高频雷达自适应抗干扰技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用高频段垂直极化电磁波能够沿海洋表面绕射传播的机理,高频地波雷达能够实现对海上舰船目标和低空飞行目标的超视距探测,同时,为海洋资源管理和开发提供了新的途径。因此,世界上许多国家都投入了大量精力进行高频地波雷达的研制工作。电离层是目前影响高频雷达生存能力的最大障碍,一方面电离层反射高频雷达自身发射信号,通过复杂的调制和路径回到雷达接收机,形成电离层杂波;另一方面电离层传播远距离电台反射进入接收机,形成天波电台干扰。电离层杂波和天波电台干扰抬高了整个雷达探测谱基底,破坏了检测背景,给舰船等有用目标的探测带来了极大困难,直接影响到雷达的威力范围。因此,如何有效地抑制电离层杂波和天波电台干扰,改善检测性能,进而增大雷达的探测距离便成了高频地波雷达所必须解决的关键技术难题。本文的研究任务就是在上述课题背景下提出来的,全文主要贡献总结如下:
     1.基于长期观测和大量统计数据首次对赤道地区电离层杂波特性进行了详尽分析。
     分析了高频雷达电离层杂波的成因,路径及其传输特性。杂波按进入接收机路径被分为垂直向电离层杂波和海面传播电离层杂波。对电离层杂波的时域、距离域、多普勒域等特性进行了深入的比较分析,并着重研究了杂波的空间方向特性,比较了不同杂波(特别是垂直向和海面传播电离层杂波)的异同点,为电离层杂波抑制技术的研究提供了思路和可能的解决途径。
     2.首次提出了高频雷达阵列天线幅相误差实时盲校准方法,给出了接收机带内及路间不一致性补偿方法。
     高频雷达工作环境十分恶劣,阵列天线的幅相误差较大,破坏了雷达波束的旁瓣和凹口零值深度,为进行杂波干扰抑制,阵列幅相误差校准势在必行。本文选用了孤立的大信噪比目标作为校准源对雷达阵列天线幅相误差进行了测量和校准,并提出一种适合于实时处理的校准目标盲搜索方法,校准后阵列天线幅度误差从±2dB降低为±0.5dB,相位误差从±20o降低为±3o。对于接收机带内及路间幅相不一致性,提出了脉冲串补偿信号频域逐点补偿的方法,有效的保证了目标信号回波的脉压结果,同时降低了路间不一致程度,补偿后经模拟信号源测得路间幅度不一致性从0.776dB降低到0.005dB,相位不一致性从42度降至0.02度。接收系统误差校准降低了进入旁瓣的杂波能量,同时为自适应抗干扰的研究提供了保障。
     3.基于电缆移相的方法构造了新的接收天线,抑制了天顶及附近方向的垂直向电离层杂波,同时,提出了基于水平极化辅助天线和垂直向辅助波束的垂直向杂波旁瓣对消方法。
     在不增加信号处理复杂度前提下,新接收天线的垂直波束方向图凹口位于天顶方向,提高了接收系统对垂直面天顶及附近方向的抑制能力,降低了电离层杂波进入系统的能量。同时,探讨了利用水平极化辅助天线,垂直方向波束辅助通道进行旁瓣对消的方法,实测雷达数据处理结果均取得了一定的抑制效果。
     4.研究并系统实现了海面电离层杂波抑制,较弱杂波和阵列天线误差较小的情况下,提出了基于目标海杂波样本剔除的预检测对消方法(DBC),在强杂波或阵列误差较大情况下,提出了基于多次检测的迭代变加载预检测对消方法(RVDL-DBC),应用于实际系统,效果良好。
     针对空间单凹口滤波器辅助通道电离层杂波对消方法在实际处理过程中存在的目标损失和基底抬高等问题,提出了基于目标海杂波样本剔除的预检测对消方法(DBC),通过适当的数据选择准则,把预检测到的目标和海杂波信息从训练样本中剔除,保证了训练样本中仅含电离层杂波数据,获得了更有效的对消结果。在此基础上,针对强杂波或较大阵列误差情况,首次提出了基于多次检测的迭代变加载预检测对消方法(RVDL-DBC),逐步检测出淹没在杂波中的目标,有效的保证了杂波对消后的目标特性。最后给出了切合实际的电离层杂波抑制系统方案,通过大量实测数据处理,结果表明该方案在保证目标信息损失最小情况下有效的抑制了电离层杂波,改善了雷达检测背景,能够满足高频雷达系统自适应抗电离层杂波干扰的需要。
     5.研究了高频雷达电台干扰抑制技术,提出了基于稳健最小二乘(RLS)的电台干扰抑制方法,探讨了超分辨算法在电台干扰抑制中的应用。
     基于凸最优的思想,提出了稳健的最小二乘天波电台干扰抑制方法,通过修正水平接收通道的数据,在最差的误差环境下达到了最优的干扰抑制性能,并给出了有效求解方法,通过实际数据处理结果验证了算法的有效性。此外,本文最后探讨了超分辨算法用于电台干扰抑制的实验结果。
     通过本文的研究,突破了高频雷达电离层杂波和天波电台干扰抑制中的关键技术。改善了雷达的检测背景,保障了高频雷达全天候工作的能力,进而提高了雷达的总体性能。为整个雷达系统的研制提供了有力的帮助,具有非常大的应用价值和实际意义。
High frequency surface wave Radar (HFSWR), utilizing vertical polarized electromagnetic wave which follows the curvature of the earth along the air-water interface with low propagation loss on highly conductive ocean surface, can detect and track targets beyond the horizon such as vessels on the sea or aircrafts at low altitude. It provides a new way to manage and explore oceanic resources in civil projects. Therefore, many countries devoted much energy to developing HFSWR in recent years. Ionosphere has proved to be the biggest obstacle to achieve consistently good performance in long-range detection and surface vessels tracking for HFSWR. On one hand, the ionosphere reflects the radar’s own signal, which returns to the receiver through complex modulation and path and forms ionospheric clutter; on the other hand, the ionosphere propagates and reflects the long-range radio signal to radar receiver, and forms skywave radio interference. Both ionospheric clutter and sky radio interference raise the floor of power spectrum and destroy the detection background, which cause huge difficulty for target detection and badly affect the detection range. Therefore, it is very crucial in HFSWR to effectively mitigate the ionospheric clutter and skywave radio interference, increase the signal to interference and noise radio (SINR) of target echo, improve the performance of detection, and increase the detection range. The current research was carried out under the circumstance mentioned above and the major contributions include:
     1. Characteristics of ionospheric clutter in equator were analyzed based on long term observation and abundant experimental data for the first time.
     The inducement, path and propagation characteristics of ionospheric clutter in HFSWR were analyzed. The clutter was classified into near vertical incident (NVI) clutter and sea propagated clutter based on propagation path. The Characteristics of ionospheric clutter were investigated in time, range and velocity domain, especially, spatial properties were studied with emphasis. The similarities and differences were compared (especially vertical clutter and sea propagated clutter). These studies provided the idea and possible approach for ionospheric clutter mitigation.
     2. HFSWR antenna array amplitude and phase errors were real-time blind calibrated for the first time. And the compensation of receiver mismatch was proposed.
     HFSWR works in a short wave band. The antenna array amplitude and phase errors were very big which affect the sidelobe and null depth of radar beam. So it is imperative to calibrate the array antenna under this situation. Isolated targets with big SNR were selected as the calibration source to measure and calibrate array antenna error, and a suitable target blind search algorithm was studied. The antenna amplitude error was reduced from±2dB to±0.5dB and phase error was reduced from±20o to±3o. Narrow pulse sequence compensation method was proposed to compensate the mismatch of receiver amplitude and phase response. After the compensation, good match filter result was achieved and the receiver amplitude mismatch was reduced from 0.776dB to 0.005dB, and the phase mismatch was reduced from 42o to 0.02o. The calibration of receive system errors decreases the energy of ionospheric clutter from sidelobe, and guarantees the effective cancellation of clutter and interference.
     3. Based on the method of cable phase delay,new receive antenna was built to suppress the NVI ionospheric clutter at near zenith dirction. Sidelobe cancellation methods based on horizontal polar antenna and vertical beamformer were proposed to mitigate NVI ionsopheric clutter.
     New receive antenna was built to improve the mitigation ability of near zenith direction. The energy of NVI ionospheric clutter was reduced without increasing the complexity of signal processing. Based on horizontal polar antenna and vertical beamformer, NVI ionospheric cluter suppressed by the sidelobe cancellation method was discussed. Results show satisfactory suppression.
     4. A mitigation technology of sea propagated ionospheric clutter was studied and achieved. Detection before cancellation (DBC) method based on the exclusion of target and sea clutter was proposed for the case of weak clutter and small antenna errors. And recursive variational diagonal loading detection before cancellation based on multiple detections was proposed for the case of strong clutter or big antenna errors for the first time. Satisfactory results were achieved in real system.
     Detection before cancellation (DBC) method based on the exclusion of target and sea clutter was proposed to resolve target loss and floor hoist after traditional single notch filter auxiliary ionospheric clutter sidelobe cancellation for the case of weak clutter and small antenna errors. The sample data was trained to get the pure ionospheric clutter data by excluding the target and sea clutter information; for the case of strong clutter or big antenna errors, recursive variational diagonal loading detection before cancellation (RVDL-DBC) based on multiple detections was proposed for the first time. The small target was detected step by step through the multiple detections and cancellations, and effective cancellation results were achieved. The method keeps the target property after clutter cancellation. Finally, the whole clutter mitigation method was summarized. Experimental results showed that the method could effectively suppress ionospheric clutter without losing any target information, increase the SNR of target, improve radar detection background and meet the requirement of ionospheric clutter mitigation.
     5. Robust least squares radio interference mitigation method was proposed, and super resolution methods were discussed for radio interference mitigation.
     Based on the idea of convex optimization, the sample of horizontal auxiliary channel was modified, and the best performance of interference rejection in the worst case error circumstance under the limit of maximum error bound was obtained. A robust least squares method for skywave radio interference mitigation was proposed to settle the optimal weight coefficient effectively.
     In summary, the crucial techniques in ionospheric clutter and skywave radio interference mitigation of HFSWR were achieved. Radar detection background was improved; all-weather ability of radar was ensured; and the overall performance was improved. The current study is extremely useful for the development of whole radar system and has great potential to be employed in applications.
引文
1 陈祥占. 国外地波超视距雷达的研究和应用. 电子工程信息. 1994, 9: 19~23.
    2 曲翠萍,毛滔. 超视距雷达综述. 雷达与对抗. 2006, 3: 1~4.
    3 D. D. Crombie. Doppler spectrum of sea echo at 13.56MHz/s. Nature. 1955, 175: 681~682.
    4 J. R. Wait. Theory of HF ground wave backscatter from sea waves. J. Geophys. Res. 1966, 71: 4832~4839.
    5 W.H.Munk, W.A.Nierenberg. High frequency radar sea return and Phillips saturation constant. Nature. 1969, 224(5226): 1285.
    6 A.M.Peterson, C.C.Teague and G.L.Tyler. Bistatic-radar observation of long-period, directional ocean-wave spectra with Loran A. Science. 1970, 170: 158~161.
    7 K.Davies. Ionosphereic Radio. Peter Peregrinus Ltd. London. UK. 1990: 235~245.
    8 Hing C.Chan. Charaterization of ionospheric clutter in HF surface wave radar. Defence R&D Canada- Ottawa Technical Report. DRDC Ottawa TR 2003-114. September, 2003: 1~70.
    9 L.Sevgi, A.Ponsford, and H.C.Chan. An integrated maritime surveillance system based on high-frequency surface-wave radars. 1. Theoretical background and numerical simulations. IEEE Antennas and Propagation Magazion. 2001, 43(4): 28~43.
    10 A.Ponsford, L.Sevgi, and H.C.Chan. An integrated maritime surveillance system based on high-frequency surface-wave radars. 2. Operational status and system performance. IEEE Antennas and Propagation Magazion. 2001, 43(5): 52~63.
    11 H.C.Chan and E.K.L.Hung. An investigation in interference suppression for HF surface wave radar. Defence research establishment Ottawa Technical Reportt. DREO TR 2000-028. December 1999: 1~40.
    12 G.A.Fabrizio, Y.I.Abramovich, S.J.Anderson, D.A.Gray and M.D.Turly. Adaptive cancellation of nonstationry interference in HF antenna arrays.IEE Proc-Radar, Sonar and Navigation. 1998, 145(1): 19~24.
    13 D.Barrick. History present status and future directions of HF surface wave radar in the US. Proceedings of the International Conference on Radar. Adelaide, Australia. 2003, Sep: 652~655.
    14 S.J.Anderson, P.J.Edwards, P.Marrone, and Y.I.Abramovich. SECAR Investigation with SECAR a bistatic HF surface wave radar. Proceedings of the International Conference on Radar. Adelaide, Australia. 2003, Sep: 716~721.
    15 M.Lesturgie, J.P.Eglizeaud, and G.Auffray. The last decades and future of low frequency radar concepts in France. RADAR 2004, International Conference on Radar Systems. Frangce Toulouse. OCT 22~25, 2004: 135~139.
    16 Liu Yongtan. Target detection and tracking with a high frequency grand wave Over-the-Horizon radar. 1996 CIE International Conference of Radar Proceedings. Beijing. 1996: 29~33.
    17 Yongtan Liu, Rongqing Xu and Ning Zhang. Progress in HFSWR research at Harbin Institute of Technology. Proceedings of the International Conference on Radar. Adelaide, Australia. 2003, Sep: 522~528.
    18 Fabrizio, G. A. Space-time characterisation and adaptive processing of ionospherically-propagated HF signals. Ph.D. dissertation. Adelaide University, Australia. July, 2000. 120~130.
    19 T.Ponsford, R.Dizaji. HF surface wave radar operation in adverse conditions. Proceedings of the International Conference on Radar. Adelaide, Australia. 2003, Sep: 593~598.
    20 D.E.Barrick. First-order theory and analysis of MF/HF/VHF scatter from the sea. IEEE Trans. on Antennas Propagation. 1972, 20(1): 2~10.
    21 D.E.Barrick, J.M.Headrick, R.W.Bogle and D.D.Crombie. Sea backscatter at HF: interpretation and utilization of the echo. Proceedings of IEEE. 1974, 62(6): 673~687.
    22 L.R.Wyatt. High-Frequency Radar Measurements of the Ocean Wave -Directional Spectrum. IEEE Journal of Oceanic Engineering. 1991, 16(1): 163~169.
    23 R.H.Khan. Ocean-clutter model for high frequency radar. IEEE Journal ofOceanic eigineering. 1991, 16(2): 181~188.
    24 M.W.Y.Poon, R.H.Khan, S.L.Ngoc. A singular value decomposition (SVD) based method for suppressing ocean clutter in high frequency radar. IEEE Trans on signal processing. 1993, 41(3): 1421~1425.
    25 Wang Jian. High resolution methods for small target detection and estimation in high frequency radar. Ph.D. dissertation. University of Victoria, Canada. 2004: 1~20.
    26 T.Thayaparan and J.MacDougall. The role of ionospheric clutter in mid-latitude and arctic regions for assessment of HFSWR surveillance. Defence R&D Canada- Ottawa Technical Report. DRDC Ottawa TR 2004-093. April 2004: 1~30.
    27 M.Xingpeng, L.Yongtan, D.Weibo, Y.Changjun and M.Zilong. Sky wave interference of high frequency surface wave radar. Electronics letters. 2004, 40(16): 968~969
    28 W.Xianrong, K.Hengyu. Adaptive ionospheric clutter suppression based on subarrays in monostatic HF surface wave radar. IEE Proc-Radar Sonar Navigation. 2005, 152(2): 89~96.
    29 Wan Xianrong, Cheng Feng, Ke Hengyu. Sporadic-E Ionospheric clutter suppression in HF surface wave radar. IEEE radar conference 2005. 742~746.
    30 Y.I.Abramovich, Pavel Turcaj, Nicholas.Keith.Spencer. Surface wave radar. United States Patent Application. Publication US 2003/0142011 A1. 2003 July.
    31 Y.Abramovich, S.Anderson, Y.Lyudviga, N.Spengcer, P.Turcaj, B.Hibble. Space time adaptive techniques for ionospheric clutter mitigation in HF surface wave radar systems. Radar 2004, International conference on Radar system. Toulouse, France. Oct, 2004: 203~207
    32 T.Ponsford, R.Dizaji. System and method for spectral generation in radar. United States Patent Application Publication. Pub, No: Us 2004/0178951 A1. Sep, 2004.
    33 R.Dizaji, T.Ponsford. Adaptive system and method for radar detection. United States Patent Application Publication. Pub, NO: Us 2003/0174088 A1, Sep, 2003.
    34 Hank Leong and A.Ponsford. The advantage of dual-frequency operation in ship tracking by HF surface wave radar. Radar 2004, International conference on Radar system. Toulouse, France. Oct, 2004: 233~237
    35 Jian Wang, Reza Dizaji, and A.M.Ponsford. Analysis of clutter distribution in bistatic high frequency surface wave radar. Canadian Conference on Electrical and Computer Engineering. 2-5 May, 2004: 1301 ~ 1304.
    36 L.J.Griffiths. Time Domain Adaptive Beamforming of HF Backscatter Radar Signals. IEEE Trans on AP. 1976, 5: 707~720.
    37 Y.I.Abramovich, A.Y.Grookhov, V.N.Mikhaylyuvov. Exterior Noise Adaptive Rejection for OTH Radar Implementations. Proceedings of ICASSP94. Adelaide, Australia. 1994: 105~107.
    38 G.A.Fabrizio, D.A.Gray,M.D.Turley. Experimental Evaluation of adaptive beamforming methods and interference modes for high frequency Over-the-horizon radar systems. Multidimensional systems and signal processing. 2003, 14: 241~263.
    39 Y.I.Abramovich, N.K.Spencer, S.J.Anderson, A.Y.Gorokhov. Stochastic-constraints method in nonstationary hot-clutter cancellation-Part 1: Fundamentals and supervised training applications, IEEE Trans. on AES. 1998, 34: 1271~1292.
    40 Y.I.Abramovich, N.K.Spencer, S.J.Anderson,A.Y.Gorokhov. Stochastic-constraints method in nonstationary hot-clutter cancellation-Part 2: Unsupervised training applications, IEEE Trans. on AES. 2000, 36: 132~150.
    41 G.A.Fabrizio, A.B.Gershman and M.D.Turley. Non-stationary interference cancellation in HF surface wave radar Proceedings of the International Conference on Radar. Adelalde, Australia. 2003, Sep: 672~677.
    42 G.A.Fabrizio, A.B.Gershman, M.D.Turley. Robust adaptive beamforming for HF surface wave Over-the-Horizon radar. IEEE Trans. on AES. 2004, 40(2): 510~525.
    43 李高鹏,李雷,许荣庆. 基于海杂波保持的高频地波雷达干扰抑制方法研究. 电波科学学报. 2005, 20(5): 358~362.
    44 Li Gaopeng, Li Lei, Xu Rongqing. A Novel Adaptive Beamforming Method for Non-stationary Interference Cancellation in HF Surface WaveRadar. RADAR 2004 - International Conference on Radar Systems. Frangce Toulouse. Oct, 2004: 353~357
    45 H.W.H.Leong. A comparison of sidelobe cancellation techniques using auxiliary horizontal and vertical antennas in HF surface wave radar. IEEE international Radar conference. Alexandria. 7-12 May 2000: 672~677.
    46 Li GP, Li L, Xu RQ. Sky wave interference cancellation for HF surface wave radar. Proceedings of the 2004 China-Japan joint meeting on microwaves. Harbin, China. AUG 05-06, 2004: 363~366.
    47 Li Gaopeng, Li Lei, Xu Rongqing. Robust interference cancellation method of high frequency surface wave radar. 2004 7th International Conference on Signal Processing Proceedings. Beijing, China. Aug 31-Sep 4, 2004: 443~446.
    48 李高鹏,李雷,许荣庆. 高频地波雷达干扰抑制方法研究. 电子学报. 2005, 33(3): 514~516.
    49 Y.Jun, W.Biyang and W.Shicai. Method to suppress radio-frequency interference in HF radar. Electronics Letters. 2004, 40(2): 145~146.
    50 Zhou Hao, Wen Biyang, Wu Shicai and Luo Yuyang. Radio frequency interference suppression in HF radars. Electronics Letters. 2003, 39(12): 925~926.
    51 Wan Xianrong, Ke Hengyu, and Wen Biyang. Adaptive Cochannel Interference Suppression Based on Subarrays for HFSWR. IEEE signal processing letters. 2005, 12(2): 162~165.
    52 Yang Jun, Wen Biyang, and Wu shicai. Daytime interference nulling of OSMAR. IEEE signal processing letters. 2005, 12(1): 71~74.
    53 Hao Zhou, Biyang Wen, and Shicai Wu. Dense Radio Frequency Interference Suppression in HF Radars. IEEE signal processing letters. 2005, 12(5): 361~364.
    54 W. Xianrong, Z.Sifeng, K.Hengyu and W.Biyang. Target detection with high frequency surface wave radar in co-channel interference. IEE Proc Radar Sonar Navigation. 2005, 152(2): 97~103.
    55 陈志群. 高频地波雷达中阵列信号处理的研究. 哈尔滨工业大学博士学位论文. 2001: 82~84.
    56 权太范,李建巍,于长军. 高频雷达抑制冲击干扰的研究和实验. 电子学报. 1999, 27(12): 23~25.
    57 强勇,侯彪,焦李成,保铮. 天波超视距雷达抑制流星余迹干扰方法的研究. 电波科学学报. 2003, 18(1):23~27.
    58 Harry L. Van Trees. Optimum Array Processing. A John Wiely Sons INC Publication, 2002: 1~106.
    59 J.Capon. High resolution frequency-wavenumber spectrum analysis. Proc. IEEE. 1969, 57: 1408~1418.
    60 I.S.Reed, J.D.Mallett, L.E.Brennan. Rapid convergence rate in adaptive arrays. IEEE Trans. on AES. 1974, 10: 853~863.
    61 O.L.Frost. An algorithm for constrained adaptive array processing. Proc. IEEE. 1972, 60(8): 926~935.
    62 H.Cox, R.M.Zeskind, M.H.Owen. Robust Adaptive Beamforming. IEEE Trans. on ASSP. 1987, 35: 1365~1376.
    63 D.Feldman, L.J.Griffiths. A Projection Approach to Robust Adaptive Beamforming. IEEE Trans. on Signal Processing. 1994, 42: 867~876.
    64 J.R.Guerci. Theory and Application of Covariance Matrix Tapers for Robust Adaptive Beamforming. IEEE Trans on signal processing. 1999, 47(4): 977~985.
    65 R.O.Schmidt. Multiple Emitter Location and Signal Parameter Estimation. IEEE Trans. on AP. 1986, 34(3): 276~280.
    66 R.Roy, T.Kailath. Estimation of Signal Parameters via Rotational Invariance Techniques. IEEE Trans on ASSP. 1989, 7(37):984~995.
    67 J. Li. Improved Angular Resolution for Spatial Smoothing Techniques. IEEE Transactions on Signal Processing. 1992, 40(12): 3078~3081.
    68 D.E.Barrick. Radar angle determination with MUSIC direction finding. United Stats Patent, 5,990,834. Nov.23, 1999.
    69 J.H.Xie, Y.S.Yuan and Y.T.Liu. Super-Resolution Processing for HF Surface Wave Radar Based on Pre-Whitened MUSIC. IEEE Journal of Oceanic Engineering. 1998, 23(4): 313~321.
    70 Shaolin Yang, Hengyu Ke, Xiongbin Wu, Jiansheng Tian, and Jiechang Hou. HF Radar Ocean Current Algorithm Based on MUSIC and the Validation Experiments. IEEE Journal of Oceanic Engineering. 2005, 30(3): 601~618
    71 B.Friedlander, A.J.Weiss. Direction finding in the presence of mutual coupling. IEEE Trans on AP. 1991, 39(3): 273~284.
    72 C.M.S.See. Method for array calibration in high resolution sensor array processing. IEE Proc. Radar. Sonar and Navig. 1995, 142(3): 90~96.
    73 T.Svantesson. The effects of mutual coupling using a linear array of thin diploes of finite length. In Proc 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing. Portland, USA. Sep 1998: 232~235.
    74 王布宏,王永良,陈辉,陈旭. 均匀线阵互耦条件下的鲁棒 DOA 估计及互耦自校正. 中国科学 E 辑 技术科学. 2004, 34(2): 229~240
    75 I.S.D.Solomon, D.A.Gray, Y.I.Abramovich and S.J.Anderson. Over the horizon radar array calibration using echoes from ionized meteor trails. IEE Proc. Radar, Sonar navig. 1997, 145(3): 173~180.
    76 I.S.D.Solomon, D.A.Gray, Y.I.Abramovich and S.J.Anderson. Receiver array calibration using disparate sources. IEEE Trans on AP. 1999, 47(3): 496~505.
    77 I.S.D.Solomon, D. A. Gray and Y. I. Abramovich. Sources for OTH Radar Array Calibration. IEEE Antennas and Propagation Society, AP-S International Symposium. Montreal. 1997: 306~308
    78 E.K.L.Hung. A calibration procedure for an HFSWR receive array. Defence Research Establishment Ottawa, Technical Report, 2001-103. December, 2001: 1~39.
    79 E.K.L.Hung. Matrix-Construction Calibration Method for Antenna Arrays. IEEE Trans on AES. 2000, 36(3): 819~918.
    80 A. Bourdillon and J. Delloue. Phase Correction of an HF Mutireceiver Antenna Array Using a Radar Transponder. Proceedings of IEEE Acoustics, Speech and Signal Processing. 1994: 125~128.
    81 王吉滨. 舰载高频地波雷达接收系统研究. 哈尔滨工业大学博士学位论文: 62~77.
    82 G.A.Fabrizio, D.A.Gray, M.D.Turley. Using sources of opportunity to compensate for receiver mismatch in HF arrays. IEEE Trans on AES. 2001, 37(1): 310~317.
    83 E.Kelly. An adaptive detection algorithm. IEEE Trans. on AES. 1986, 22: 115~127.
    84 S.Kraut, L.L.Scharf, and L.McWhorter. Adaptive subspace detectors. IEEE Trans. on Signal Processing. 2001, 49: 1~16.
    85 De Maio, G.Foglia, E.Conte, A.Farina. CFAR behavior of adaptive detectors: An experimental analysis. IEEE Transactions on Aerospace and Electronic Systems. 2005, 41(1): 233~251.
    86 R.Dizaji,T.Ponsford. Matched subspace CFAR detection for phased array radar systems. Adaptive sensor array processing Conference. June, 2005: 1114~1117.
    87 G.A.Fabrizio, A.Farina, M.D.Turley. Spatial adaptive subspace detection in OTH radar. IEEE Trans. on Aerospace and Electronic Systems. 2003, 39(4): 1407~1428.
    88 G.A.Fabrizio, L.Scharf, A.Farina, M.Turley. Ship Detection with HF Surface-Wave Radar Using Short Integration Times. Radar 2004, International conference on Radar system. Toulouse, France. Oct, 2004: 343~348.
    89 W.L.Melvin and M.C.Wicks. Improving practical space-time adaptive radar. Proc. IEEE Nat. Radar Conf. Syracuse, NY. 1997: 48~53.
    90 W.L.Melvin. Space-time adaptive radar performance in heterogenous clutter. IEEE Trans. On Aerosp. Electron. Syst. 2000, 36(2): 621~633
    91 P.Chen, W.L.Melvin, and M.C.Wicks. Screening among multivariate normal data. J. Multivariate Anal. 1999, 69: 10~29.
    92 M.Rangaswamy, J.H.Michels, and B.Himed. Statistical Analysis of the Nonhomogeneity detector for STAP Applications. Digital Signal Processing. 2004, 14(3): 253~267.
    93 M.Rangaswamy. Statistical Analysis of the Nonhomogeneity Detector for Non-Gaussian Interference Backgrounds. IEEE Trans. On SP. 2005, 53(6): 2101~2111.
    94 M.Rangaswamy, F.Lin, and K.Gerlach. Robust Adaptive Signal Processing Methods for Heterogeneous Radar Clutter Scenarios. Signal Processing. 2004, 84: 1653~1665.
    95 R.S.Adve, T.B.Hale, and M.C.Wicks. Joint domain localized adaptive processing in homogeneous and non-homogeneous environments. Part II: Non-homogeneous environments. IEE Proc. on Radar Sonar and Navig.2000, 147(2): 66~73.
    96 R.S.Adve, T.B.Hale, and M.C.Wicks. Joint domain localized adaptive processing in homogeneous and non-homogeneous environments. Part I: Homogeneous environments. IEE Proc. on Radar Sonar and Navig. 2000, 147(2): 57~65.
    97 K.R.Gerlach. Outlier resistant adaptive matched filtering. IEEE Trans. On Aerosp. Electron. Syst. 2002, 38(3): 885~901.
    98 K.Gerlach, M.L.Picciolo. Airborne/spacebased radar STAP using a structured covariance matrix. IEEE Transactions on Aerospace and Electronic Systems. 2003, 39(1): 269~281.
    99 K.Gerlach, S.D.Blunt, and M.L.Picciolo. Robust adaptive matched filtering using the FRACTA algorithm. IEEE Transactions on Aerospace and Electronic Systems. 2004, 30(3): 929~945.
    100 Shannon D.Blunt, K.Gerlach, M.Rangaswamy. STAP using knowledge-aided covariance estimation and the FRACTA algorithm. IEEE Trans. on Aerospace and Electronic systems. 2006, 42(3): 1043~1057.
    101 王彤,保铮. 空时二维自适应处理的目标污染样本挑选方法. 电子学报. 2001, 29(12): 1840~1844
    102 Stephen Boyd, Lieven Vandenberghe. Convex Optimization. Cambridge University Press 2004: 1~16.
    103 Sergiy A.Vorobyov, A.B.Gershman and Zhi-Quan luo. Robust adaptive beamforming using worst-case performance qptimization: a solution to the signal mismatch problem. IEEE Trans. on signal processing. 2003, 52(2): 313~324.
    104 S.A.Vorobyov, A.B.Gershman, Z.Q.Luo. Adaptive Beamforming with Joint Robustness against Signal Steering Vector Errors and Interference Nonstationary. Proc. ICASSP'03. Hong Kong. April 2003: 2901~2904.
    105 R.Lorenz, S.P.Boyd. Robust Minimum Variance Beamforming. IEEE Trans.on Signal Processing. 2005, 53(5): 1684~1696.
    106 Jian Li, Petre Stoica, Zhisong Wang. On Robust Capon Beamforming and Diagonal Loading. IEEE Trans.on Signal Processing. 2003, 51(7): 1702~1713.
    107 A.B.Gershman. Robust Adaptive Beamforming: An Overview of RecentTrends and Advances in the Field. International conference on Antenna Theory and Techniques. Sevastopol, Ukraine. 9~12 September, 2003: 30~35.
    108 http://www.darpa.mil/spo/programs/kassper.htm. Proceedings. KASSPER Workshops, 2002~2005
    109 G.T.Capraro, A.Farina, H.Griffiths, M.C.Wicks. Knowledge-based radar signal and data processing: a tutorial review. IEEE Signal Processing magazine. 2006, 23(1):18~29.
    110 J.R.Guerci, E.J.Baranoski. Knowledge-aided adaptive radar at DARPA: an overview. IEEE Signal Processing magazine. 2006, 23(1):41~50.
    111 M.C.Wicks, M.Rangaswamy, R.Adve, T.B.Hale. Space-time adaptive processing: a knowledge-based perspective for airborne radar. IEEE Signal Processing magazine. 2006, 23(1): 51~65.
    112 S.Miranda, C.Baker, K.Woodbridge, H.Griffiths. Knowledge-based resource management for multifunction radar: a look at scheduling and task prioritization. IEEE Signal Processing magazine. 2006, 23(1): 66~76.
    113 W.L.Melvin, J.R.Guerci. Knowledge-aided signal processing: a new paradigm for radar and other advanced sensors. IEEE Transaction on AES. 2006, 42(3): 983~996.
    114 J.S.Bergin, C.M.Teixeira, P.M.Techau, J.R.Guerci. Improved clutter mitigation performance using knowledge-aided space-time adaptive processing. IEEE Transaction on AES. 2006, 42(3): 997~1009.
    115 W.L.Melvin, G.A.Showman. An approach to knowledge-aided covariance estimation. IEEE Transaction on AES. 2006, 42(3): 1021~1042.
    116 S.D.Blunt, K.Gerlach, M.Rangaswamy. Stap using knowledge-aided covariance estimation and the fracta algorithm. IEEE Transaction on AES. 2006, 42(3): 1043~1057.
    117 E.Conte, De A.Maio, A.Farina, G.Foglia. Design and analysis of a knowledge-aided radar detector for doppler processing. IEEE Transaction on AES. 2006, 42(3): 1058~1079.
    118 C.T.Capraro, G.T.Capraro, I.Bradaric, D.D.Weiner, M.C.Wicks, W.J.Baldygo. Implementing digital terrain data in knowledge-aided space-time adaptive processing. IEEE Transaction on AES. 2006, 42(3):1080~1099.
    119 A.Benavoli, L.Chisci, A.Farina, S.Immediata, L.Timmoneri, G.Zappa. Knowledge-based system for multi-target tracking in a littoral environment. IEEE Transaction on AES. 2006, 42(3): 1100~1119.
    120 庄钊文,肖顺平,王雪松. 雷达极化信号处理及应用. 北京:国防工业出版社. 1999: 1~110.
    121 A.J.Poelman. Virtual polarization adaptation, a method of increasing the detection capability of a radar system through polarization-vector processing. Proc. IEE, Communications, radar and signal processing. 1981, 128(10): 261~269.
    122 A.J.Poelman. Polarization vector in radar systems. A method of increasing the detection capability of a radar system through polarization-vector processing. Proc. IEE, pt.F. 1983, 130(2): 161~165.
    123 A.J.Poelman, J.R.F.Guy. Multi-notch logic-Product polarization suppression filters, a typical design example and its performance in a rain clutter environment. Proc. IEE, pt.F. 1984, 131(4): 383~396.
    124 J.M.Madden. The adaptive suppression of interference in HF ground wave radar. RADAR 87, IEE Conf. Loundon, U.K. Oct 19-21, 1987: 98~102.
    125 Mao Xingpeng, Liu Yongtan, Deng Weibo. Radio disturbance of high frequency surface wave radar. Electronics letters. 2004, 40(3): 202~203.
    126 毛兴鹏. 高频雷达极化信息处理系统. 哈尔滨工业大学博士学位论文. 2004: 82~84.
    127 R.Khan, B.Gamberg, D.Power, J.Walsh, B.Dawe, W.Pearson and D.Millan. Target detection and tracking with a high frequency ground wave radar. IEEE Journal of oceanic engineering. 1994, 19(4): 540~548.
    128 N.Levanan. Radar signals. John Wiley & Sons. Inc. Publication. Hoboken, New Jersey.2004:370~420.
    129 R.L.Frank. Polyphase codes with good nonperiodic correlation properties. IEEE Trans. On IT, 1963, 9(1): 43~45.
    130 H.Cox. Resolving power and sensitivity to mismatch of optimum array processors. J. Acoust. Sot. Am., 1973, 54(3): 771~785.
    131 K.M.Buckley, L.J.GriRths. An adaptive generalized sidelobe canceller with derivative constraints. IEEE Trans. on AP.1986, 34: 311~319.
    132 N.K.Jablon. Adaptive beamforming with the generalized sidelobe canceller in the presence of array imperfection. IEEE Trans. on AP. 1986, 34(8): 996~1012.
    133 C.C.Lee, J.H.Lee. Robust adaptive array beamforming under steering vector errors. IEEE Trans. on AP. 1997, 45(1): 168~175.
    134 J.H.Lee, K.P.Cheng, C.C.Wang. Robust adaptive array beamforming under steering angle mismatch. Signal processing. 2006, 86: 296-309.
    135 J.R.Guerci and J.S.Bergin. Principal components, covariance matrix tapers, and the subspace leakage problem. IEEE Trans. on Aerosp. Electron. Syst. 2002, 38(1): 152~162.
    136 S.S.Kirby, L.V. Berkner and D.M.Stuart. Studies of the Ionosphere and their Application to Radio Transmission. Proceedings of IRE. 1934, 22(4): 310~314.
    137 M.F.Knight. Ionospheric scintillation effects on global positioning system receivers. Ph.D. dissertation. Adelaide University, Australia. December 2000: 9~10.
    138 Huotao Gao, Geyang Li, Yongxu Li, Zijie Yang, and Xiongbin Wu. Ionospheric effect of HF surface wave over-the-horizion radar. Radio science. 2006, 41(11): 1~10.
    139 M.H.Er. Linear antenna array pattern synthesis with prscribed broad nulls. IEEE Trans. on AP. 1990, 38(9): 1496~1498.
    140 M.W.Ganz, R.Moses, S.L.Wilson. Convergence of the SMI and the diagonally loaded SMI algorithms with weak interference. IEEE Trans on AP. 1990, 38(3): 394~399.
    141 B.D.Carlson. Covariance Matrix Estimation Errors and Diagonal Loading in Adaptive Arrays. IEEE Trans. On AES. 1988, 24(4): 397~401.
    142 D.Page and G. Owrika, Knowledge-aided STAP processing for ground moving target indication radar using multilook data. EURASIP Journal on Applied signal processing. 2006: 17~32.
    143 J.S.Bergin and P.M.Techau. Multiresolution signal processing techniques for ground moving target detection using airborne radar. EURASIP Journal on Applied signal processing. 2006: 1~16.
    144 J.S.Bergin, C.M.Teixeira, P.M.Techau, and J.R.Guerci. STAP withknowledge-aided data pre-whitening. Proceedings of 2004 IEEE Radar Conference. Philadelphia, Pa, USA. April, 2004. 289~294.
    145 J.F.Sturm. Using SeDuMi 1.02 a Matlab Toolbox for Optimization over Symmetric Cones. Optim.Meth.Softw. 1999, 11(8): 625~653.
    146 H.Lebret and S.Boyd. Antenna array pattern synthesis via convex optimization. IEEE Trans on Signal processing. 1997, 45(3): 526~532.
    147 L.El Ghaoui and H. Lebret. Robust solution to least squares problems with uncertain data. SIAM J.on Matrix Analysis and Applications. 1997, 18 (4):1035~1064.
    148 A.Farina, G.Golino, L.Timmoneri. Comparison between LS and TLS in adaptive processing for radar systems. IEE Proc. Radar, Sonar and Navigation. 2003, 150(1): 2~6.
    149 S.Chandrasekaran, G.H.Golub, M.Gu, A.H.Sayed. Parameter estimation in the presence of bounded data uncertainties. SIAM J.on Matrix Analysis and Applications. 1998, 19(1): 235~252.
    150 R.A.Horn, C.R. Johnson. Matrix Analysis. Cambridge University Press, 1990:474~475.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700