-amino acids[J]. Tetrahedron, 2005,61(6):1443-1447.
    [28]Kim D H, Im J K, Lee H. Orthopalladated complexes as phase-transfer catalysts for asymmetric alkylation of achiral Schiff base esters [J]. Transition Metal Chemistry.2010,35 (8):949-957.
    [29]苏碧泉,盛丽.有机合成反应中的相转移催化剂[J].化学工程师,2003,99(6):67-68.
    [30]张占辉.手性相转移催化剂的设计与催化性能比较[J].河北师范大学学报,2004,28(6):608-613.
    [31]朱汉祥,姚祥华.相转移技术在有机合成中的应用[J].浙江化工,2008,39(2):1-2.
    [32]孟祥启,冯亚青,孟舒献等.杯芳烃作为相转移催化剂用于四氟对苯二甲酸二甲酯的合成[J].化学试剂,2006,28(1):5-7.
    [33]Lakshmi S, Jayakrishan A. Iodination of plasticized poly(vinyl chloride) in aqueous media via phase transfer catalysis[J]. Journal of Applied Polymer Science,2002,84(3): 493-494.
    [34]Soga K, Hosoda S, Ikeda S. A new synthetic route to polycarbonate [J]. Journal of Polymer Science, Polymer Chemistry Enition,1979,17(2):517-518.
    [35]朱惠琴.5-硝基水杨酸的制备[J].中国医药工业,2005,36(4):201-202.
    [36]陆涛,唐伟方.贝凡洛尔合成工艺改进[J].中国医药,1994,25(1):6-7.
    [37]汪斌,周振萍.相转移催化制备生物柴油[J].化工时刊,2006,20(9):50-51.
    [38]Herriott A W, Picker D. Mechanism of phase transfer catalysis[J]. Tetrahedron Letters, 1972,10(44):4521-4524.
    [39]何艳,齐红.相转移催化反应[J].长春师范学院学报,2005,24(3):37-38.
    [40]韩恩山,栾蕊.有机合成中相转移催化剂的研究进展[J].河北工业大学学报,2001,30(2):89-92.
    [41]Fiamegos Y C, Stalikas C D, Karayannis M I. Principles and analytical applications of phase-transfer catalysis [J]. Pakistan Journal of Analytical and Environmental Chemistry,2006, 7(1):1-7.
    [42]Meyberg M, Roessler F. In situ measurement of steady-state hydrogen concentrations during a hydrogenation reaction in a gas-inducing stirred slurry reactor[J]. Industrial and Engineering Chemistry Research,2005,44(25):9705-9711.
    [43]Lin S H, Wang C H. Ozonation of phenolic wastewater in a gas-induced reactor with a fixed granular activated carbon bed[J]. Industrial and Engineering Chemistry Research,2003, 42(8):1648-1653.
    [44]Sardeing R, Poux M, Avrillier P, et al. Hydrodynamics and gas dispersion characteriza-tion in a system equipped with a new gas-inducing impeller [J]. Engineering in Life Sciences, 2003,3(1):31-37.
    [45]Sardeing R, Poux M, Melen S, et al. Aeration of large size tanks by a surface agitator[J]. Chemical Engineering and Technology,2005,28(5):587-595.
    [46]Jafari M, Soltan M J. Mixing time, homogenization energy and residence time distribu-tion in a gas-induced contactor[J]. Chemical Engineering Research and Design,2005,83(5): 452-459.
    [47]Saravanan K, Mundale V D, Joshi J B, Gas inducing type mechanically agitated contac-tors[J]. Industrial and Engineering Chemistry Research,1994,33(9):2226-2229.
    [48]刘波,卢永祥.涡轮桨自吸式搅拌器:中国:2345649Y[P].1999.12.22.
    [49]戎亚伦,包红华等.自吸式氢化反应器应用于乌苯美司的生产[J].医药工程设计,2003,24(2):4-6.
    [50]何志敏,李可求.自吸式气液反应器的设计与应用[J],中国医药工业,2000,31(1):34-36.
    [51]赵建明,黄宣东.高效自吸式气液搅拌装置:中国:2649170Y[P].2004.10.20.
    [52]冯维精.气液反应加速增效装置:中国:2382462Y[P].2000.06.14.
    [53]董万森.新型高新自吸式反应器受青睐[J].化工之友,2003,10(9):31-32.
    [54]Deshmukh N A, Patil S S, Joshi J B. Gas induction characteristics of hollow self-inducting impeller[J]. Chemical Engineering Research and Design,2006,84(2):124-132.
    [55]Forrester S E, Rielly C D, Carpenter K J. Gas-inducing impeller design and performance characteristics [J]. Chemical Engineering Science,1998,53(4):603-615.
    [56]Heim A, Kraslawski A, Rzyski E, et al. Aeration of bioreactor by self-aspirating impellers[J]. Chemical Engineering Journal,1995,58(1):59-63.
    [57]Evans G M, Rielly C D, Davidson J F, et al. A fundamental study of gas-inducing impeller design[J]. Institution of Chemical Engineers Symposium Series,1990,121(4): 137-152.
    [58]Sawant S B, Joshi J B. Critical impellers speed for onset of gas induction in gas-induction types of agitated contactors [J]. Chemical Engineering Journal,1979,18(5):87-91.
    [59]Sawant S B, Pangarkar V G, Joshi J B. Gas hold-up and mass transfer characteristics of packed bubbled columns[J]. Chemical Engineering Journal,1979,18(2):143-149.
    [60]马沛生.化工数据[M].北京:中国石化出版社,2003:153-162.
    [61]Benson S W. Thermochemical kinetics:methods for the estimation of thermochemical data and rate parameters[M]. New York:John Wiley and Sons,1968:18-51.
    [62]Benson S W, Crickshank F R. Additivity rules for the estimation of thermochemical properties[J]. Chemical Reviews,1969,69(3):317-318.
    [63]Dalmazzone D, Salmon A, Guella S. A second order group contribution method for the prediction of critical temperatures and enthalpies of vaporization of organic compounds[J]. Fluid Phase Equilibria,2006,242(1):29-42.
    [64]赵国良,靳长德.有机物热力学数据的估算[M].北京:高等教育出版社,1983:17-19.
    [65]Eckstein Z, Alster K. Comparison of methods for producting 3,6-dichloro-2-methoxybenzoic acid[J]. Przemysl Chemiczny,1979,58(10):533.
    [67]黄宪,陈振初.有机合成化学[M].北京:化学工业出版社,1983:457-464.
    [68]Zhang Yang. Study on preparation of 3,6-dichlorosalicylic acid[J]. Biodegradation,2001, 12(3):159-167.
    [69]刘光启,马连,刘杰.化学化工物性数据手册[M].北京:化学工业出版社,2002:70-108.
    [70]胡英.物理化学[M].北京:高等教育出版社,1999:93-95.
    [71]王正烈,周亚平.物理化学[M].北京:高等教育出版社,2001:135-136.
    [72]Hiroshi Y, Misako A. An ab initio MO study on the hydrolysis of methyl chloride with explicit consideration of 13 water molecules[J]. Chemical Physics Letters,1998,289(1): 105-109.
    [73]Scott E. Methyl halide hydrolysis rates in natural water[J]. Journal of Atmospheric Chemistry,1995,20(3):229-236.
    [74]段春生,孟韵,刘会峦.密度泛函理论研究CH3Cl与C1-的亲核取代反应[J].青岛科技大学学报,2004,25(2):111-115.
    [75]陈海波,吴巍,叶岗等.醋酸甲酯水解用杂多酸类催化剂的筛选[J].工业催化,2005, 13(10):43-46.
    [76]任信荣,邵可声,唐孝炎.高效液相色谱法测定水杨酸及其羟基化产物[J].色谱,2001,19(2):191-192.
    [77]Elliott S, Rowland F S. Methyl halide hydrolysis rates in natural water[J]. Journal of Atmospheric Chemistry,1995,20(3):229-36.
    [78]Michalkiewicz B, Opaczewska L. Catalytic hydrolysis of chloromethane[J]. Petroleum and Coal,2004,46(2):19-25.
    [79]Aida M, Yamataka H, Dupuis M. Ab initio MD simulations of a prototype of methyl chloride hydrolysis with explicit consideration of three water molecules:a comparison of MD trajectories with the IRC path[J]. Theoretical Chemistry Accounts,1999,102(16):262-271.
    [80]Aida M, Yamataka H. An ab initio MO study on the hydrolysis of methyl chloride[J]. Journal of Molecular Structure:Theochem,1999,461(462):417-427.
    [81]Ohta K, Morokuma K. An MO study of SN2 reactions in hydrated gas clusters: (H2O)nOH-+MeCl(H2O)m=HOCH3+Cl-+(n+m)H2O[J]. Journal of Physical Chemistry, 1985,89(26):5845-5849.
    [82]Baesman S M, Miller L G Laboratory determination of the carbon kinetic isotope effects (KIEs) for reactions of methyl halides with various nucleophiles in solution[J]. Journal of Atmospheric Chemistry,2005,52(2):203-219.
    [83]Swain C G, Cardinaud R, Ketley A D. Hydrolysis of alkyl halides and sulfonium salts by light and heavy water[J]. Journal of the American Chemical Society,1955,77(10):934-936.
    [84]Fells I. The kinetics of the hydrolysis of the chlorinated methanes [J]. Fuel Society Journal,1959,10(11):26-35.
    [85]俞潭洋.甲醇液氯法联产氯代甲烷的工艺特点及其发展前景[J].上海化工,1998,23(23):29-32.
    [86]周华东.一氯甲烷生产中影响甲醇利用率因素的探讨[J].氯碱工业,2001,10(2):28-29.
    [87]李阳,顾其威,许志美.自吸式涡轮搅拌桨的性能研究[J].华东化工学院学报,1993,19(5):544-549.
    [88]Joshi J B, Pandit A B, Sharma M M. Mechanically agitated gas-liquid reactors[J]. Chemical Engineering Science,1982,37(6):813-44.
    [89]Pandit A B, Joshi J B. Mixing in mechanically agitated gas-liquid contactors, bubble columns, and modified bubble columns[J]. Chemical Engineering Science,1983,38(8): 1189-215.
    [90]Joshi J B, Utgikar V P, Sharma M M, et al. Modeling of three phase sparged reactors[J]. Reviews in Chemical Engineering,1985,3(3):281-406.
    [91]Rewatkar, V B, Deshpande A J, Pandit A B, et al. Gas hold-up behavior of mechanically agitated gas-liquid reactors using pitched blade downflow turbines [J]. Canadian Journal of Chemical Engineering,1993,71(2):226-37.
    [92]Midoux N, Morsi B I, Purwasasmita M, et al. Interfacial area and liquid side mass transfer coefficient in trickle bed reactors operating with organic liquids[J]. Chemical Engineering Science,1984,39(5):781-94.
    [93]Patel S A, Daly J G. Hold-up and interfacial area measurements using dynamic gas disengagement[J]. AIChE Journal,1989,35(6):931-942.
    [94]Daly J G, Patel S A. Measurement of gas holdups and mean bubble diameters in bubble column reactors by dynamic gas disengagement method[J]. Hemical Engineering Science, 1992,47(13):3647-3654.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700