花状纳米氧化锌光电气敏性质的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着科学技术和经济的发展,生活水平的不断提高,人们在工业生产、家庭安全等领域对气体传感器的精度、性能、稳定性方面的要求越来越高。因此,研究和开发高性能的气体传感器已经成为一项重要的工作。目前应用最广泛的是传统的加热型传感器,这种传感器需要在高温条件下(一般温度不小于200℃)工作。它不仅耗能高,而且在一定程度上限制了对易燃、易爆气体的检测。近年来发现在低温条件下,用光激发半导体替代加热也可以实现对目标气体(特别是易燃易爆气体)的检测。在众多半导体中,氧化锌作为一种直接带隙宽禁带半导体材料,具有良好的光电导性、较强的表面活性以及对环境的敏感性等为其在光电传感器方面提供了广阔的应用前景。因此,我们选用纳米氧化锌作为主体材料,通过对其进行掺杂、修饰以及与窄带隙半导体复合等方法进行改性,并对其在紫外光或可见光激发下的表面光电特性、气体选择性以及气敏响应强度等光电气敏性能进行研究。
     本论文研究内容主要包括以下几个方面:
     1.采用水热方法分别合成由纳米棒组装的花状ZnO和纳米片组装成的花状ZnO,并对其光电性质以及对各种气体的光电气敏响应强度和选择性进行研究。结果表明由纳米棒组装成的ZnO对气体具有良好的选择性;而由纳米片组装成的花状ZnO具有较强的气敏响应,这可能是由于在合成过程中加入的表面活性剂,经过煅烧后,仍有少量的C存在ZnO于中引起的。
     2.借鉴可见光催化的研究思路,通过用水热方法合成不同铁掺杂量的花状ZnO,使其光响应范围扩展到可见光区。研究在532nm可见光激发下,铁掺杂ZnO对甲醛的气敏响应。结果表明当氧化锌中掺入1.0mol%铁离子时,具有较好的气敏响应。当掺杂量过多时,由于ZnO外表面形成了第三种物质ZnFe_2O_4,反而降低了氧化锌的气敏响应。除此之外,我们还研究了当铁掺杂量为1.0mol%时,不同的煅烧温度对ZnO光电气敏响应强度的影响。结果表明随着煅烧温度的增加,气敏响应逐渐增强。当煅烧温度为600℃时,气敏响应达到了一个最高值。当煅烧温度超过600℃时,气敏响应反而减弱。这主要是由于在高温煅烧过程中,离子发生了热运动,使部分铁离子溢出到ZnO的外表面,和氧化锌结合形成ZnFe_2O_4引起的。
     3.我们通过在花状氧化锌的外表面修饰In_2O_3来研究室温下In_2O_3/ZnO对甲醛的光电气敏响应。发现被In_2O_3修饰的ZnO在可见光区对甲醛有着良好的气敏响应。其原因是由于In_2O_3的修饰,一方面使该复合物的吸收范围扩展到可见光区。另一方面,抑制了光生电子空穴的复合,增强了光生载流子的利用率,因此气敏响应也相应增强。但是当外表面修饰过多的In_2O_3,在一定程度上减小了氧化锌表面的活性位点,反而降低了氧化锌的光电气敏响应。除此之外,我们还进行了铟离子掺杂氧化锌的光电气敏性能的研究,结果表明,铟离子的掺入提高了氧化锌在可见光区对HCHO的气敏响应,当掺入量为0.75mol%时,气敏响应最强。这主要是因为掺入适当的铟离子,可以有效的降低氧化锌的禁带宽度,增加ZnO在可见光的光电性质,从而提高对甲醛的气敏响应强度。
With the development of technology and economic, the improvement of living standards, demand for the gas sensor accuracy, performance, stability increasingly in the filed of industrial production, household security etc. Therefore, the studying of gas sensor with high performance becomes more important. At present, the traditional heat-treatment gas sensor has been wild used in many areas, but it working at high temperature conditions (working temperature more than200℃normally). It not only consumes energy, but also the high operation temperature restricts the application of gas sensors in many areas, such as an explosive environment and a low-temperature environment. Recently many people report that the gas, especially for the flammable and explosive gas, can be detected under light irradiation at lower temperature. Among the variety of semiconductor, Zinc oxide (ZnO), with a wide direct band gap, has been considered as one of the promising materials in the field of gas sensors for organic pollutants under UV light irradiation due to its well conductance, surface properties and photoelectric performance. In this paper, the sensitized and doped are applied to improve the properties of ZnO, in order to fabricate the photoelectric gas sensor with high response under visible light irradiation.
     The main results are illuminated as follows:
     1. The photoelectric property of ZnO influenced by the morphology, on one hand we fabricated the ZnO nanoflowers that assembled from nanorods by a simple hydrothermal method. On the other hand, we synthesized the ZnO nanoflowers that assembled from nanoplates by addition of vitamin C. The photoelectric property of the both nanoflower-like ZnO, the gas response and selectivity to various kinds of gas were studied. It was found that the ZnO nanoflowers assembled by nanorods have a better selectivity, and the ZnO nanoflowers assembled by nanoplates have a better response. This may because that added surfactant in the during the synthesis process, after annealed in the muffle furnace, there is still has a small amount of C exists in ZnO.
     2. Pure ZnO only can be excited by UV light to produce photo-generated carrier. To extend the photoresponse of ZnO into the visible light region, the formation of a new dopant energy level below the conduction band for the ZnO by the doping of Fe ions. We synthesized Fe-doped flowerlike ZnO powders with various doping contents by a hydrothermal method and study the influence of doping contents under532nm light irradiation. It was found that The1.0mol%dopant sample has a much better sensing performance than the others. However, the response of the sample deduced with containing more Fe. The main reason may be the formation of a second phase with the increase of the Fe dopant. Besides that, we study the impact of annealed temperature on ZnO gas response. We found that the response increasing with the increasing annealed temperature. When the annealed temperature arrived600℃, the sample has a best response. When the annealed temperature above600℃, the gas response deduced due to the formation of ZnFe2O4. Thermal motion can happen in the condition of high temperature, and apart of Fe ions spill over into the surface of ZnO.
     3. Expect to form a new dopant energy level below the conduction band by the doping ions, composite system can improve the photoelectric activity under visible light irradiation. On one hand, composite system can inhibit the recombination of photo-generated electron-holes pairs and improve the utilization of photo-generated electron. On the other hand, it can improve the photo-response of ZnO under visible light irradiation. We synthesized In2O3-sensitized flowerlike ZnO with various sensitized contents by a facile two-step process. It was found that ZnO sensitized with In2O3could enhance the gas response to HCHO under the visible light illumination. This may be due to the fact that the composite structure of In2O3/ZnO extends the photo absorbing range to visible light area, inhibits the recombination of photo-generated electrons and holes, and thus increases the utilization of photo-generated carriers in photoelectric gas detection, resulting in the higher sensing response in some extent. But when the amount of the sensitizers is added too much, In2O3particles might be seriously agglomerate. This leads to a decrease in the number of the active sites on the surface of ZnO and induce the gas response. Besides that, we study the photo-response of ZnO dopant with In3+under visible light irradiation. It was found that ZnO dopant with In3+can improve the HCHO response under visible light region. This because that the dopant In3+can induce the wide band gap, increase the photoelectric property of ZnO in the visible light region.
引文
[1]AHN H, WANG Y, HYUN JEE S, PARK M, YOON Y S, KIM D-J. Enhanced UV Activation of Electrochemically Doped Ni in ZnO Nanorods for Room Temperature??Acetone Sensing [J]. Chemical Physics Letters,2011,511(4-6):331-335.[2]GONG J, LI Y, CHAI X, HU Z, DENG Y. Uv-Light-Activated ZnO Fibers for Organic Gas Sensing at Room Temperature [J]. The Journal of Physical Chemistry C,2009,114(2):1293-1298.[3]MANERA M G, TAURINO A, CATALANO M, RELLA R and CARICATO A. Enhancement of the Optically Activated NO2Gas Sensing Response of Brookite TiO2Nanorods/Nanoparticles Thin Films Deposited by Matrix-Assisted Pulsed-Laser Evaporation [J]. Sensors and Actuators B:Chemical,2012,161(1):869-879.[4]CAMAGNI P, FAGLIA G, GALINETTO P, PEREGO C and SAMOGGIA G. Photosensitivity Activation of SnO2Thin Film Gas Sensors at Room Temperature [J]. Sensors and Actuators B:Chemical,1996,31(1-2):99-103.[5]COMINI E, CRISTALLI A, FAGLIA G, SBERVEGLIERI G. Light Enhanced Gas Sensing Properties of Indium Oxide and Tin Dioxide Sensors [J]. Sensors and Actuators B:Chemical,2000,65(1-3):260-263.[6]KIND H, YAN H, MESSER B, LAW M, YANG P. Nanowire Ultraviolet Photodetectors and Optical Switches [J]. Advanced Materials,2002,14(2):158-160.[7]ANOTHAINART K, BURGMAIR M, KARTHIGEYAN A, and ZIMMER M. Light Enhanced NO2Gas Sensing with Tin Oxide at Room Temperature:Conductance and Work Function Measurements [J]. Sensors and Actuators B:Chemical,2003,93(1-3):580-584.[8]GAO S-A, XIAN A-P, CAO L-H, XIE R-C, SHANG J-K. Influence of Calcining Temperature on Photoresponse of TiO2Film under Nitrogen and Oxygen in Room Temperature [J]. Sensors and Actuators B:Chemical,2008,134(2):718-726.[9]Zhang D-H, Li C, Han S, Liu X, Tang T and Jin W. Gas Sensing Properties of Single-Crystalline Indium Oxide Nanowires Appl. Phys. A2003,77,163-166.[10]FENG P, XUE X Y, LIU Y G, WAN Q, WANG T H. Achieving Fast Oxygen Response in Individual Beta-Ga[Sub2]O[Sub3] Nanowires by Ultraviolet Illumination [J]. Applied Physics Letters,2006,89(11):112114-3.[11]LI Q H, GAO T, WANG Y G, WANG T H. Adsorption and Desorption of Oxygen Probed from ZnONanowire Films by Photocurrent Measurements [J]. Applied Physics Letters,2005,86(12):123117-3.[12]WAN Q, LI Q H, CHEN Y J, WANG T H, HE X L, LI J P, LIN C L. Fabrication and Ethanol Sensing Characteristics of ZnO Nanowire Gas Sensors [J]. Applied Physics??Letters,2004,84(18):3654-3656.[13]WU Y, HU X, XIE T, LI G, ZHANG L. Phase Structure of W-Doped Nano-TiO2Produced by Sol-Gel Method [J]. China Particuology,2005,3(4):233-236.[14]LI Y, XU L, LI X, SHEN X, WANG A. Effect of Aging Time of ZnO Sol on the Structural and Optical Properties of ZnO Thin Films Prepared by Sol-Gel Method [J]. Applied Surface Science,2010,256(14):4543-4547.[15]BATAL M A, JNEED F H. Tin Oxide N-Type Semiconductor Inverted to P-Type Semiconductor Prepared by Sol-Gel Method [J]. Energy Procedia,2011,6(0):1-10.[16]BAI W, LIN J. Characterisation of Urushiol Formaldehyde Polymer/Multihydroxyl Polyacrylate/SiO2Nanocomposites Prepared by the Sol-Gel Method [J]. Progress in Organic Coatings,2011,71(1):43-47.[17]HU H, HUANG X, DENG C, CHEN X, QIAN Y. Hydrothermal Synthesis of ZnO Nanowires and Nanobelts on a Large Scale [J]. Materials Chemistry and Physics,2007,106(1):58-62.[18]Zhang H, Yang D-R, Li S-Z, Ma X-Y, Ji Y-J,Xu J, Que Du-L. Controllable growth of ZnO nanostructures by citric acid assisted hydrothermal process [J]. Materials Letters2005,59,1696-1700.[19]MA X, ZHANG H, JI Y, XU J, YANG D. Sequential Occurrence of ZnO Nanopaticles, Nanorods, and Nanotips During Hydrothermal Process in a Dilute Aqueous Solution [J]. Materials Letters,2005,59(27):3393-3397.[20]YU J, YU X. Hydrothermal Synthesis and Photocatalytic Activity of Zinc Oxide Hollow Spheres [J]. Environmental Science&Technology,2008,42(13):4902-4907.[21]GAO S Y, LI H D, YUAN J J, LI Y A, YANG X X, LIU J W. ZnO Nanorods/Plates on Si Substrate Grown by Low-Temperature Hydrothermal Reaction [J]. Applied Surface Science,2010,256(9):2781-2785.[22]SHOULI B, LIANGYUAN C, JINGWEI H, DIANQING L, RUIXIAN L, and LIU C C. Synthesis of Quantum Size ZnO Crystals and Their Gas Sensing Properties for NO2[J]. Sensors and Actuators B:Chemical,2011,159(1):97-102.[23]LIANGYUAN C, ZHIYONG L, SHOULI B, KEWEI Z, and LIU C C. Synthesis of1-Dimensional ZnO and Its Sensing Property for CO [J]. Sensors and Actuators B: Chemical,2010,143(2):620-628.[24]SHOULI B, LIANGYUAN C, DIANQING L, WENSHENG Y, and LIU C C. Different Morphologies of ZnO Nanorods and Their Sensing Property [J]. Sensors and Actuators B:Chemical,2010,146(1):129-137.[25]AL-HARDAN N, ABDULLAH M J, ABDUL AZIZ A, AHMAD H. Low Operating Temperature of Oxygen Gas Sensor Based on Undoped and Cr-Doped ZnO Films [J]. Applied Surface Science,2010,256(11):3468-3471.[26]LIU L, LI S, ZHUANG J, WANG L,and ZHANG J. Improved Selective Acetone Sensing Properties of Co-Doped ZnO Nanofibers by Electrospinning [J]. Sensors and Actuators B:Chemical,2011,155(2):782-788.[27]TANG H, YAN M, ZHANG H, LI S and MA X, A Selective NH3Gas Sensor Based on Fe2O3-ZnONanocomposites at Room Temperature [J]. Sensors and Actuators B: Chemical,2006,114(2):910-915.[28]IVANOVSKAYA M I, KOTSIKAU D A, TAURINO A, SICILIANO P. Structural Distinctions of Fe2O3-In2O3Composites Obtained by Various Sol-Gel Procedures, and Their Gas-Sensing Features [J]. Sensors and Actuators B:Chemical,2007,124(1):133-142.[29]IVANOVSKAYA M, KOTSIKAU D, FAGLIA G, NELLI P. Influence of Chemical Composition and Structural Factors of Fe2O3/In2O3Sensors on Their Selectivity and Sensitivity to Ethanol [J]. Sensors and Actuators B:Chemical,2003,96(3):498-503.[30]GE C, XIE C, HU M, GUI Y, BAI Z, ZENG D. Structural Characteristics and UV-Light Enhanced Gas Sensitivity of La-Doped ZnO Nanoparticles [J]. Materials Science and Engineering:B,2007,141(1-2):43-48.[31]KANEVA N V, DIMITROV D T, DUSHKIN C D. Effect of Nickel Doping on the Photocatalytic Activity of ZnO Thin Films under UV and Visible Light [J]. Applied Surface Science,2011,257(18):8113-8120.[32]XUE X-Y, CHEN Z-H, XING L-L, MA C-H, CHEN Y-J, WANG T-H. Enhanced Optical and Sensing Properties of One-Step Synthesized Pt-ZnO Nanoflowers [J]. The Journal of Physical Chemistry C,2010,114(43):18607-18611.[33]Yang M, Wang D-J, Peng L, Zhao Q-D, Lin Y-H, Wei X. Surface photocurrent gas sensor with properties dependent on Ru(dcbpy)2(NCS)2-sensitized ZnO nanoparticles [J]. Sensors and Actuators B2006,117,80-85.[34]ZHANG K-Z, LIN B-Z, CHEN Y-L, XU B-H, and PIAN X-T. Fe-Doped and ZnO-Pillared Titanates as Visible-Light-Driven Photocatalysts [J]. Journal of Colloid and Interface Science,2011,358(2):360-368.[1]NOISEL N, BOUCHARD M, CARRIER G. Evaluation of the Health Impact of Lowering the Formaldehyde Occupational Exposure Limit for Quebec Workers [J]. Regulatory Toxicology and Pharmacology,2007,48(2):118-127.[2]ZHOU Z, KATO K, KOMAKI T, YOSHINO M, YUKAWA H, MORINAGA M, MORITA K. Effects of Dopants and Hydrogen on the Electrical Conductivity of ZnO [J]. Journal of the European Ceramic Society,2004,24(1):139-146.[3]LI H, HUANG Y, ZHANG Q, LIU J, ZHANG Y. Influence of Electromechanical Coupling and Electron Irradiation on the Conductivity of Individual ZnO Nanowire [J]. Solid State Sciences,2011,13(3):658-661.[4]WATER W, FANG T-H, JI L-W, LEE C-C. Effect of Growth Temperature on Photo luminescence and Piezoelectric Characteristics of ZnO Nano wires [J]. Materials Science and Engineering:B,2009,158(1-3):75-78.[5]DAR G N, UMAR A, ZAIDI S A, BASKOUTAS S, HWANG S W, ABAKER M, AL-HAJRY A, AL-SAYARI S A. Ultra-High Sensitive Ammonia Chemical Sensor Based on ZnONanopencils [J]. Talanta,(0).[6]BEN AYADI Z, EL MIR L, DJESSAS K, ALAYA S. Effect of the Annealing Temperature on Transparency and Conductivity of ZnO:Al Thin Films [J]. Thin Solid Films,2009,517(23):6305-6309.[7]GU RIN V M, RATHOUSKY J, PAUPORT T. Electrochemical Design of ZnO Hierarchical Structures for Dye-Sensitized Solar Cells [J]. Solar Energy Materials and Solar Cells,(0).[8]PURICA M, BUDIANU E, RUSU E. Heterojunction with ZnO Polycrystalline Thin Films for Optoelectronic Devices Applications [J]. Microelectronic Engineering,2000,??51-52(0):425-431.[9]GIERALTOWSKA S, WACHNICKI L, WITKOWSKI B S, GODLEWSKI M, GUZIEWICZ E. Atomic Layer Deposition Grown Composite Dielectric Oxides and ZnO for Transparent Electronic Applications [J]. Thin Solid Films,(0).[10]AHN M W, PARK K S, HEO J H, KIM D W, CHOI K J, PARK J G. On-Chip Fabrication of ZnO-Nanowire Gas Sensor with High Gas Sensitivity [J]. Sensors and Actuators B:Chemical,2009,138(1):168-173.[11]WANG X B, SONG C, LI D M, GENG K W, ZENG F, PAN F. The Influence of Different Doping Elements on Microstructure, Piezoelectric Coefficient and Resistivity of Sputtered ZnO Film [J]. Applied Surface Science,2006,253(3):1639-1643.[12]LV Y-Z, LI C-R, GUO L, WANG F-C, XU Y, CHU X-F. Triethylamine Gas Sensor Based on ZnO Nanorods Prepared by a Simple Solution Route [J]. Sensors and Actuators B:Chemical,2009,141(1):85-88.[13]KIM K-W, CHO P-S, KIM S-J, LEE J-H, KANG C-Y, KIM J-S, YOON S-J. The Selective Detection of C2H5OH Using SnO2-ZnO Thin Film Gas Sensors Prepared by Combinatorial Solution Deposition [J]. Sensors and Actuators B:Chemical,2007,123(1):318-324.[14]RAO G S T, TARAKARAMA RAO D. Gas Sensitivity of ZnO Based Thick Film Sensor to NH3at Room Temperature [J]. Sensors and Actuators B:Chemical,1999,55(2-3):166-169.[15]JONG-HEUN L. Gas Sensors Using Hierarchical and Hollow Oxide Nanostructures: Overview [J]. Sensors and Actuators B:Chemical,2009,140(1):319-336.[16]CAROTTA M C, CERVI A, DI NATALE V, GHERARDI S, GIBERTI A and GUIDI V. ZnO Gas Sensors:A Comparison between Nanoparticles and Nanotetrapods-Based Thick Films [J]. Sensors and Actuators B:Chemical,2009,137(1):164-169.[17]G K. Gas Response Control through Structural and Chemical Modification of Metal Oxide Films:State of the Art and Approaches [J]. Sensors and Actuators B:Chemical,2005,107(1):209-232.[18]PENG L, XIE T-F, YANG M, WANG P, XU D, PANG S, WANG D-J. Light Induced Enhancing Gas Sensitivity of Copper-Doped Zinc Oxide at Room Temperature [J]. Sensors and Actuators B:Chemical,2008,131(2):660-664.[19]FANG Z, TANG K, SHEN G, CHEN D, KONG R, LEI S. Self-Assembled ZnO3D Flowerlike Nanostructures [J]. Materials Letters,2006,60(20):2530-2533.[20]SHANG T-M, SUN J-H, ZHOU Q-F, GUAN M-Y. Controlled Synthesis of Various Morphologies of Nanostructured Zinc Oxide:Flower, Nanoplate, and Urchin [J]. Crystal Research and Technology,2007,42(10):1002-1006.[21]LI M, MENG G, HUANG Q, YIN Z, WU M, ZHANG Z, KONG M. Prototype of a Porous ZnO Spv-Based Sensor for Pcb Detection at Room Temperature under Visible Light Illumination [J]. Langmuir,2010,26(16):13703-13706.[22]ZHAO Q, XIE T, PENG L, LIN Y, WANG P, PENG L, WANG D. Size-and Orientation-Dependent Photovoltaic Properties of ZnO Nanorods [J]. The Journal of Physical Chemistry C,2007,111(45):17136-17145.[23]GONG J, LI Y, CHAI X, HU Z, DENG Y. UV-Light-Activated ZnO Fibers for Organic Gas Sensing at Room Temperature [J]. The Journal of Physical Chemistry C,2009,114(2):1293-1298.[24]HU L, HUO K, CHEN R, GAO B, FU J, CHU P K. Recyclable and High-Sensitivity Electrochemical Biosensing Platform Composed of Carbon-Doped TiO2Nanotube Arrays [J]. Analytical Chemistry,2011,83(21):8138-8144.[1]SARRY F, LUMBRERAS M. Evaluation of a Commercially Available Fluorocarbon Gas Sensor for Monitoring Air Pollutants [J]. Sensors and Actuators B:Chemical,1998,47(1-3):113-117.[2]THRANE L, J RGENSEN T M, J RGENSEN M, KREBS F C. Application of Optical Coherence Tomography (Oct) as a3-Dimensional Imaging Technique for Roll-to-Roll Coated Polymer Solar Cells [J]. Solar Energy Materials and Solar Cells,2012,97(0):181-185.[3]CHEN H-W, KU Y, KUO Y-L. Effect of Pt/TiO2Characteristics on Temporal Behavior of O-Cresol Decomposition by Visible Light-Induced Photocatalysis [J]. Water Research,2007,41(10):2069-2078.[4]LEE Y-S, JOO B-S, CHOI N-J, LIM J-O, HUH J-S, LEE D-D. Visible Optical Sensing??of Ammonia Based on Polyaniline Film [J]. Sensors and Actuators B:Chemical,2003,93(1-3):148-152.[5]VENKATACHALAPATHY V, GALECKAS A, SELLAPPAN R, CHAKAROV D, KUZNETSOV A Y. Tuning Light Absorption by Band Gap Engineering in Zncdo as a Function of Movpe-Synthesis Conditions and Annealing [J]. Journal of Crystal Growth,2011,315(1):301-304.[6]IM J S, YUN S-M, LEE Y-S. Investigation of Multielemental Catalysts Based on Decreasing the Band Gap of Titania for Enhanced Visible Light Photocatalysis [J]. Journal of Colloid and Interface Science,2009,336(1):183-188.[7]XU J, WANG W, SUN S, WANG L. Enhancing Visible-Light-Induced Photocatalytic Activity by Coupling with Wide-Band-Gap Semiconductor:A Case Study on Bi2WO6/TiO2[J]. Applied Catalysis B:Environmental,2012,111-112(0):126-132.[8]HOFFMANN M R, MARTIN S T, CHOI W, BAHNEMANN D W. Environmental Applications of Semiconductor Photocatalysis [J]. Chemical Reviews,1995,95(1):69-96.[9]LINSEBIGLER A L, LU G, YATES J T. Photocatalysis on TiO2Surfaces:Principles, Mechanisms, and Selected Results [J]. Chemical Reviews,1995,95(3):735-758.[10]HSU C-C, WU N L. Synthesis and Photocatalytic Activity of ZnO/ZnO2Composite [J]. Journal of Photochemistry and Photobiology A:Chemistry,2005,172(3):269-274.[11]SAMIOLO L, VALIGI M, GAZZOLI D, AMADELLI R. Photo-Electro Catalytic Oxidation of Aromatic Alcohols on Visible Light-Absorbing Nitrogen-Doped TiO2[J]. Electrochimica Acta,2010,55(26):7788-7795.[12]ZHU Y, LIN S, ZHANG Y, YE Z, LU Y, LU J, ZHAO B. Temperature Effect on the Electrical, Structural and Optical Properties of N-Doped ZnO Films by Plasma-Free Metal Organic Chemical Vapor Deposition [J]. Applied Surface Science,2009,255(12):6201-6204.[13]YU C, YU J. A Simple Way to Prepare C-N-Co doped TiO≪Sub≫2≪/Sub≫ Photocatalyst with Visible-Light Activity [J]. Catalysis Letters,2009,129(3):462-470.[14]ASIRI A M, AL-AMOUDI M S, BAZAID S A, ADAM A A, ALAMRY K A, ANANDAN S. Enhanced Visible Light Photodegradation of Water Pollutants over N-, S-Doped Titanium Dioxide and N-Titanium Dioxide in the Presence of Inorganic Anions [J]. Journal of Saudi Chemical Society,(0).[15]OHNO T, TSUBOTA T, NAKAMURA Y, SAYAMA K. Preparation of S, C Cation-Co doped SrTiO3and Its Photocatalytic Activity under Visible Light [J]. Applied Catalysis A:General,2005,288(1-2):74-79.[16]CHEN L-C, TU Y-J, WANG Y-S, KAN R-S, HUANG C-M. Characterization and Photoreactivity of N-, S-, and C-Doped ZnO under UV and Visible Light Illumination [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,199(2-3):170-178.[17]ANANDAN S, VINU A, SHEEJA LOVELY K L P, GOKULAKRISHNAN N, SRINIVASU P, MORI T, MURUGESAN V, SIVAMURUGAN V, ARIGA K. Photocatalytic Activity of La-Doped ZnO for the Degradation of Monocrotophos in Aqueous Suspension [J]. Journal of Molecular Catalysis A: Chemical,2007,266(1-2):149-157.[18]KANEVA N V, DIMITROV D T, DUSHKIN C D. Effect of Nickel Doping on the Photocatalytic Activity of ZnO Thin Films under UV and Visible Light [J]. Applied Surface Science,2011,257(18):8113-8120.[19]XIAO Q, OUYANG L. Photocatalytic Photodegradation of Xanthate over Znl-Xmnxo under Visible Light Irradiation [J]. Journal of Alloys and Compounds,2009,479(1-2): L4-L7.[20]ZHANG K-Z, LIN B-Z, CHEN Y-L, XU B-H, PIAN X-T, KUANG J-D, LI B. Fe-Doped and ZnO-Pillared Titanates as Visible-Light-Driven Photocatalysts [J]. Journal of Colloid and Interface Science,2011,358(2):360-368.[21]INAMDAR D Y, PATHAK A K, DUBENKO I, ALI N, MAHAMUNI S. Room Temperature Ferromagnetism and Photoluminescence of Fe Doped Zno Nanocrystals [J]. The Journal of Physical Chemistry C,2011,115(48):23671-23676.[22]XIE T-H, SUN X, LIN J. Enhanced Photocatalytic Degradation of Rhb Driven by Visible Light-Induced Mmct of Ti(Iv)-O-Fe(Ii) Formed in Fe-Doped SrTiO3[J]. The Journal of Physical Chemistry C,2008,112(26):9753-9759.[23]HAN L, WANG D, LU Y, JIANG T, LIU B, LIN Y. Visible-Light-Assisted HCHO Gas Sensing Based on Fe-Doped Flowerlike ZnO at Room Temperature [J]. The Journal of Physical Chemistry C,2011,115(46):22939-22944.[24]FANG Z, TANG K, SHEN G, CHEN D, KONG R, LEI S. Self-Assembled ZnO3D Flowerlike Nanostructures [J]. Materials Letters,2006,60(20):2530-2533.[25]RATTANA T, SUWANBOON S, AMORNPITOKSUK P, HAIDOUX A,??LIMSUWAN P. Improvement of Optical Properties of Nanocrystalline Fe-Doped ZnO Powders through Precipitation Method from Citrate-Modified Zinc Nitrate Solution [J]. Journal of Alloys and Compounds,2009,480(2):603-607.[26]KIM K J, PARK Y R. Optical Investigation of Zn[Sub1-X]Fe[Sub X]O Films Grown on A1[Sub2]O[Sub3](0001) by Radio-Frequency Sputtering [J]. Journal of Applied Physics,2004,96(8):4150-4153.[27]SAMARIYA A, SINGHAL R K, KUMAR S, XING Y T, ALZAMORA M, DOLIA S N, DESHPANDE U P, SHRIPATHI T, SAITOVITCH E B. Defect-Induced Reversible Ferromagnetism in Fe-Doped ZnO Semiconductor:An Electronic Structure and Magnetization Study [J]. Materials Chemistry and Physics,2010,123(2-3):678-684.[28]ZHAO Q, WANG D, PENG L, LIN Y, YANG M, XIE T. Surface Photovoltage Study of Photogenerated Charges in ZnO Nanorods Array Grown on ITO [J]. Chemical Physics Letters,2007,434(1-3):96-100.[29]LIN C-Y, FANG Y-Y, LIN C-W, TUNNEY J J, HO K-C. Fabrication of NOx Gas Sensors Using In2O3-ZnO Composite Films [J]. Sensors and Actuators B:Chemical,2010,146(1):28-34.[30]WANG D, CHEN Z Q, WANG D D, GONG J, CAO C Y, TANG Z, HUANG L R. Effect of Thermal Annealing on the Structure and Magnetism of Fe-Doped ZnO Nanocrystals Synthesized by Solid State Reaction [J]. Journal of Magnetism and Magnetic Materials,2010,322(22):3642-3647.[31]R. DAVIS S, V. CHAD WICK A, D. WRIGHT J. The Effects of Crystallite Growth and Dopant Migration on the Carbon Monoxide Sensing Characteristics of Nanocrystalline Tin Oxide Based Sensor Materials [J]. Journal of Materials Chemistry,1998,8(9):2065-2071.[1]MOURITZ A P, BANNISTER M K, FALZON P J, LEONG K H. Review of Applications for Advanced Three-Dimensional Fibre Textile Composites [J]. Composites Part A:Applied Science and Manufacturing,1999,30(12):1445-1461.[2]XIAO X, LIU J. Synthesis and Characterization of Fluorine-Containing Polyacrylate Emulsion with Core-Shell Structure [J]. Chinese Journal of Chemical Engineering,2008,16(4):626-630.[3]ZHAO F M, TAKEDA N. Effect of Interfacial Adhesion and Statistical Fiber Strength on Tensile Strength of Unidirectional Glass Fiber/Epoxy Composites. Part I: Experiment Results [J]. Composites Part A:Applied Science and Manufacturing,2000,31(11):1203-1214.[4]XU X, GIM NEZ S, MORA-SER I, ABATE A, BISQUERT J, XU G. Influence of Cysteine Adsorption on the Performance of CdSe Quantum Dots Sensitized Solar Cells [J]. Materials Chemistry and Physics,2010,124(1):709-712.[5]LEE H, JUNG J C, KIM H, CHUNG Y-M, KIM T J, LEE S J, OH S-H, KIM Y S, SONG I K. Effect of PH in the Preparation of ZnFe2O4for Oxidative Dehydrogenation of N-Butene to1,3-Butadiene:Correlation between Catalytic Performance and Surface Acidity of ZnFe2O4[J]. Catalysis Communications,2008,9(6):1137-1142.[6]KAMBE S, SHIME I, OHSHIMA S, OKUYAMA K, SAKAMOTO K. Crystal Structure and Electronic Properties of BaBiOy (2.5Xa0;= Cr or Ce):Deactivation and by-Product Generation under UV-a and Visible Light [J]. Applied Catalysis B:Environmental,2008,84(3-4):643-650.[11]QIU R, ZHANG D, MO Y, SONG L, BREWER E, HUANG X, XIONG Y. Photocatalytic Activity of Polymer-Modified ZnO under Visible Light Irradiation [J]. Journal of Hazardous Materials,2008,156(1-3):80-85.[12]MA H, HAN J, FU Y, SONG Y, YU C, DONG X Synthesis of Visible Light Responsive ZnO-ZnS/C Photocatalyst by Simple Carbothermal Reduction [J]. Applied Catalysis B:Environmental,2011,102(3-4):417-423.[13]SATHISHKUMAR P, SWEENA R, WU J J, ANANDAN S. Synthesis of CuO-ZnO Nanophotocatalyst for Visible Light Assisted Degradation of a Textile Dye in Aqueous Solution [J]. Chemical Engineering Journal,2011,171(1):136-140.[14]BELHADI A, BOUMAZA S, TRARI M. Photoassisted Hydrogen Production under Visible Light over NiO/ZnO Hetero-System [J]. Applied Energy,2011,88(12):4490-4495.[15]KATO K, OMOTO H, TOMIOKA T, TAKAMATSU A. Visible and near Infrared Light Absorbance of Ag Thin Films Deposited on ZnO under Layers by Magnetron Sputtering [J]. Solar Energy Materials and Solar Cells,2011,95(8):2352-2356.[16]WAGNER T, SAUERWALD T, KOHL C D, WAITZ T, WEIDMANN C, TIEMANN M. Gas Sensor Based on Ordered Mesoporous In2O3[J]. Thin Solid Films,2009,517(22):6170-6175.[17]ZHOU F, LI X, SHU J, WANG J. Synthesis and Visible Light Photo-Electrochemical Behaviors of In2O3-Sensitized ZnO Nanowire Array Film [J]. Journal of Photochemistry and Photobiology A:Chemistry,2011,219(1):132-138.[18]KAO C-Y, LIAO J-D, CHANG C-W, WANG R-Y. Thermal Diffusion of Co into Sputtered ZnO:Co Thin Film for Enhancing Visible-Light-Induced Photo-Catalytic Activity [J]. Applied Surface Science,2011,258(5):1813-1818.[19]KONG J-Z, LI A-D, ZHAI H-F, GONG Y-P, LI H, WU D. Preparation, Characterization of the Ta-Doped ZnO Nanoparticles and Their Photocatalytic Activity under Visible-Light Illumination [J]. Journal of Solid State Chemistry,2009,182(8):2061-2067.[20]LUPAN O, PAUPORT T, VIANA B, ASCHEHOUG P. Electrodeposition of Cu-Doped ZnO Nanowire Arrays and Heterojunction Formation with P-Gan for Color Tunable Light Emitting Diode Applications [J]. Electrochimica Acta,2011,56(28):10543-10549.[21]CHEN L-C, TU Y-J, WANG Y-S, KAN R-S, HUANG C-M. Characterization and Photoreactivity of N-, S-, and C-Doped ZnO under UV and Visible Light Illumination [J]. Journal of Photochemistry and Photobiology A:Chemistry,2008,199(2-3):170-178.[22]FANG Z, TANG K, SHEN G, CHEN D, KONG R, LEI S. Self-Assembled ZnO3D Flowerlike Nanostructures [J]. Materials Letters,2006,60(20):2530-2533.[23]QURASHI A, EL-MAGHRABY E M, YAMAZAKI T, KIKUTA T. Catalyst Supported Growth of In2O3Nanostructures and Their Hydrogen Gas Sensing Properties [J]. Sensors and Actuators B:Chemical,2010,147(1):48-54.[24]XIAO Q, LIU Y, LIU L, LI R, LUO W, CHEN X Eu3+-Doped In2O3Nanophosphors: Electronic Structure and Optical Characterization [J]. The Journal of Physical Chemistry C,2010,114(20):9314-9321.[25]LIM S K, HWANG S-H, CHANG D, KIM S. Preparation of Mesoporous In2O3??Nanofibers by Electrospinning and Their Application as a Co Gas Sensor [J]. Sensors and Actuators B:Chemical,2010,149(1):28-33.[26]REYES-GIL K R, SUN Y, REYES-GARCIA E, RAFTERY D. Characterization of Photoactive Centers in N-Doped In2O3Visible Photocatalysts for Water Oxidation [J]. The Journal of Physical Chemistry C,2009,113(28):12558-12570.[27]ZHANG X, LU H, GAO H, WANG X, XU H, LI Q, HARK S. Crystal Structure of In2O3(ZnO)M Superlattice Wires and Their Photoluminescence Properties [J]. Crystal Growth&Design,2008,9(1):364-367.[28]POZNYAK S K, TALAPIN D V, KULAK A I. Structural, Optical, and Photoelectrochemical Properties of Nanocrystalline TiO2-In2O3Composite Solids and Films Prepared by Sol-Gel Method [J]. The Journal of Physical Chemistry B,2001,105(21):4816-4823.[29]WANG D, ZOU Z, YE J. Photocatalytic Water Splitting with the Cr-Doped Ba2In2O5/In2O3Composite Oxide Semiconductors [J]. Chemistry of Materials,2005,17(12):3255-3261.[30]WANG Z, HUANG B, DAI Y, QIN X, ZHANG X, WANG P, LIU H, YU J. Highly Photocatalytic ZnO/In2O3Heteronanostructures Synthesized by a Coprecipitation Method [J]. The Journal of Physical Chemistry C,2009,113(11):4612-4617.[31]AHMAD M, SUN H, ZHU J. Enhanced Photoluminescence and Field-Emission Behavior of Vertically Well Aligned Arrays of in-Doped ZnO Nanowires [J]. ACS Applied Materials&Interfaces,2011,3(4):1299-1305.[32]MARDARE D, IFTIMIE N, CRISAN M, RAILEANU M, YILDIZ A, COMAN T, POMONI K, VOMVAS A. Electrical Conduction Mechanism and Gas Sensing Properties of Pd-Doped TiO2Films [J]. Journal of Non-Crystalline Solids,2011,357(7):1774-1779.[33]WANG E, YANG W, CAO Y. Unique Surface Chemical Species on Indium Doped TiO2and Their Effect on the Visible Light Photocatalytic Activity [J]. The Journal of Physical Chemistry C,2009,113(49):20912-20917.[34]P L E, HORNOK V, OSZK A, D K NY I. Hydrothermal Synthesis of Prism-Like and Flower-Like ZnO and Indium-Doped ZnO Structures [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,340(1-3):1-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700