纳米羟基磷灰石/聚酰胺/壳聚糖复合骨修复材料研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨是自然界中一种复杂的生物材料,它不仅具有良好的力学性能,而且是人体中钙磷等离子的储存场所,它随着人体的生长发育逐渐的形成完善。当骨组织因为创伤、感染、肿瘤及发育异常等原因实施手术剔除病变骨组织后,会造成大块骨缺损,这时仅仅依靠骨自身的修复能力已经无法愈合,必须进行骨移植手术,将合适的骨材料填充缺损部位,以便于新骨生长。移植骨的来源有自体骨、异体骨和人工骨材料。自体骨移植和异体骨移植存在供体有限和免疫排斥等诸多问题。因而发展以生物材料为基础的人工骨材料是治疗骨缺损的重要手段。
     理想的骨修复材料,应当具有优良的生物相容性和生物活性,与天然骨相匹配的良好的机械力学性能。自然骨主要是由羟基磷灰石和胶原高分子组成,羟基磷灰石均匀分布在胶原中。自然骨为设计骨替代材料提供了非常重要的启发和思路,促进了骨替代材料的研究和发展。
     羟基磷灰石(HA)是骨组织的主要无机成分,生物相容性好,具有较高的生物活性,能够与骨组织形成化学键合,但其脆性和不易加工性也限制了其应用。壳聚糖(CS)是一种天然的生物可降解多糖,其降解产物为氨基葡萄糖,具有一定的碱性,对人体组织无毒、无害。将其与纳米羟基磷灰石(n-HA)复合,不仅可以克服羟基磷灰石块状陶瓷的脆性,而且其降解又可为细胞及组织的长入提供空间,从而促进新骨的生成,并使植入物与骨组织间结合更为牢固。
     聚酰胺(PA)是一类优良的医用高分子材料,具有较高的韧性和强度,但缺乏生物活性,在临床上有广泛而长期的应用。已用来和羟基磷灰石复合制备新型生物活性骨修复材料。如果能综合上述三者的性能,扬长避短,优势互补,可望得到一种理想的骨修复替代材料。
     我们通过溶液共混法制备了n-HA/PA66/CS骨修复材料,并对其性质进行了检测。实验结果表明,复合材料中n-HA,PA66和CS三相间有良好的相容性,没有相分离现象发生;复合材料中各相间存在较强的相互作用,由此赋予材料良好的力学性能。当复合材料中n-HA/PA66/CS含量为40/45/15(wt%)时,其抗压强度最高,达到70MPa左右。体外模拟体液(SBF)浸泡试验结果表明,在复合材料表面有类骨磷灰石层形成,说明n-HA/PA66/CS复合材料具有较高的生物活性。
     通过粒子沥滤法制备了n-HA/PA66/CS多孔支架材料。结果显示,该多孔材料中兼具大孔和微孔,大孔壁上又富含微孔,孔与孔之间连通性良好。当平均空隙率为60.8%时,其抗压强度仍可达7.2MPa左右,可基本满足骨组织工程对细胞支架材料的要求。
     对n-HA/PA66/CS复合材料进行的多项生物学评价试验显示,复合材料小鼠急性全身毒性试验中未见毒性症状,表明复合材料无毒性;皮内刺激试验显示复合材料无刺激性作用;细胞毒性试验显示复合材料无细胞毒性。动物植入试验中,肌肉植入早期有轻度炎症反应,后期形成薄层纤维包膜,炎症反应消失;骨内植入后材料与骨组织结合紧密,材料/骨组织之间无纤维薄层,表现出复合材料具有良好的组织相容性和骨结合性能。从生物学评价结果可以看出复合材料具有良好的生物相容性,是一类具有发展前景的新型骨组织修复和替代材料。
Bone is one of the most complicated composite in the nature. Bone, not only provides mechanical support but also elegantly serves as a reservoir for minerals, particularly calcium and phosphate. It is a good example of a dynamic tissue, since it has a unique capability of self-regenerating or self-remodeling to a certain extent throughout the life. However, many circumstances call for bone grafting owing to bone defects either from traumatic or from non-traumatic destruction. In the case of severe defects and loss of volume, bone cann’t heal by itself and grafting is required to restore function without damaging living tissues. There are multiple methods available for the treatment of bone defects, which include the traditional methods of autografting , allografting and synthetic bone. Although autografting and allografting are clinically considered as good therapies, they have limitations. For example, supply of autograft is limited and there is a possibility of pathogen transfer from allograft. Accordingly, there is a great need for the use of synthetic bone grafts. Nowadays, numerous synthetic bone graft materials, both single- and multi-phases, are available which are capable of alleviating some of the practical complications associated with the autogenous or allogeneic bones.
     The bone mineral is mainly composed of hydroxyapatite(HA) and the bone protein is mainly composed of collagen. Ideal bone-repair materials should be of good biocompatibility and high bioactivity. Besides, their mechanical properties should be equivalent to natural bone.
     HA is the main inorganic composition of bone tissue and is of good biocompatibility and high bioactivity, which makes it be able to chemically bond to bone tissue. However, the brittleness and hard machining limit its extensive clinical use. Chitosan(CS) is a natural biodegradable polymer. Its degradation product is alkalescent and is not harm and toxic to human body or tissue. Compounding chitosan with nano hydroxyapatite(n-HA) could overcome the brittleness of HA ceramics, and that the degradation of chitosan also makes space for the ingrowth of cells and tissues
     Polyamide66 is used as matrix and can provide a good mechanical and biocompatible property. It is well known that polymers have better toughness, but it lacks of bioactivity. So, if combining the properties of the three materials to carry their good properties forward and get rid of their shortcomings, it will be hopeful to obtain a good bone substitute material. Here, PA66 acts as a structural framework in which tiny crystals of n-HA are embedded to strengthen the bone.
     In this paper, n-HA/PA66/CS composite is prepared with co-solution method. The testing results show that HA in the composite is poorly crystalline carbonated nano-crystals and dispersed uniformly in the CS/PA66organic phase. The three phases in n-HA/PA66/CS composite have an excellent miscibility and no phase-separation occurs in the blend. Stronger interactions exists among the three phases of n-HA, PA66 and CS, which endows the materials with excellent mechanical strength. When the weight content of n-HA/PA66/CS is 40/45/15 (wt%), the compressive strength of the composite is best, reaching to 70 MPa. In vitro test shows that bone-like apatite deposits onto the surface of the composite, indicating that the composite has good bioactivity.
     We use polyamide66 as scaffold, blend with n-HA and chitosan by porogen-leaching method in the paper, hoping to acquire a scaffold with good pore size, porosity and mechanical property. Results show that macro-pores and micro-pores coexist in the scaffold, and abundant micro-pores also exist on the wall of macro-pores, and these pores are highly interconnected. When the average pore size is 60.8%, the compressive strength of the scaffold can still reach 7.2 MPa, and can satisfy the demand of tissue engineering when as a cell scaffold.
     The biological and in vivo tests for n-HA/PA66/CS compostie indicated that, there were no toxic sysptoms showing up after the extract liquid of the composite was injected into the body of mice ; no irritative reactions were found in undermic stimulation test and also no derma allergy was observed. Intramuscular implantation showed that , inflammation reaction was observed in the early period but later a thin fibrin membrane still existed amound the implant and the inflammation reaction disappeared. When compostie was implanted in the bone , the compostie boned to bone tightly and no fibrin tissues were presented between material ans bone tissue, demomstrating cxcellent tissue compatibility and bone-bonding property. Therefore, n-HA/PA66 /CS composite can be figured to be biocompatible and has a potential to be used for new bone repair and substitute materials.
引文
1. 王洪复. 骨的结构功能及转换.实用妇产科杂志 1999, (11)5: 227-229
    2. 钱梓文. 人体解剖生理学. 北京:人民卫生出版社. 1992: 30-31
    3. 安靓,李进 主编.组织学与胚胎学. 北京:科学出版社. 2004,45-47
    4. 佘永华,肖洪文. 系统解剖学. 成都:四川大学出版社. 2004,9-12
    5. 冯元桢 主编. 生物力学. 北京:科学出版社,1983
    6. Hodge AJ, Petruska JA. Recent studies with the electron microscope on ordered aggregates of the tropocollagen molecule. In: Aspects of protein structure . Ramachandran GN, ed. Academic Press, New York, 1963
    7. Lowenstam HA, Weiner S. On biomineralization. Oxford University Press, New York, 1989
    8. Landis WJ, Song MJ, Leith A, et al. Mineral and organic matrix interaction in normally calcifying tendon visualized in three dimensions by high-voltage electron microscopic tomography and graphic image reconstruction. J Struct Biol, 1993, 110: 39-54
    9. Matsuchima N, Akiyama M, Terayama Y. Quantitative analysis of the orientation of mineral in bone from small angle X-ray scattering patterns. Jpn J Appl Phys, 1982, 21: 186-189
    10. Glimecher MJ. Recent studies of the mineral phase in bone and its possible linkage to the organic matrix by protein-bound phosphate bonds. Phil Trans R Soc Lond, 1984, B4: 479-508
    11. Reilly D T, Burstein A H. The elastic and ultimate properties of compact bone tissue. J. of Biomech. 1975, 8: 393-410
    12. Doblare, M,Garcia, JM. And Gomez , M.j. (2004) Modeling bone tissue fractues and healing :a revies .Engineering Fracture Mechanics 71,1809-1840.
    13. 顾志华,高瑞亭 主编. 骨伤生物力学基础[M]. 天津:天津大学出版社,1990
    14. R.A.Kenley,K.Yim,J.Abrams,E.Ron,T.Turek,Biotechnology and bone graft substitutes, Pharmaceutical Research,1993,10:1393-1401.
    15. 俞耀庭 主编。生物医用材料。天津大学出版社,天津。 2000 年。
    16. 顾汉卿,徐国风。生物医学材料学。天津科技翻译出版社, 天津。 1993 年。
    17. 李玉宝主编,生物医学材料。化学工业出版社,北京。2003 年。
    18. 《材料科学技术百科全书》编辑委员会, 师昌绪主编。材料科学技术百科全书。中国大百科全书出版社, 北京。1995。
    19. 崔福斋,冯庆玲. 生物材料学[M]. 北京:科学出版社,1996
    20. L.L.Hench. Bioceramics: From concept to clinic. J Am Ceram Soc, 1991, 74:1487-1510.
    21. P.Duchetne, Q.Qiu. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 1999,20:2287-2303.
    22. P.Duchetne, Q.Qiu. Bioactive ceramics: the effect of surface reactivity on bone formation and bone cell function. Biomaterials, 1999,20:2287-2303.
    23. Knaack D, Goad ME, Aiolova M, et al. Resorbable calcium phosphate bone substitute. J Biomed Mater Res. 1998,43:399-409.
    24. Knaack D, Goad ME, Aiolova M, et al. Resorbable calcium phosphate bone substitute. J Biomed Mater Res. 1998,43:399-409.
    25. Klein CP, Driessen AA, de Groot K et al.. Biodegradation behavior of various calcium phosphate materials in bone tissue. J Biomed Mater Res, 1983, 17:769-784
    26. Bucholz RW, Carlton A, Holmes RE. Hydroxyapatite and tricalcium phosphate bone graft substitutes. Orthop Clin North Am, 1987, 18:323-334.
    27. Cross U,Kinne R,Schmitz HJ et al.The response of bone to surface active glass/glass-ceramics,CRC critical reviews in biocompatibility, D.Williams, et.1998.
    28. M.I.Kay, R.A.Young. Crystal structure of hydroxyapatite. Nature, 1964, 204:1050-1052.
    29. Kokubo T, Miyaji F, Kim HM. Spontaneous formation of bone-like apatitelayer on chemically treated titaniummetals. J Am Ceram Soc. 1996,79: 1127.
    30. Frayssinet, P., Trouillet, J.L., Rouquet, N., Azimus, E. and Autefage, A.,Osseointegration of macroporous calcium phosphate ceramics having a different chemical composition, Biomaterials, 1993, 14, 423-429.
    31. Kokubo T, Miyaji F, Kim HM. Spontaneous formation of bone-like apatitelayer on chemically treated titaniummetals. J Am Ceram Soc. 1996,79: 1127.
    32. Hench L, Splinter R, Greenlee T et al.. Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Eng, 1971, 2:117-141.
    33. Hollinger JO, Brekke J,Gruskin EG,Lee D.Role of bone substitutes. Clin Orthop 1996,324:55-65.
    34. Hench LL and Wilson.J,An Introduction to Bioceramics,World Sientific Publishing Co.Pte. Ltd, Singapore,1993,67.
    35. Hench LL,R.L.splinter,W.C Allen and T.K.Greenlee,Bonding mechanisms at the interface of ceramic prosthetic materials,J.Biomed.Mater. Res.Symp., 1971, 2: 117-141.
    36. U.M.Gross and V.Strunz,Interface of various glasses ans glass ceramics in a bony implantation bed,J.Biomed.Mater.Res.,198519,251-271.
    37. T.Matsuda and J.E.Davies,The in vitro response of osteoblasts to bioactive glass,Biomaterials,1987,8:275-284.
    38. Yubao, L., Xingdong, Z., Weiqun, C., Yuhua, L., Klein, C.P.A.T. and de Groot, K.,The influence of multiphase calcium phosphate bioceramics on bone formationin non-osseous tissues, in Transactions of the 19th Annual Meeting of Society for Biomaterials, Birmingham, USA, April 1993, p.165.
    39. Klein, C.P.A.T., de Groot, K., Weiqun, C., Yubao, L. and Xingdong, Z., Osseous substance formation induced in porous calcium phosphate ceramics in soft tissues, Biomaterials, 15, 31-34, 1994.
    40. Hirschman, A., Sobel, A.E., Kramer, B. and Fankuchen, I., An X-ray diffraction study of high phosphate bones, J. Biol. Chem., 1947, 171, 285-291.
    41. Biltz, R.M. and Pellegrino, E.D., The composition of recrystallized bone mineral,J. Dent. Res., 1983, 62, 1190-1195.
    42. Posner, A.S., The mineral of bone, Clin. Orthop. Rel. Res., 1985, 200, 87-99.
    43. LeGeros, R.Z., Daculsi, G., Orly, I., Gregoire, M., Heughebaert, M., Gineste, M.and Kijkowska, R., Formation of carbonated apatite on calcium phosphatematerials: dissolution/precipitation processes, in Bone-BondingBiomaterials, ed. by Ducheyne, P., Kokubo, T. and van Blitterswijk,Healthcare Communication press, 1992, P.201-212.C.A., Reed
    44. Bagambisa, F.B., Joos, U. and Schilli, W., Mechanisms and structure of the bond between bone and hydroxyapatite ceramics, J. Biomed. Mater. Res., 1993, 27,1047-1055.
    45. Bruijn, J.D. de, van Sliedregt, A., Duivenvoorden, A.M. and van Blitterswijk, C.A.,In vivo bone formation associated with apatite coated polyactide, Cells and Materials, 1992, 2, 329-337.
    46. Ohmae, H., Okazaki, M. and Hino, T., Insolubilization of apatite-collagen composites, Bioceramics, Vol. 1, ed. by Oonishi, Iq., Aoki, H. and Sawai, K.,Ishiyaku EuroAmerica Inc., Tokyo-St. Louis, 1989, 81-85.
    47. LeGeros, R.Z., Kijkowska, R., LeGeros, J.P., Zheng, R. and Fan, D., Calcium phosphate coatings on implants: dissolution characteristics, in Transactions of the 19th Annual Meeting of Society for Biomaterials, Birmingham, USA, April 1993,221.
    48. Lemons,J.E,Hydroxyapatite coatings, Clin, Orthop., 1988,235,220-223.
    49. Klein, C.P.A.T,patka,P.,Macroporous calcium phosphate bioceramics in dog femora: a histological study of interface and biodegradation, Biomaterials, 1989, 10,59-62.
    50. Damien CJ, Parson JR. Bone graft and bone graft substitutes: a review of current technology and application. J Appl Biomater. 1991, 2:187-208
    51. Nicholas A.Peppas, Robert Langer. New challenges in biomaterials. Science, 1994,263:1715-1720
    52. Yang CY, Wang BC, Chang WJ, et al. Mechanical and histological evaluations of cobalt-chromium alloy and hydroxyapatite plasma-sprayed coatings in bone. J.Mater.Sci: Mater Med.1992, 3: 167-174
    53. Hench LL, Polak JM. Third-generation biomedical materials. Science, 2002, 295: 1016-1017
    54. Scotchford CA, Cascone MG, Diwnes S, et al. Osteoblast responses to collagen-PVA bioartificial polymers in vitro: the effects of crosslinking methodand collagen content. Biomaterials. 1998,19:1-11
    55. Mizuno M, Shindo M, Kobayashi et al. Osteogenesis by bone marrow stromal cells maintained on type I collagen matrix gels in vivo. Bone, 1997, 20: 101-107
    56. Chapm an MW, Bucholz R, Cornell C. Treatment of actue fractures with a collagen-calcium phosphate graft material:A randomized clinical trial. J Bone Joint Surg, 1997, 79A (4):49-502
    57. Tenhuisen K S, Martin R I, Klim kiew icz M, et al.Formation and properties of a synthetic bone composite:hydroxyapatite-collagen.J Biomed Mater Res, 1995, 29 (7): 803-810
    58. Soldan MB. Hydroxyapatite-collagen-hydroxyapatite-collagen composite. Biomaterials, 1999,2 0 (2):191-195
    59. Johnson KD, Frierson KE, Keller TS, et al. Porous ceramics as bone graft substitutes in long bone defects: A biomechanical and radiographic analysis. J Orthop Res, 1996,14:351-369
    60. 陈治清,等.生物半降解人工骨复合材料的初步研究.实用口腔医学杂志,1989,6(2): 96
    61. Tampieri A, Celotti G, Landi E, Sandri M, Falini G, Roveri N. Biologically inspired synthesis of bone-like composite: selfassembled collagen fibers/ hydroxyapatite nanocrystals. J Biomed Mater Res 2003;67A:618–25.
    62. Du C, Cui FZ, Zhu XD, De Groot K. Three-dimensional nano-HAp/ collagen matrix loading with osteogenic cells in organ culture. J Biomed Mater Res 1999; 44:407–15.
    63. Itoh S, Kikuchi M, Koyama Y, Takakuda K, Shinomiya K, Tanaka J. Development of a hydroxyapatite/collagen nanocomposite as a medical device. Cell Transpl 2004;13:451–61.
    64. Yang XB, Bhatnagar RS, Li S, Oreffo RO. Biomimetic collagen scaffolds for human bone cell growth and differentiation. Tissue Eng 2004;10:1148–59.
    65. Liao SS, Cui FZ, Zhang W, Feng QL. Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLAcomposite. J Biomed Mater Res Appl Biomat 2004;69B 158–65.
    66. Zhang SM, Cui FZ, Lioa SS, Zhu Y, Han L. Synthesis and biocompatibility of porous nano-hydroxyapatite/collagen/alginatecomposite. J Mater Sci Mater Med 2003;14:641–5.
    67. Yamaguchi I, Tokuchi K, Fukuzaki H, Koyama Y, TakakadaK, Monma H, et al. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res2001;55:20–7.
    68. Duckeyne P, Hench L L, Kagan A, et al. Effect of HA impregnation on skeletal bonding of porous coated implants. J Biomed Mater Res. 1980,14 (3): 225
    69. C.P. A.T. Klein et al. Calcium phosphate plasma-sprayed coating and their stability: a vivo study. J. Biomed. Mater. Res. 1994,28:909-917
    70. K.A.Gross, C.C.Berndt. In vitro testing of plasma-sprayed hydroxyapatite coatings. J Mater Sci Mater Med, 1994, 5:219-224.
    71. Mi FL, Tan YC, Liang HF, et al. In vivo biocompatibility and degradability of a novel injectable-chitosan-based implant. Biomaterials, 2002, 23:181-191
    72. David P, Manssur Y, Mark S. Unusual susceptibility of chitosan to enzymic hydrolysis. Carbohydr Res, 1992, 237: 325-332
    73. Murugan R, Ramakrishna S. Nanostructured biomaterials. In:Nalwa HS, editor. Encyclopedia of nanoscience and nanotechnology, vol. 7. California: American Scientific Publishers; 2004.p. 595–613.
    74. Black J, Hastings GW. Handbook of biomaterials properties.London: Chapman & Hall; 1998.
    75. Ramakrishna S, Mayer J, Wintermantel E, Leong KW. Biomedical applications of polymer-composite materials : a review. Comp Sci Tech 2001;61:1189–224.
    76. Hao J, Liu Y, Zhou S, Li Z, Deng X. Investigation of nanocomposites based on semi-interpenetrating network of Lpoly(epsilon-caprolactone)] / [net-poly (epsilon -aprolactone)] and hydroxyapatite nanocrystals. Biomaterials 2003; 24:1531–9.
    77. Deng X, Hao J, Wang C. Preparation and mechanical properties of nano composites of poly(D,L-lactide) with Ca-deficient hydroxyapatite nanocrystals. Biomaterials 2001;22:2867–73.
    78. Liu Q, De Wijn JR, Van Blitterswijk A. Nano-apatite/polymer composites: mechanical and physicochemical characteristics.Biomaterials 1997;18:1263–70.
    79. Wang X, Li Y, Wei J, De Groot K. Development of biomimetic nano- hydroxyapatite/poly(hexamethylene adipamide) composites.Biomaterials 2002; 23:4787–91.
    80. Li H, Chen Y, Xie Y. Photo-crosslinking polymerization to prepare polyanhydride/needle-like hydroxyapatite biodegradable nanocomposite for orthopedic application. Mater Lett 2003;57:2848–54.
    81. Song J, Saiz E, Bertozzi CR. A new approach to mineralization of biocompatible hydrogel scaffolds: an efficient process toward 3-dimensional bonelike composites. J Am Chem Soc 2003;125:1236–43.
    82. Ishaug-Riley SL, Crane GM, Gurlek A, et al. Ectopic bone formation by marrow stromal osteoblast transplantation using poly(DL-lactic-co-glcolic acids) foams implanted into the rat mesentery. J Biomed Master Res, 1997, 36(1): 1-8
    83. Gumaer KI, Sherer AD, Slighter RG, et al. Tissue response in dogs to dense HA implantation in the femur. J Oral Maxillofac Surg, 1986, 44: 618-627
    84. Bruder SP, Kraus KH, Goldberg VM, et al. The effect of implants loaded with autologous mesenchymal stem cells on the healing of canine segmental bone defects. J Bone Joint Surg, 1980, 80A(7): 985-996
    85. Ishaug SL, Yaszemski MJ, Bizios R, et al. Osteoblast function on synthetic biodegradable polymers. J Biomed Mater Res, 1994, 28 (12): 1445-1453
    86. Mikos AG, Sarakino G, Leite SM, et al. Laminated three-dimentional biodegradable foams for use in tissue engineering. Biomaterials, 1993, 14 (3): 323-330
    87. Wake MC, Patrick CW, Mikos AG. Pore morphology affects on the fibrovascular tissue growth in porous polymer substrates. Cell Transplant, 1994, 3 (4): 339-343
    88. Ishaug SL, Crane GM, Misser MJ. Bone formation by three-dimensional stromal osteoblast culture in biodegradable polymer scaffolds. J Biomed Mater Res, 1997, 36 (1): 17-28
    89. Isaug-Riley SL, Crane-Kruger GM, Yaszemski MJ, et al. Three-dimensional osteoblasts in porous biodegradable polymers. Biomaterials, 1998, 19 (15): 1405-1412
    90. Ishizawa H, Fujino M, Ogino M. Mechanical and histological investigation of hydrothermally treated and untreated anodic titanium oxide films contanting Ca and P. J Biomed Mater Res, 1995, 29:1459.
    91. Bonfield W, Grynpas MD, Tully AE, et al. Hydroxyapatite reinforced polyethylene: a mechanically compatible implant material for bone replacement. Biomaterials, 1981, 2 (3): 185-186
    92. Dalby M, Kayser MV, Bonfield W, et al. Initial attachment of osteoblasts to an optimized HAPEX topography. Biomaterials, 2002, 23 (3): 681-690
    93. Meijer AG, Segenhout HM, Albers FW, et al. Histopathology of biocompatible hydroxyapatite-polyethylene composite in ossiculoplasty. ORL J Otorhinolaryngol Relat Spec, 2002, 64 (3): 173-179
    94. Bonner M, Ward IM. Hydroxyapatite/polyethylene composite: a novel bone substitute material. J Mater Sci Lett, 2001,20: 2049-2051
    95. Ignjatovic N, Tomic S, Dakic M, et al. Synthesis and properties of hydroxyapatite/poly-l-lactide composite biomaterials. Biomaterials, 1999, 20 (9): 809-816
    96. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite particles and poly-l-lactide. PartⅠ: Basic characteristics. Biomaterials, 1999, 20 (9): 859-877
    97. Shikinami Y, Okuno M. Bioresorbable devices made of forged composites of hydroxyapatite particles and poly-l-lactide. PartⅡ: practical properties of miniscrews and miniplates. Biomaterials, 2001, 22 (23): 3197-3211
    98. Ma PX, Zhang RY, Xiao GZ, et al. Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. Journal of Biomedical, 2001, 54 (2): 284-293
    99. Wei Jie, Li Yubao, Chen Weiqun, Zuo Yi. A study on nano-composite of nano-apatite/polyamide. Journal of Materials Science. 2003,38:3303-3306
    100. Wei Jie, Li Yubao. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. European Polymer Journal. 2004, 40:509-515
    101. Tomihata K, Ikada Y. In vitro and in vivo degradation of films of chitin and its deacetylated derivatives. Biomaterials, 1997, 18:567-573
    102. Muzzarilli RA. Biochemical significance of exogenous chitins, chitosan in animals, patients. Carbohydr polym, 1993, 20: 7-16
    103. Gaserod O, Smidsrod O, Skjak-Brack G. Microcapsules of alginate-chitosan: A quantitative study of the interaction between alginate and chitosan. Biomaterials, 1998,19(20): 1815-1825
    104. Roy K, Mao HQ, Huang SK, et al. Oral gene delivery with chitosan-DNA nanoparticles generates immunological protection in a marine model of peanut allergy. Nat Med, 1999, 5(4): 387-391
    105. Bergsma EJ, Brujn W, Rozema FR, et al. Late tissue response to poly(l-lactide) bone plates and screws. Biomaterials, 1995, 16(1): 25-31
    106. Bergsma EJ, Rozema FR, Bos RM, et al. Foreign body reactions to resorbable poly(l-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Maxillofacial Surg, 1993, 51: 666-670
    107. Bostmann O, Hirvensalo E, Makanen J, et al. Foreign body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Jt Surg, 1990, B72: 592
    108. Sundararajan VM, Howard WTM. Porous chitosan scaffolds for tissue engineering. Biomaterials, 1996, 20: 1133-1142
    109. Tromel GZ. The optimum conditions for the formation of hydroxyapatite. Physic Chem, 1932, 158: 422-425
    110. Henning PA, Fsson EA, Crins J. Triclinic oxy-hydroxyapatite. J Mater Sci, 2001, 36 (2): 663-668
    111. Ohgushi H, Okumura M, Inoue K, et al. Bone induction on the surface of hydroxyapatite ceramics. Bioceramics, 1995, 8: 61
    112. Toth JM, Lynch KL, Hackbarth DA. Ceramic-induced osteogenesis following subcutaneous implantation of calcium phosphate. Bioceramics, 1993, 6: 9
    113. Yang Z, Yuan H, Zou P, et al. Osteogenic response to extraskeletally implanted synthetic porous calcium phosphate ceramics: An early stage histomorphological study in dogs. J Mater Sci: Mate Med, 1997,8 (11): 697
    114. Jarcho M. Calcium phosphate ceramics as hard tissue prosthetics. Clinic Orthop, 1981, 157: 259
    115. Hu J, Russell J, Vago R, et al. Production and analysis of hydroxyapatite from Australian corals via hydrothermal process. Dental Clinics of North America, 1998, 49: 53-55
    116. Aoki H, Kato K, Shiba M. Synthesis of hydroxyapatite under hydrothermal conditions. J Dent Appar and Mater, 1972, 13: 170-176
    117. Aoki H, Kato K, Shiba M. Synthesis of hydroxyapatite under hydrothermal conditions. J Dent Appar and Mater, 1972, 13: 170-176
    118. Lu JX, Flautre B, Anselme K, et al. Role of interconnections in porous bioceramics on bone recolonization in vitro and in vivo. J Mater Sci: Mate Med, 1999, 10: 111
    119. Muzzarelli, R.A.A., Ramos, V ., Dubini, B., Mattioli-Belmonte, M., Tosi, G. and Giardino, R. (1998) Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan. Carbohudrate Polymers 36,267-276.
    120. Zhao, F., Y.J., Lu, W .W., Leong, J.C ., Zhang, W. J.Y., Zhang, M.F. and Yao, K.D. (2002) Preparation and histological evalution od biomimetic htree-dimensional hydroxyapatite/chitosan-gelatin netiwork composite scaffolds .Biomaterials 23,3227-3234.
    121. Yin, Y.J., Zhao, F., Song, X.F., Yao ,K.D., Lu, W.W and Leong, J.C (2000) Preparation and characterization of hydroxyapatite /chitosan-gelatin netiwork composite. Journal of Applied Polyner Science 77, 2929-2938.
    122. Ge, Z.G, Baguenard ,S., Lim, L. Y., Wee, A. and Khor, E. (2004) Hydroxyapatite-chitn materials as potential tissue engineeried bone substitued. Biomaterials 25,1049-1058.
    123. Itoh, S., Yamaguchi, I., Suzuki, M., Lchinose, S., Takakuda, K., Kobayashi, H., Shiomiya,K. and Tanaka, J.(2003) Hydroxyapatite-coated tendon chitosantubes with assorded lamimin peptides facilitate nerve regeneration in vivo. Brain Research 993,111-123.
    124. Xu, H.H.K., Qiuinn, J.B., Takagi, S. and Chow, L.C.(2004) Synergistic reinforcement of in sinu hardening calcium phosphate composite scaffold for bone tissue engineering. Biomaterials 25,1029-1037
    125. Huang,L. Y., Xu, K, W. and Lu,J.(2000) A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis od hydroxyapatite coatings . Journal of Materials science-Materials in Medicine 11,667-673.
    126. Hu, H.B., Lin, C.J., Lui, P. P. Y. and Leng ,Y. (2003) Electrochemical deposition of hydroxyapatite with vinyl acetate on titanium implants . Journal of Biomedical Materials Research Part 65A,24-29.
    127. Jiang, T., Cheng, X. R and Wang, Y. N. (2..3) Preparation of chitosan/calcium phosphate composite coatings on titanium by a biomimetic method . Joural of Dental Reseach82,332-332.
    128. Redepenning, J., Venkataraman, G,Chen, J. andStafford, N.(2003) Electrochemical preparation of chitosan/hydroxyapatite compostie coating on titanium substrates. Jouenals of Biomedical Materials Research Part 66A, 411-416.
    129. Yamaguchi,1., Tokuchi, K.., Fukuzaki, H., Koyama,Y., Takakuda, K., Monma,H. and Tanaka , T.(2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites in:Bioceramics,PP. 673-676.
    130. Yamaguchi,1., Tokuchi, K.., Fukuzaki, H., Koyama,Y., Takakuda, K., Monma,H. and Tanaka , T.(2001) Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. Journal of biomedical Materials Research55, 20-27.
    131. Yamaguchi,I.,Iizuka, S., Osaka, A., Monma,H. and Tamaka, J. (2003) The effect of citric acid addtion on chitosan/hydroxyapatite composites . Colloids and sufaces a-Physichemical and Engineering Aspects 214, 111-118.
    132. Taguchi,T., Muraoka, Y., Matsuyama,H/. Kishida, A. and M.(2001) Apatie coating on hydropphilic polymer-grafted poly(ethlene) films using an altnatesoaking process .Biomaterials 22,53-58.
    133. Taguchi, T.,Kishida, Kishida,A. and Akashi,M . (1998) Hydroxyapatite formation on/in Poly(vinylalcohol) hydrogel matrices using a novel altenate soaking process. Chemistry Letters, 711-712.
    134. .Taguchi, T., Kishida, A. and Akashi, M. (1999) Apatite formation on/in hydrogel matrices using an alternate soaking process (Ⅲ ):Effect of physico-chemical factors on apatie foemation on /in poly(vinly alchol) hydrogel matrices journal of Biiomaterials science-Polymer Edition 10,795-804.
    135. Taguchi, T., Kishida, A. and Akashi, M. (1999) Apatite formation on/in hydrogel matrices using an alternate soaking process (Ⅱ).Effect of swelling ratios of poly(vinyl alcohol)hydrogel matrices on apatite formation .Journal of Biomaterials Science –Polymer Edition 10,331-339.
    136. Tachaboonyakiat, W., Serizawa, T. and Akashi,M. (2001) Hydroxyapatite formation on/in biodegradable chitosan hydrogels by an alternate soaking process, polymer Journal 33, 177-181.
    137. Rhee,S. F .(2004) Bone like apatite forming ability on surface midified chitosan membrance in simulated body fluid .in: Bioceramics ,Vol 16, pp.501-504.
    138. Reppu, M.M. And santana, C.C.(2004) Direction of in vitro calcified chitosan membrances for technological applications .chemical Engineering Communications 191,1147-1157.
    139. Reppu, M.M. And santana, C.C.(2003) PAA influence on chitosan membrance calcification . Materials Sience & Engineering Communications 191,1147-1157.
    140. Li, B. Q., Hu,Q.L., Qian, X.Z., Fang , ZP. And Shen, J.C. (2002.) Bioabsorbable chitosan/hydroxyapatite composite rod prepared by in-situ precipitation for internal fixation of bone fracture . Acta Polymerica,828-833.
    141. Ahmas, Z. and Mark , J. E.(1998) Biomimetic materials recent developments in organic-inorganic hybrids . Materials Science & Engineering C-biomimetic and Supramolecular Systems6,183-196.
    142. Falini,C., Fermani, S. and Ripamonti, A. (2001) Oriented crystallization of octacalcium phosphate into beta-chitin scaffold .Journal of InganicBiochemistry 84, 255-258.
    143. Yan, Q.C., Tomita , N. and Ikads, Y. (1998) Effects og static magnetic field on bone formation og rat femurs, Medical Engineering & Phusics 20,397-402.
    144. Liu, Y.I., Hunziker, F.B., Layrolle, P., De Bruijin, J.D. and De Groot, K.(2004) Bone morphogenetic protein 2 incorporated into biomimetic coationgs retains its biological activity .Tissue Engineering 10. 101-108.
    145. Sivakumar, M., Manjubala, I. And Rao, K.P.(2002) Preparation,characterization and in-Vitro release of gentamicin fron coealline hydroxyapatite-chitosan composite microspheres ,Carbohydrate Polymers 49,281-288.
    146. Matsuda A Kohayashi, H., Itoh, S., Kataola, K. and Tanaka ,J.(2005) Immobilization of laminin peptide in molexularly aligned chitosan by covalent bonding biomaterisals 26, 2273-2279.
    1. 蒋挺大 壳聚糖 化学工业出版社, 2001.
    2. Bergsma FJ, Brujn W, Rozema FR, et al. Late tissue response to poly(L-lactide) bone plates and screws. Biomaterials, 1995, 16(1): 25-31
    3. Bergsma FJ, Rozema FR, Bos RM, et al. Foreign body reactions to resorbable poly(L-lactide) bone plates and screws used for the fixation of unstable zygomatic fractures. J Maxillofacial Surg, 1993, 51: 666-670
    4. B?stmann, Hirvensalo E, M?kinen, et al. Foreign body reactions to fracture fixation implants of biodegradable synthetic polymers. J Bone Jt Surg, 1990, B72: 592
    5. Sundararajan VM, Howard WTM. Porous chitosan scaffolds for tissue engineering. Biomaterials, 1999, 20: 1133-1142
    6. Thanoo BC, Sunny MC, Jayakrishnan A. Cross-linked chitosan microspheres: preparation and evaluation as a matrix for the controlled release of pharmacerticals. J Pharm Pharmacol, 1992, 44: 283-286
    7. Nishi N, MaekitaY, Nishimura S, et al. Highly phosphorylated derivatives of chitin, partially deacetylated chitin and chitosan as new function polymers: metal binding property of the insolubilized materials. Int J Biol Macromol, 1987, 9: 109-114
    8. Yamaguchi I, Tokuchi K, Fukuzaki H, et al. Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites. J Biomed Mater Res, 2001, 55: 20-27
    9. Hirotak K. Biomedical Materials Research in the Far East (Ⅰ). Kyoto: Kobunshi Kankokai Inc. 1993, 35
    10. Sailaja GS, Velayudhan S, Sunny MC, et al. Hydroxyapatite filled chitosan-polyacrylic acid polyelectrolyte complexes. J Mater Sci, 2003, 38: 3653-3662
    11. Muzzarelli RAA, Ramos V, Stanic V, et al. Osteogenesis promoted by calcium phosphate N,N-dicarboxymethyl chitosan. Carbohydrate Polymer, 1998, 36:267-276
    12. Zhang Y, Zhang MQ. Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res, 2002, 61: 1-8
    13. Wei Jie, Li Yubao, Chen Weiqun, Zuo Yi. A study on nano-composite of nano-apatite/polyamide. Journal of Materials Science. 2003,38:3303-3306
    14. Wei Jie, Li Yubao. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. European Polymer Journal. 2004, 40:509-515
    15. 王学江,汪建新,李玉宝等.常压下纳米级羟基磷灰石针状晶体的合成.高技术通讯,2000;11(6):92.
    16. 郭颖,李玉宝,严永刚.纳米磷灰石晶体/聚酰胺 66 复合材料的制备和界面研究.四川大学学报(自然科学版),2002;39(3):479.
    17. 王学江,李玉宝. 羟基磷灰石纳米针晶与聚酰胺仿生复合生物材料研究.高技术通讯, 2001,5:1-3.
    18. Xuejiang Wang,Yubao Li, Jie Wei, et al. Development of biomimetic nano-hydroxyapatite/poly(hexamethylene adipamide) composites. Biomaterials , 2002, 23 :4787–4791.
    19. 乔放, 李强,漆宗能等. 聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究. 高分子通报,1997, 9(3): 135-145.
    20. 陈艳, 王新宇,高宗明等. 聚酰亚胺/二氧化硅纳米尺度复合材料的研究. 高分子学报,1997, 2(1): 73-77.
    21. 董炎明.高分子材料实用剖析技术.北京:中国石化出版社, 1998, 162-163.
    22. Liu Qing, de Wijin Joost R, de Groot Klaas, et al. Surface modification of nano-apatite by grafting organic polymer. Biomaterials, 1998, 19: 1067-1072.
    23. John L. Meyer; Bruce O. Fowler. Lattice Defects in Nonstoichiometric Calcium Hydroxylapatites. A Chemical Approach. Inorg. Chem, 1982, 21: 3029-3035.
    24. 张 翔,李玉宝, 吕国玉等. n-HA/PA66 复合材料中两相间作用机理研究.功能材料,2005,36(6):896-899.
    25. 左 奕,李玉宝,魏 杰等. n-HA/ PA 系列生物医用复合材料的制备与表征. 功能材料,2004,35(4):513-516.
    26. A. Moroni, V.L.Caja, C.Sabato et al.. Bone ingrowth analysis and interface evaluation of hydroxyapatite coated versus uncoated titanium porous bone implants. J Mater Sci Mater Med, 1994, 5:411-417
    27. Hideki Aoki. Science and medical applications of hydroxyapatite. Tokyo: Takayama Press System Center Co., Inc., 1991: 165-177
    28. M.Wang, X.Y.Yang, K.A.Khor et al.. Preparation and characterization of bioactive monolayer and functionally graded coatings. J Mater Sci Mater Med, 1999, 10:269-273.
    1. Langer R, Vacanti JE. Tissue engineering. Science, 1993, 260: 920
    2. Pappas NA, Robert L. New challenges in biomaterials. Science, 1994, 263: 1715-1720
    3. Kim BS, Mooney DJ. Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol, 1998, 16 (5): 224-230
    4. Wojciech Suchanek, et al. Processing and Properties of Hydroxyapatite based Biomaterials for Use as Hard Tissue Replacement implants. J Mater Res, 1998, 13 (1): 94-117.
    5. Yuan Huipin, Li Yubao, de Groot K, et al. Tissue responses of calcium phosphate cement: a study in dogs. Biomaterials, 2000, 21(12): 1283-1290.
    6. Yuan Huipin, de Bruijn, Li Yubao, et al. 1-6 Bone formation induced by calcium phosphate ceramics in soft tissue of dogs: a comparative study between porous a-TCP and β-TCP. J Mater Sci: Mater in Med, 2001, 12 (1): 7-13.
    7. 牟善松, 毛萱,石海涛等 骨组织工程支架-多孔β-磷酸三钙陶瓷的制备与性能 材料科学与工程学报,l21(4):569-571
    8. Masanori Omae, Masataka Inoue, Toshiyuki Itota, et.al,Effect of a desensitizing agent containing glutaraldehyde and HEMA on bond strength to Er:YAG laser-irradiated dentine Journal of Dentistry,Volume 35, Issue 5, May 2007, Pages 398-402
    9. Ma PX, Zhang RY, Xiao GZ, et al. Engineering new bone tissue in vitro on highly porous poly(α-hydroxyl acids)/hydroxyapatite composite scaffolds. Journal of Biomedical, 2001, 54 (2): 284-293
    10. 陈瀛,李致荣.骨组织工程学对骨缺损修复研究的进展 中日友好医院学报20004,18(3).184-186
    11. 刘朝红; 董寅生; 林萍华 β-磷酸钙多孔生物陶瓷支架的制备及生物相容性 东南大学学报 2004 34 (9),665-668
    12. Wei Jie, Li Yubao. Tissue engineering scaffold material of nano-apatite crystals and polyamide composite. European Polymer Journal. 2004, 40:509-515
    13. Perry R. Klokkevold, Haruhisa Fukayama, Eric C. Sung and Charles N. Bertolami The effect of chitosan (poly-N-acetyl glucosamine) on lingual hemostasis in heparinized rabbits Journal of Oral and Maxillofacial Surgery,57(1).1999,49-52
    14. Friedman CD, Constantino PD, et al. Bone source hydroxyapatite scaffold: a novel biomaterial for craniofacial tissue engineering and resconstruction. J Biomed Res (Appl Biomater), 1998, 43: 428-432
    15. Ashkan Golshani, Vihren Kolev, Rumyana Mironova, Mounir G. AbouHaidar and Ivan G. Ivanov Enhancing Activity of in Escherichia coli and Agrobacterium tumefaciens Cells Biochemical and Biophysical Research Communications, 2000 269(2) ,s 508-512
    16. Hong-Ru Lin, Ko-Shao Chen, Su-Chen Chen, Chih-Hung Lee Attachment of stem cells on porous chitosan scaffold crosslinked by Na5P3O10 Materials Science and Engineering: C,2007, 27(2), 280-284
    17. Hollinger JO, Battistone GC. Biodegradable bone repair materials. Clin Orthop Rel Res, 1986, 207: 290-305
    18. Li Yubao, et al. An important aspect of biphasic calcium phosphate bioceramics: formation of bone in nonosseous tissues, ed. An Academic Pers B V Amsterdam, 1994,35 - 45.
    19. Li Yubao, et al. The influence of Multiphase Calcium Phosphate Bioceramics on Bone Formation in Nonosseous Tissues. Trans. of the 19th Annual Meeting of SFB. USA, 1993. 165.
    20. Levene HB, Lhommeau CM, Kohn JB. Porous polymer scaffolds for tissue engineering. US6103255, 2000.
    21. 昌塔尔·E·霍利, 莫莉·S·绍伊切特,约翰·E·戴维斯. 可生物降解的聚合物支架. CN1285757A.
    22. Chen G, Ushida T, Tateishi T. Preparation of and poly (DL-lactic-co-glycolic acid) foams by use ice microparticulates. Biomaterials, 2001, 22(18): 2563-2567.
    23. Groot JH , Zijlstra FM, Kuipers HW, et al. Meniscal tissue regeneration in porous 50/50 copoly ( L-lactic/ε-caprolactone ) implants. Biomaterials, 1997, 18:613-622.
    24. Nam YS, Yoon JJ, Park TG.. A novel fabrication method of macroporous biodegradablr polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res, 2000, 53: 1-7.
    25. 尹准镇,朴泰宽.生物相容的支架的制备方法及由该方法制备的支架. CN1297042A, 2001.
    26. 乔放, 李强,漆宗能等. 聚酰胺/粘土纳米复合材料的制备、结构表征及性能研究. 高分子通报,1997, 9(3): 135-145.
    27. [25] 陈艳, 王新宇,高宗明等. 聚酰亚胺/二氧化硅纳米尺度复合材料的研究. 高分子学报,1997, 2(1): 73-77.
    28. 董炎明.高分子材料实用剖析技术.北京:中国石化出版社, 1998, 162-163.
    29. Liu Qing, de Wijin Joost R, de Groot Klaas, et al. Surface modification of nano-apatite by grafting organic polymer. Biomaterials, 1998, 19: 1067-1072.
    30. John L. Meyer; Bruce O. Fowler. Lattice Defects in Nonstoichiometric Calcium Hydroxylapatites. A Chemical Approach. Inorg. Chem, 1982, 21: 3029-3035.
    31. 张 翔,李玉宝, 吕国玉等. n-HA/PA66 复合材料中两相间作用机理研究.功能材料,2005,36(6):896-899.
    32. 左 奕,李玉宝,魏 杰等. n-HA/ PA 系列生物医用复合材料的制备与表征. 功能材料,2004,35(4):513-516.
    33. 陈际达,崔 磊,刘 伟,曹谊林. 溶剂浇铸/颗粒沥滤技术制备组织工程支架材料. 中国生物工程杂志, 2003,23(4):32-35.
    34. 傅文斌.精细石油化工,1990, (6):29-32.
    35. 成四喜,骆有寿.日用化学工业,1989, 33(2):33-36.
    36. 崔英德,易国斌,廖列文. 聚乙烯吡咯烷酮的合成与运用.北京: 科学出版社,2002.
    37. Green D, Walsh D, Mann S, et al. The potential of biomimesis in bone tissue engineering: lessons from the design and synthesis of invertebrate skeletons. Bone, 2002, 30(6): 810-815.
    1. Li YB, Zhang XD, K de Groot. Hydrolysis and phase transition of alpha-tricalcium phosphate. Biomaterials, 1997, 18: 737-741
    2. Hench L.L.Bioceramics : from concept to clinic.J Am Ceramic Soc,1991,74(7): 1487
    3. Hench L.L., et al. Bonding mechanism at the interface of ceramics peothetic materials. Biomed Mater Res, 1972,2:17-141
    4. Hench L.L., Wilison J.Surface-active biomaterials.Science,1984,226:630-636
    5. Hench L.L., Ethridge EC.Biomaterials: An Interfacial Approach,Academic Pess, New York,1982
    6. Hench L.L., Wilson H.An Interodution to Bioceramics, world Scientific, London,1993
    7. Gross U, Kinne R,et al. The response of bone to surface active glass/glass-ceramics. CRC critical reviews in biocompatibility, Williams, 1988, 42
    8. Kokubo T, Recent progress in glass-based materials for biomedical applications. J Ceram Soc, Japan,1991,99:965-973
    9. Kokubo T, Bioactive glass ceramics: properties and application. Biomaterials, 1991,12:155-161
    10. O.H.Andersson,I. Kangasniemi, Calcuim phosphate foemation at the surface og bioactive glasss in vitro,J.biomed.Mater.Res.1991,25:1019-1030
    11. Hench.LL, R.J.splinter, et al。Bonding mechanisms at the interface of ceramic prosthetic materials. J. Biomed.Mater.1971,2:117
    12. K.A.Thomas,et al. the effct of surface macrotexture and hydroxyapatite coating on the mechanical strength and histological profiles of implant materials ,J biomed Mater Res, 1987,21:1395
    13. T.Kokubo. Formation of biologicallly active bone-like apatite on metals and polymers by a biomimetic process. Thermochi,mica Acta,1996,280/281:479-490
    14. DE.Stefilk, RS.corp,et al. Ultrastructural analysis of the attachment(bonding ) Zone between bone and implant biomaterials. J Biomed Mater Res,1998,39:621
    15. JE Davies,N Baldan. Scanning eldctron microscopy of the bone –bioactive implant interface, J Biomed Mater Res,1997,36:2429-2440
    16. Puleo D A, Nanci A. Understanding controlling the bone Implant interface. Biomaterials,1999,20:2311-2321
    17. Jianguo Li, er al. Characterization of calcium phosphates precipitated from simulated body fluid of different buffering capacities. Biomaterials, 1997, 18:743-747
    18. Tertinnikov O N, et al. In vitro hydtoxyapatite deposition onto a film surface –grafted with organophosphate polymer. J Biomed Mater Res,1994, 28: 1365-1373
    19. Kokubo T.Apatite formation on organic polymers by a biomimetic process. Eur J Solid stste Inorg Chem,1995,32:819-827
    20. Hats K, Kokubo T.Growth bone like apatite layer ona subtrate by a biomimetic process.J Am Ceram Soc, 1995,78:1049-1053
    1 李玉宝主编.生物医学材料.北京:化学工业出版社,2003.
    2 Pariente JL. The compatibility of catheters and stents used on urology. Prog Urol Apr,1998(2):181
    3 杨晓芳,奚廷斐. 生物材料生物相容性评价研究进展。 生物医学工程杂志,2001,18(1):123-128
    4 郝和平主编: 生物医学材料生物学评价标准实施指南, 北京, 中国标准出版社,2000.
    5 郝和平,奚廷斐,卜长生主编:医疗器械监督管理和评价,北京:中国医药科技出版社,2001
    6 hideki Aoki. Medical Application of Hydroxyapatie .Ishiyaku EuroAmerica, Inc. Tokyo,1994,205-222
    7 刘月辉,文三立等。复合活性羟基磷灰石陶瓷的研制及其生物相容性研究. 中国生物医学工程学报,2000,19:53-59.
    8 Johson HJ.Biocompatibility test procedures for materials evalation in vitro :comparative test system sensitivty. J Biomed Mater Res, 1983, 17:571.
    9 闻学雷,张彩霞等. 生物材料体内外试验相关性的研究——体外白细胞趋化试验与体内肌肉埋植试验的相关性探讨,生物医学工程杂志, 1999,16(3):263-266
    10 闻学雷,张彩霞等. 生物材料体内外试验相关性的研究——细胞与软组织毒性 ,中国生物医学工程学报,2002,21(4):127
    11 Sabita stivastava,et al. Screening of in vitro cytotoxicity by the adhecive test. Biomaterials, 1990,11(3):133
    12 ISO 10993(ISO/TC194): Biological evaluation of medical devices.
    13 Lee Chou. Molecular Biocompatibility. J Dent Res,1995, 74:190
    14 田文华译. 生物相容性中的免疫反应。国外医学生物医学工程分册,1993,16:340
    15 吴增树。生物材料毒理学及应用技术. 成都,成都科技大学出版社,1988。
    16 H.霍浦夫,A.廖勒,F. 文格尔. 聚酰胺。 北京,中国工业出版社,1965,164-193
    17 Xuejiang Wang, Yubao Li, Jie Wei et al. Devlopment of biomimetic nano hydroxyapatite poly(hexamethylene adipamide) composites. Biomaterials, 2002, 23:4787-91
    18 Li Yubao,er al.., Formation of a bone apatite-like layer on the surface of porous hydroxyapatite ceramics. Biomaterials,1994, 15:835-41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700