SiO_2-Na2O-AlO功能玻璃与金属的共阳极键合试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阳极键合(anodic bonding)技术是常用在微电子封装中的一种利用电和热相互作用连接金属、半导体与陶瓷材料的手段。它在微电子制造领域的中有着重要地位。共阳极法等效视作是两个或者多个单层阳极键合过程的并联键合法,键合过程是在外加电场的作用下,两侧的阴极材料同时发生向阳极的离子迁移,并在界面处形成耗尽层,进而和阳极材料反应并有效结合在一起。可以用于多层微电子机械系统的制备。
     本文对阳极键合技术所需要的工艺条件设计了可以满足试验工艺参数的AB-1000型阳极键合反应炉。采用脉动发生器调制电路,其优点是可以持续高效地为键合试样提供稳定的高压直流电压。
     本文采用正交试验对玻璃-铝多层晶片进行共阳极键合工艺性试验,重点分析键合过程的键合机理及其工艺参数影响;采用光学显微镜、SEM、XRD、万能材料拉伸试验机等仪器分别对键合材料分析了键合后界面结合区的微观组织结构以及键合试样的力学性能,并探讨了过渡区形成的机理。
     界面的微观组织分析表明界面本质是离子的迁移和扩散,结合区由玻璃(陶瓷)-扩散过渡层-金属的结构形成,扩散过渡层在界面两侧的化学元素呈梯度分布。研究认为:金属与玻璃的阳极键合的根本是在键合过程中离子扩散和界面处的氧化。键合过程中电压、温度是影响键合反应的主要因素。界面形貌和EDS分析显示在金属与玻璃的键合界面处有明显的过渡层产生,界面两侧元素处呈梯度分布,元素扩散迹象明显。玻璃-铝-玻璃阳极键合试件结合强度随温度和电压的增加而增加,断裂发生在靠近铝界面的玻璃基体中,表明界面的结合强度高于基体材料。因此本文认为共阳极法是一种可靠的键合多层晶片的技术。
     溶胶-凝胶技术应用在阳极键合试样中形成了均匀的涂层而且在界面处有过渡区。可以通过该技术对形状复杂的微电子元器件进行阳极键合。
Anodic bonding technology is commonly used in microelectronics packaging. It used electricity and heat interactions to connect metal, semiconductor and ceramic materials. It plays an important role in the field of microelectronics manufacturing. The common anode method is equivalence to the two single-layer anodic bonding paralleled process; bonding process was under the influence of external electric field. The ions come from cathode simultaneously mobilized to the anode and formatted depletion layer at the interface, in turn, and response with anode materials connected effectively. Interface microstructure analysis showed that the interface is the essence of ion migration and proliferation, binding area was formatted by the glass (ceramic)-the transition layer-metal structure, spread on both sides of the interface transition layer gradient distribution of chemical elements.
     In this paper, the AB-1000 anodic bonding reactor was designed to meet the test parameters of anodic bonding technology required reaction conditions. Form the modulation pulse generator circuit, the circuit advantage is sustainable and efficiently for the sample to provide a stable bonding pressure DC voltage.
     In this paper, we used orthogonal method analysis the glass - aluminum multi-chip anode bonding process. We analysis the anodic bonding process, using optical microscope, SEM, universal tensile testing machine and other equipment analyzed the structure and bonding microstructure the mechanical properties of the bonding sample. And we discussed how to format the transition zone.
     Interface microstructure analysis showed that the interface is the essence of ion migration and proliferation, binding area was formatted by the glass (ceramic)-the transition layer-metal structure, spread on both sides of the interface transition layer gradient distribution of chemical elements. Experiments found that oxygen element, aluminum elements in glass and aluminum bonding process simultaneously to the glass-aluminum interface, the proliferation of alkali metal ions in the depletion layer. In final, aluminum ion and the non-bridge-bond oxygen atoms in the depletion layer of glass occurred oxidation reaction in the interface to form a permanent bond. Strength of glass-aluminum-glass anodic bonding increases with temperature and voltage, fracture occurred in the glass matrix near the Al interface. The conclusion indicated that the interface bond strength is higher than the matrix material. Therefore, this article maintained that the anode method is a reliable multi-chip bonding technology.
     The sol-gel technology formed a uniform sample coating used in anodic bonding. And a transition zone was formed at the sample interface. The technology can be used at complex microelectronic components on the shape of anodic bonding.
引文
[1] Wallis G D, Pomerantz D I, Field assisted glass-metal sealing[J], J,App.Phys, 1969, 40, 3946~3949.
    [2]格雷戈里,T.A.科瓦奇,微传感器与微执行器全书[M],科学出版社,2003,54-59.
    [3] H.Q. Li, D. C Roberts, J.L. Steyn et al. 2004, Fabrication of a high frequency piezoelectric microvalve. Sensors and Actuator. 111, 51-56.
    [4] Schmidt M Wafer-to-Wafer Bonding for Microstructure Formation[J]. Proc of theIEEE. 1998. 86:1575–1585.
    [5] Anthong R West.固体化学及其应用[M].苏勉曾等译.上海:复旦大学出版社,1989:4-7.
    [6] Despont M, Gross H. Fabrication of a silicon-Pyrex-silicon stack by a.c. anodic bonding, Sensors and Actuators A[J]. 1996, 55:219-224.
    [7]孟庆森.固体电解质陶瓷(玻璃)与金属的场致扩散连接结合机理研究[D],西安:西安交通大学,2002,9.
    [8] Proctor T M, Sutton P M. Space-charge development in glass[J]. J. Am. Ceram. Soc., 1960, 43(4): 173-170.
    [9] Snow E H, Grove A S, Sah C T. Ion transport phenomena in insulating films[J]. J. Appl. Phys., 1965, 36(5):1664-1673.
    [10] Carlson D E, Hang K W. Electrode“polarization”in alkali-containing glass[J]. J. Am. Ceram. Soc., 1972, 55(7): 337-341.
    [11] Carlson D E. Ion depletion of glass at a blocking anode[J]. J.Am. Ceram. Soc., 1974, 57(6): 291-304.
    [12] Wallis G. Direct-current polarization during field-assisted glass-metal sealing[J]. J. Am. Ceram. Soc., 1970, 53(10): 563-567.
    [13] DeNee P B. Low energy metal-glass bonding[J]. J. Appl. Phys., 1969,40(13):5396-5397.
    [14] Borom M P. Electron-microprobe study of field-assisted bonding of glasses to matals[J]. J.Am. Ceram. Soc., 1973,56(6):254-257.
    [15] Albaugh K B, Rasmussen D. Rate processes during anodic bonding[J]. J. Am. Ceram. Soc. 1992, 75(10):2644-2648.
    [16] Morsy M A, Ikeuchi K, Ushio M, et al. Mechanism of enlargement of intimately contacted area in anodic bonding of kovar alloy to borosilicate glass[J]. Materials Transactions, JIM, 1996,37(9): 1511-1517.
    [17] Anthony T R. Anodic bonding of imperfect surfaces[J]. J. Appl. Phys., 1983, 54(5): 2419-2428.
    [18] Nitzsch P, Lange L, Schimidt B, et al. Ion drift processes in Pyrex-type alkali-borosilicate glass during anodic bonding[J]. J. Electrochem. Soc.,1998, 145(5): 1755-1762.
    [19] Kreissig, U., Grigull, S., Lange, K.,Nitzsche, P. et al. In situ ERDA studies of ion drift processes during anodic bonding of alkali-borosilicate glass to metal[J] Nuclear Instruments and Methods in Physics Research, 1998, 3(136-138):674-679.
    [20] Baumann H, Mack S, Münzel, et al. In semiconductor wafer bonding:physics and applicationsⅢ[A]. HUNTC E. The Electrochemical Socity Proceedings Series, Pennington[C].NJ. 1995,95(7):471.`
    [21] Morsy M A, Ishizakii K, Ikeuchi K, et al. Interfacial phenomena in anodic bonding of glass to kovar alloy[J]. J. Japan Weld. Soc., 1998,16(2): 157-168.
    [22] Xing Q F, Sasaki G and Fukunaga H. Interfacial microstructure of anodic-bonded Al-glass[J]. J. Mater. Sci: Mater.Electron., 2002, 13(2): 83-88.
    [23] Helvoort A T J van, Knowles K M and Fernie J A. Nanostructures at electrostatic bond interfaces[J]. J. Am. Ceram.Soc., 2003, 86:1773-1776.
    [24] Van Helvoort, A.T.J. , Knowles, K.M., Fernie, J.A. Characterization of Cation Depletion in Pyrex during Electrostatic Bonding, Journal of the Electrochemical Society[J]., 2003, 10(150):624-629.
    [25] Meng Qingsen, Xue Jin. Joining mechanism of field-assisted bonding of electrolyte glass to metals[J]. Chinese Journal of Mechanical Engineering, 2003, 16:72-74.
    [26]孟庆森,张丽娜.金属与硼硅玻璃场致扩散连接形成机理[J].焊接学报, 2001, 22: 63-65.
    [27]孟庆森,薛锦.陶瓷与铝基复合材料场致扩散连接界面微观结构分析[J].硅酸盐学报,2002, 30(4):447-450.
    [28]孟庆森.玻璃与金属材料共阳极静电键合连接法.发明专利,申请号200610102267.7.
    [29] Cuirong Liu, Xiaoying Lu, Zhenyu Yang, Qingsen Meng. Residual Stress andDeformation Analysis of Anodic Bonded Multi-layer of Glass and Aluminum.International Journal of Nonlinear Sciences and Numerical Simulation, 2008,9(4); 347-353.
    [30]喻萍.金属铝与K4玻璃阳极焊的研究[J].材料开发与应用, 2003,18:23-25.
    [31] Yu-Qun Hua, Ya-Pu Zhao, Tongxi Yu. Formation of dendritic nanostructures in Pyrex glass anodically bonded to silicon coated with an aluminum thin film[J]. Materials Science and Engineering A 483–484, 2008, 611–616.
    [32]曹宗杰,王久洪,薛锦等.场致扩散焊接界面结合质量的超声无损评价[J].西安交通大学学报,2003,37(11):1163-1166.
    [33]章钊,李宏,杜芸等.硅/微晶玻璃阳极键合工艺对键合强度的影响[J].武汉理工大学学报, 2009, 24(3): 10-12.
    [34]杨道虹,徐晨,沈光地.应用双电场减小阳极键合过程中MEMS器件可动部件的损伤[J].半导体学报,2002,25(10):1249-1252.
    [35]吴登峰,邬玉亭,褚家如.采用线阴极的快速阳极键合方法[J].传感器技术,2003, 22(5):17-19.
    [36] Lin C, Yang H, Wang W et al. Implementation of three-dimensional SOI-MEMS wafer-level packaging using through-wafer interconnections. [J]. J Micromech Microeng. 2007. 17:1200–1205.
    [37]温诗铸.关于微机电系统研究[J].中国机械工程,2003,14(2):160-163.
    [38] Lee YC, Parviz BA, Chiou A, and Chen S Packaging for microelectromechanical and nanoelectromechanical systems. [C]. IEEE Transaction on Advanced Packaging, (2003): 217–226.
    [39] Petersen K, Brown J, Renken W. High-Precision, High-Performance Mass-Flow Sensor with Integrated laminrar Flow Micto-Channels.In:Microsensors.R.S.Muller, R .T. Howe,S.D.Senturai, et al., Ed. IEEE Press,1991,246.
    [40] Muller R.S. Heat and Strain-Sensitive Thin-Film Transducers[J]. Sensors and Actators, 1983, 4(2):173-182.
    [41] Yazdi N, Salian A, Najafi K. A high sensitivity capacitive microaccelerometer with a folded-electrode structure. In: Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (MEMS99).Orlando, FL, USA.January,1999.
    [42] Baltes H.P, Popovic R.S. Integrated Semiconductor Maganetic Field Sensors. In: Microsensors. Muller R.S, Howe R .T, Senturai S.D, et al, Ed.IEEE Press,1991,389.
    [43] Janson S.W. Spacecraft as an assembly of ASIMS.In:Microengineering Technology for Space Systems. Helvajian H, Ed.Aerospace Corporation Report Number ATR-95(8168)-2. [J]. 1995,181-258.
    [44] Mehregany M, Gabriel KJ, Trimmer W.S.N. Integrated fabrication of polysilicon mechanisms. [J].IEEE Transcations on Electron Devices, 1988, 35(6):719-723.
    [45] Man K.F. MEMS reliability for space applications by elimination of potential failure modes through testing and analysis. In: SPIE Symposium on Micromachining and Microfabrication. Santa Clara, California. [J].1999.September 21-23.
    [46] Stefano L, Malecki K, Rossi A et al. Integrated silicon-glass opto-chemical sensors for lab-on-chip applications. [J]. Sens and Actuators B. 2006. 114: 625–630.
    [47] Shuichi Shoji, Hiroto Kikuchi, Hirotaka Torigoe. CTI[J]. Sensor and Actuators A.1998, 64: 95-100.
    [48] Weichel S, Reus R, Bousidat S, et al. Sensors and Actuators A[J]. 2000, 82:249-253.
    [49] Makoto Takahashi, Hiroki Yasuda1, Kenji Ikeuchi. Interfacial reaction in anodically bonded joints during receiving reverse voltage. [J]. Solid State Ionics. 2004, 172, 335-340.
    [50] Gen Sasaki, Hideharu Fukunaga. Tadatomo Suga Materials Science Communication[J]. 1997, 51:174-177.
    [51] Zhen Yang, Sohei Matsummoto, Hiroshi Goto, Ultrasonic micromixer for microfluidic systems, [J]. Sensors and Actuators, A 2001,93, 266~272.
    [52] Dragoi V, Glinsner T, Hangweier P, et al. A pplication Electrochemical Society Proceedings[J], 2003,19.
    [53] Despont M, Gross H. Fabrication of a silicon-Pyrex-silicon stack by a.c. anodic bonding, Sensors and Actuators A [J]. 1996,55:219-224.
    [54] Nitesh D. Nimkar, Sushil H. Bhavnani. Development of an anodically-bonded test surface to obtain fudamental liquid immersion thermal management data for electronic devices Sensor and Actuators A[J] 2004,113: 212-217.
    [55] Kutchoukov V G, Lamgere F. Sensor and Acturators A [J].2004,114;521-527.
    [56] Mvisser M, Weichel S, Storas P. Sensor and Actuators A[J], 2001,92:223-228.
    [57] Nitesh D. Nimkar, Sushil H. Bhavnani. Development of an anodically-bonded test surface to obtain fudamental liquid immersion thermal management data for electronic devices Sensor and Actuators A[J] 2004,113: 212-217.
    [58] Siebert P, Petzold G, Hellenbart A, Muller J. Surface microstructure -miniature mass spectrometer : procesing and applications. [J].Appl. Phys,1998, A67:155-160.
    [59] Li H Q, Roberts D C, Steyn J L. Sensors and Actuator A [J].2004,111:51-56.
    [60] Despont M., Gross H F. Arrouy, Anodic bonding of silicon-pyrex-silicon[J]. Sensors and Actuators, 1996, A55:219-224.
    [61] Huff M A, Schmidt M A. Fabrication, packaging and testing of a wafer-bonded microvalve, In: Technical Digest. [J].IEEE Solid-State Sensor and Actuator Workshop. IEEE 1992, 194-197.
    [62] Epstein A H, Senturia S D, Anathasuresh G. Power MEMS and microengines. In:Transducers 97-1997 International Conference on Solid-State Sensors and Actuators, [J]. Digest of Technical Papers,Vols1 and 2.New York: IEEE .1997, 753-756.
    [63]江龙著,胶体化学概论[M],科学出版社,2002.10-14.
    [64] H Schmidt,H Wolter.Organically modified ceramics and their applications. Jonurnal of non-crystalline solids,[J] 1990,121(1-3); 428-435.
    [65] J Gilberts, A H A Tinnemans, M P Hogerheide, T P M Koster. UV Curable Hard Transparent Hybrid Coating Materials on Polycarbonate Prepared by the Sol-Gel Method. Journal of Sol-Gel Science and Technology,[J],1998,(11):153-159.
    [66]高长有,杨柏,沈家骢.有机硅耐磨透明涂料[J],高分子通报,1996,(2),120-125.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700