硫化镉团簇与S掺杂纤锌矿ZnO的第一性原理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在第一章介绍了计算材料科学中几种主要的计算方法;在第二章介绍了Dmol~3和CASTEP模拟软件所基于的理论基础;在第三章简要介绍了基于密度泛函理论的模拟软件包Dmol~3中的一些参数,并对利用Dmol~3研究的CdnSn(n≤9)团簇的最低能量结构和电子性质进行了理论分析;在第四章介绍了利用基于第一性原理的超软赝势软件包CASTEP模拟的S掺杂纤锌矿ZnO所形成的纤锌矿ZnO_(1-x)S_x化合物的带隙随S掺杂量的增加先减小后增加的原因。
     我们在广义梯度近似和全电子非限制自旋的基础上对硫化镉团簇进行结构优化和电子性质模拟,计算结果表明CdnSn(n≤9)团簇的最低能量结构:当n=2,3时为二维环状结构;当n=4-9时为三维笼状结构。更有意思的是这些三维笼状结构可以看成是由Cd_2S_2和Cd_3S_3团簇的最低能量结构组合而成。Cd_nS_n(n≤9)团簇的总能量二阶有限差分和能隙都显示,团簇的幻数为3和6。当n=9时,最低能量结构下的硫化镉团簇的大小为0.72 nm。这和试验上制备的硫化镉量子点的大小具有一定的可比性。研究硫化镉团簇可以为我们理解硫化镉量子点的微观生长机理以及发光特性等提供理论依据。
     在使用CASTEP模拟软件包研究本征纤锌矿ZnO、ZnS以及S掺杂ZnO所形成的纤锌矿ZnO_(1-x)S_x化合物的电子性质时,我们的计算结果显示纤锌矿ZnO_(1-x)S_x化合物的晶格常数随S的掺杂量的增加呈线性增加关系;S 3p态电子决定价带顶的位置,且基本上不因S含量的改变而发生位移; Zn 4s态电子决定导带底的位置,并随S掺入量的增加先向低能端移动而后向高能端移动。我们认为由于S~(2-)阴离子半径大于O~(2-)阴离子半径,随着S~(2-)取代纤锌矿ZnO中的O~(2-)的不断增加造成ZnO_(1-x)S_x化合物的晶体畸变先增加而后减少是造成ZnO_(1-x)S_x化合物带隙先减小而后增加的根本原因。
In this dissertation, Computational Materials Science has been introduced in the firt chapter; in the second chapter, Density Functional Theory is introduced, which is the groundwork of Dmol~3 and CASTEP packages; the lowest-energy structures and partial electronic properties of CdnSn (n≤9) clusters have been studied by Dmol~3 package in the third chapter ; in the end chapter, the electronic structures of wurtzite ZnO, ZnS and S doped ZnO have been investigated by using first-principles ultrasoft pseudopotential modeling package—CASTEP.
     The lowest-energy structures and electronic properties of CdnSn (n≤9) clusters have been studied by using the generalized gradient approximation and all electron spin-unrestricted methods. Two dimensional ringlike structures have been found to be the lowest-energy configurations in the case of the smaller calculated clusters at n=2 and 3, and three dimensional spheroid configurations for the larger ones at n=4-9. It is especially interesting that the three dimensional structures may be imagined as being built from the Cd_2S_2 and Cd_3S_3 rings. Calculations show that the magic numbers of CdnSn (n≤9) clusters are n=3 and 6. The size of the lowest energy structure of Cd_9S_9 is about 0.72 nm.
     The electronic structures of wurtzite ZnO, ZnS and S doped ZnO have been investigated by CASTEP package. The calculation results indicate:the crystal constants increase with the quantity of S doping wurtzite ZnO; the top position of the valence band is determined by the S 3p electron state and it does not shift with the thickness of S-doping; the bottom position of the conduction band is determined by the Zn 4s electron state and it can shift to a lower energy position at first and then shift to a higher energy position with increasing S concentrations, the band gap of ZnO_(1-x)S_x is least when x is equal to 0.5. It is essential reason that the aberration of the crystal structure change with the thickness of S doping wurtzite ZnO.
引文
[1] Dierk Raabe, The Simulation of Materials Microstructures and Properties, Wiley, New York, 1998
    [2] Pang Tao, An introduction to computational physics, Cambridge University Press, New York, 2006
    [3] Andrew R. Leach, Molecular Modelling Principles and Applications, Pearson, 2001
    [4] David C. Young, A Practical Guide for Applying Techniques to Real-World Problems, Wiley, New York, 2001
    [5] S. Lifson and A. Warshel, J. Chem. Phys. 49, 5116, 1968
    [6] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon, Oxford, 1989
    [7] G. Ciccotti and W. G. Hoover, Proceedings of the 97th international school of Physics “Enrico Fermi” on Molecular-Dynamics Simulations of Statistical -Mechanical Systems, North-Holland, Amsterdam, 1986
    [8] M. Meyer and V. Pontikis, Proceedings of the NATO ASI on Computer Simulation in Materials Science, Kluwer, Dordrecht, 1991
    [9] M. P. Allen and D. J. Tidesley, Proceedings of the NATO ASI on Computer Simulation in Chemical Physics, Kluwer, Dordrecht, 1993
    [10] J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methuen’s Statistical Monographs, Wiley, New York,1964
    [11] Y. A. Shreider, The Monte Carlo Method, Pergamon Press, New York,1966
    [12] K. Binder, Applications of the Monte Carlo Method in Statistical Physics, Springer-Verlag, 1984
    [13] K. Binder and D. W. Heermann, Monte Carlo Simulation in Statistical Physics, Springer-Verlag, 1988
    [14] K. Binder, The Monte Carlo Method in Condensed Matter Physics, Springer-Verlag, 1991
    [15] J. M. Yeomans, Statistical Mechanics of Phase Transition, Clarendon Press/Oxford University Press, New York, 1992
    [16] T. Pang, Computational Physics, Cambridge University Press, 1997
    [17] F. Y. Wu, Rev. Mod. Phys. 55, 235, 1982
    [18] M. Suzuki, Quantum Monte Carlo Methods in Equilibrium and Non- Equilibrium Systems, Springer-Verlag, 1987
    [19] F. Schmid and K. Binder, Phys. Rev. B 46, 13565, 1992
    [20] W. L. Alba and K. B. Whaley, J. Chem. Phys. 97, 3674, 1992
    [21] D. L. Cooper, Valence Bond Theory, Elsevier, Amsterdam, 2002
    [22] A. R. Leach, Molecular Modelling: Principles and Application (2nd ed.), Longman, London, 2001
    [23] Hehre W J, Radom L, Pople J A et al. Ab Initio Molecular Orbital Theory, John Wiley & Sons, New York, 1986
    [24] P. C. Hohenberg and W. Kohn, Phys. Rev. B 136, 864, 1964
    [25] W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133, 1965
    [26] S. H. Vosko, J. P. Perdew, A. H. MacDonald, Phys. Rev. Lett. 35, 1725, 1975
    [27] S. Mehta, G.. D. Price, D. Alfe, J. Chem. Phys. 125, 194507, 2006
    [28] P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev. 103, 1793, 2003
    [29] Larry A. Curtiss, Krishnan Raghavachari, Paul C. Redfern, John A. Pople, J. Chem. Phys. 106, 1063, 1997
    [30] Larry A. Curtiss, Krishnan Raghavachari, Paul C. Redfern, John A. Pople, J. Chem. Phys. 109, 42, 1998
    [31] Larry A. Curtiss, Krishnan Raghavachari, Paul C. Redfern, John A. Pople, J. Chem. Phys. 112, 7374, 2000
    [32] U. von Barth, Physica Scripta T109, 9-39, 2004
    [33] W. Kohn, Phys. Rev. Lett. 76, 3168, 1996
    [34] Robert G. Parr, Ann. Rev. Phys. Chem. 34, 631-56, 1983
    [35] S. Lundquist and N. H. March, Theory of the Inhomogeneous Electron Gas, Plenum, New York, 1983
    [36] J. Callaway and N. H. March, Solid State Phys. 38, 135, 1984
    [37] J. A. Moriarty, Phys. Rev. B 38, 3199, 1988
    [38] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689, 1989
    [39] R. G. Parr and W. Yand, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989
    [40] D. G. Pettifor and A. H. Cottrell, Electron Theory in Alloy Design, The Institute of Materials, London, 1992
    [41] S. J. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200, 1980
    [42] J. P. Perdew, and Y. Wang, Phys. Rev. B 33, 8800, 1986
    [43] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865, 1996
    [44] J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533, 1996
    [45] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566, 1980
    [46] K. Labanowski, Density Functional Methods in Chemistry, Springer-Verlag, New York , 1991
    [1] 谢希德,陆栋,固体能带理论,复旦大学出版社,2000
    [2] 曾谨言,量子力学 卷Ⅰ,科学出版社,2000
    [3] M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press , Oxford, 1954
    [4] Elliott H. Lieb, Rev. Mod. Phys. 53, 603
    [5] H. Thomas, Proc. Camb. Phil. Soc. 23, 542, 1927
    [6] E. Fermi, Accad. Naz. Lincei, 6, 602, 1927
    [7] 陈念陔,高坡,乐征宇,量子化学理论基础,哈尔滨工业大学出版社,2002
    [8] D. R. Hartree, Proc. Cam. Phil. Soc. 24, 89, 1928
    [9] V. Z. Fock, Phys. 61, 209, 1930
    [10] C. T. Lee, W. T. Yang and R. G. Parr, Phys. Rev. B 37, 785-789, 1988
    [11] M. Levy, Proc. Natl. Acad. Sci. U. S. A. 76, 6062-6065, 1979
    [12] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045-1097, 1992
    [13] J. P. Perdew and Y. Wang, Phys. Rev. B 45, 13244-13249, 1992
    [14] J. A. Pople, R. Krishnan, H. B. Schlegel and J. S. Binkley, Internet J. Quantum Chem. Symp. 13, 225, 1979
    [15] J. A. Pople and R. K. Nesbet, J. Chem. Phys. 22, 571, 1954
    [16] P. Pulay, Mol. Phys. 17, 197, 1969
    [17] C. C. J. Roothaan, Rev. Mod. Phys. 23, 69-89, 1951
    [18] J. C. Slater, Phys. Rev. 81, 385-390, 1951
    [19] J. C. Slater, Adv. Quantum Chem. 6, 1-92, 1972
    [20] L. Versluis and T. Ziegler, J. Chem. Phys. 88, 322-328, 1988
    [21] U. von Barth and L. Hedin, J. Phys. C 5, 1629-1642, 1972
    [22] S. J. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200-1211, 1980
    [23] T. Ziegler, Chem. Rev. 91, 651, 1991
    [24] P. C. Hohenberg and W. Kohn, Phys. Rev. B 136, 864, 1964
    [25] W. Kohn and L. J. Sham, Phys. Rev. A 140, 1133, 1965
    [26] M. Levy, Proc. Natl. Acad. Sci. 76, 6062, 1979
    [27] Wolfram Koch and Max C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley, New York, 2001
    [28] P. Geerlings, F. De Proft and W. Langenaeker, Chem. Rev. 103, 1793, 2003
    [29] Kieron Burke and friends, The ABC of DFT, Rutgers University, 2001
    [30] Kieron Burke and friends, The ABC of DFT, Rutgers University, 2003
    [31] Christopher J. Cramer, Essentials of Computational Chemistry Theories And Models, Wiley, New York, 2002
    [32] P. Politzer and J. M. Seminario, Density Functional Theory: A Tool for Chemistry, Elsevier: Amsterdam , 1995
    [33] T. Ziegler, Chem. Rev. 91, 651, 1991
    [34] A. D. Becke, J. Chem. Phys. 88, 2547, 1988
    [35] R. O. Jones and O. Gunnarsson, Rev. Mod. Phys. 61, 689, 1989
    [36] D. M. Ceperley and B. J. Alder, Phys Rev. Lett. 45, 566-569, 1980
    [37] M. J. S. Dewar, J. Mol. Struct. 100, 41-50, 1983
    [38] R. G. Parr and W. Yong, Density-Functional Theory of Atoms and Molecules, Clarendon Press, Oxford, 1989
    [39] L. Hedin and B. I. Lundqvist, J. Phys. C 4, 2064-2083, 1971
    [40] J. F. Janak, L. Morruzi and A. R. Williams, Phys. Rev. B 12, 1257-1261, 1975
    [41] J. P. Perdew and Alex Zunger., Phys. Rev. B, 23, 5048, 1981
    [42] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566, 1980
    [43] U. Von Barth and L. Hedin, J. Phys. C 5, 1629, 1972
    [44] B. Y. Tong and L. J. Sham, Solid State Comm. 24, 765, 1977
    [45] O. Gunnarsson and B. T. Lundqvisth, Phys. Rev. B 13, 4274, 1976
    [46] A. D. Becke, Phys. Rev. A 33, 2786, 1986
    [47] S. J. Vosko, L. Wilk and M. Nusair, Can. J. Phys. 58, 1200, 1980
    [48] J. P. Perdew and Y. Wang, Phys. Rev. B, 33, 8800, 1986
    [49] J. P. Perdew, J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson, D. J. Singhand C. Fiolhais, Phys. Rev. B, 46, 6671, 1992
    [50] J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett. 77, 3865, 1996
    [51] B. Hammer, L. B. Hansen and J. K. Norskov, Phys. Rev. B, 59, 7413, 1999
    [1] 王广厚, 团簇物理学,上海科学技术出版社,2003
    [2] E. W. Becker, Z. Phys. 146, 333, 1956
    [3] W. D. Knight, Phys. Rev. Lett. 52, 2141, 1984
    [4] W. Ekardt, Phys. Rev. B 31, 6360, 1985
    [5] W. Ekardt, Phys. Rev. B 32, 1961, 1985
    [6] K. Clemenger, Phys. Rev. B 32, 1359, 1985
    [7] S. Iijima, Nature 354, 56, 1991
    [8] B. Delley, J. Chem. Phys. 92, 508-517, 1990
    [9] B. Delley, J. Chem. Phys. 94, 7245-7250, 1991
    [10] B. Delley, J. Phys. Chem. 100, 6107-6110, 1996
    [11] B. Delley, J. Chem. Phys. 113, 7756-7764, 2000
    [12] J. P. Perdew, and Y. Wang, Phys. Rev. B 33, 8800-8802, 1986
    [13] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865-3868, 1996
    [14] J. P. Perdew, K. Burke, and Y. Wang, Phys. Rev. B 54, 16533-16539, 1996
    [15] John P. Perdew, and Yue Wang, Phys. Rev. B 45, 13244-13249, 1992
    [16] B. Delley, J. Chem. Phys. 92, 508, 1990
    [17] D. D. Koelling, B. N. Harmon, J. Phys. C: Solid State Phys. 10, 3107, 1977
    [18] M. Douglas, and N. M. Kroll, Acta Phys. 82, 89, 1974
    [19] J. P. Perdew, Y. Wang, Phys. Rev. B, 45, 13244, 1992
    [20] S. J. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 58, 1200-1211, 1980
    [21] A. D. Becke, J. Chem. Phys. 88, 2547, 1988
    [22] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865, 1996
    [23] C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 37, 786, 1988
    [24] T. Tsuneda, T. Suzumura, K. Hirao, J. Chem. Phys. 110, 10664, 1999
    [25] B. Hammer, L. B. Hansen, J. K. Norskov, Phys. Rev. B, 59, 7413, 1999
    [26] A. D. Boese, N. C. Handy, J. Chem. Phys. 114, 5497, 2001
    [27] C. B. Murray, D. J. Norris, and M. G.. Bawendi, J. Am. Chem. Soc. 115, 8706-8715, 1993
    [28] C. Ricolleau, L. Audinet, M. Gandais, and T. Gacoin, Eur. Phys. J. D 9, 565-570, 1999
    [29] Liberato Manna, Erik C. Scher, Liang-Shi Li, and A. Paul Alivisatos, J. Am. Chem. Soc. 124, 7136-7145, 2002
    [30] Tong Ni, Dattatri K. Nagesha, et al, J. Am. Chem. Soc. 124, 3980-3992, 2002
    [31] Jan-Ole Joswig, Michael Springborg, and Gotthard Seifert, J. Phys. Chem. B 104, 2617-2622, 2000
    [32] A. Trave, F. Buda, and A. Selloni, J. Phys. Chem. B 102, 1522-1527, 1998
    [33] M. Claudia Troparevsky, and James R. Chelikowsky, J. Chem. Phys. 114, 943-949, 2001
    [34] George Maroulis, and Claude Pouchan, J. Phys. Chem. B 107, 10683-10686, 2003
    [35] R. S. Mulliken, J. Chem. Phys. 23, 1833-1846, 1955
    [1] X. D. Gao, X. M. Li, W. D. Yu, Mater. Sci. Eng. B 113, 274–278, 2004
    [2] Y.H. Tong, Q.X. Tang, Y.C. Liu, C.L. Shao, C.S. Xu, Y.X. Liu, Phys. B 367, 223–228, 2005
    [3] I. Vurgaftman, J. R. MeyerL. R. Ram-Mohan, J. Appl. Phys. 89, 5815, 2001
    [4] G. Pozina, I. Ivanov, B. Monemar, J. V. Thordson, T. G. Andersson, J. Appl. Phys. 84, 3830, 1998
    [5] Almira Briones Cruz, Qing Shen, Taro Toyoda, Thin Solid Films 499, 104 – 109, 2006
    [6] He Hu, Weihua Zhang, Optical Materials 28, 536–550, 2006
    [7] Haibing Li, Wei Xiong, Yan Yan, Jun'an Liu, Huibi Xu, Xiangliang Yang, Materials Letters 60, 703–705, 2006
    [8] M. Behboudnia, M.H. Majlesara, B. Khanbabaee, Mater. Sci. Eng. B 22, 160–163, 2005
    [9] J. S. Kim, H. M. Kim, H. L. Park, J. C. Choi, Solid State Communications 137, 115–119, 2006
    [10] Sang-Do Hana, Ishwar Singhb, Devender Singhb, You-He Leea, Gaytri Sharmaa, Chi-Hwan Han, Journal of Luminescence 115, 97–103, 2005
    [11] B. K. Meyer, A. Polity, B. Farangis, Y. He, D. Hasselkamp, Th. Kr?mer, and C. Wang, Appl. Phys. Lett. 85, 4929, 2004
    [12] Jin Xi-lian, Lou Shi-Yun, Kong De-Guo, Li Yun-Cai, Du Zu-Liang, Acta Phys. Sin. 55,4809, 2006
    [13] V. Milman, B. Winker, J. A. White, C. J. Pickard, M. C. Payne, E. V. Akhmatskaya, and R. H. Nobes, Int. Quant. Chem. 77, 895, 2000
    [14] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys. 64, 1045, 1992
    [15] I. Stich, M. C. Payne, R. D. King-Smith, J. S. Lin, L. J. Clarke, Phys. Rev. Lett. 68, 1351, 1992
    [16] M. P. Teter, M. C. Payne, D. C. Allen, Phys. Rev. B 40, 12255, 1989
    [17] A. K. Rappe, K. Rabe, E. Kaxiras, J. D. Joannopolous, Phy. Rev. B 41, 1227, 1990
    [18] H. J. Monkhorst, J. D. Pack, Phys. Rev B 13, 5188-5192, 1976
    [19] G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169-11186, 1996
    [20] B. G. Pfrommer, M. Cote, S. G. Louie, M. L. Cohen, J. Comput. Phys. 131, 133-140, 1997
    [21] M. I. J. Probert, J. Comput. Phys. 191, 130-146, 2003
    [22] G. J. Ackland, Phys. Rev. Lett. 80, 2233-2236, 1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700