认知无线电中动态频谱接入技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统无线通信系统对频谱的利用是基于固定频谱分配策略,无线通信系统只能严格按照频谱的划分,使用授权的频段,这导致了严重的频谱资源浪费。作为认知无线电技术的一项重要应用,动态频谱接入能根据相应的频谱使用规则,利用通信过程中出现的频谱机会适时地接入频谱,在提高频谱利用率方面有着重要的意义。
     本文的研究重点是基于部分可观测马尔科夫决策过程(POMDP)的机会频谱接入算法。算法的改进主要针对多认知用户贪心算法的自私性不足,为此引入了分布式协调团体和协作接入的概念,研究了基于POMDP的分布式协作接入算法,并给出具体的算法流程和MAC层设计细节。仿真结果表明,在算法复杂度无明显增加的前提下,分布式协作接入算法较之贪心接入算法,系统吞吐量和频谱利用率有明显的提升。
Today’s wireless communication systems are characterized by a fixed spectrum assignment policy. The utilization of spectrum is strictly limited by the division and authorization, resulting in a serious waste of spectrum resources. As an important application of cognitive radio, dynamic spectrum access (DSA) can improve the spectrum efficiency by timely accessing spectrum holes according to temporal and spatial traffic statistics during the communications.
     This paper mainly researches opportunistic spectrum access (OSA) algorithm based on Partially Observable Markov Decision Process (POMDP). Aiming at the selfish of the greedy approach in OSA networks with multiple secondary users, the improved algorithm, named distributed cooperative spectrum access algorithm based on POMDP, is given which adopts the concepts of distributed coordination and cooperative spectrum access. Simulation shows that the improved algorithm increases the throughput of the network and the efficiency of spectrum utilization, while there is no significant increase in complexity comparing to the greedy algorithm.
引文
[1] FCC, ET DOCKNET NO.03-103 Notice of proposed rule making and order, Dec. 2003.
    [2] McHenry M. Spectrum white space measurements. New America Foundation Broadband Forum, June 2003.
    [3]周小飞,张宏钢编著,认知无线电原理及应用.北京邮电大学出版社, 2007.
    [4] Mitola J, Maguire G, Jr..Cognitive radio: Making software radios more personal.IEEE Personal Communications Magazine, 1999, 6(4): 13-18.
    [5] Mitola J. Cognitive radio for flexible mobile multimedia communications.Mobile Multimedia Communications 1999,1999 IEEE International Workshop on Nov. 1999, 15-17: 3-10.
    [6] Mitola J. Cognitive radio: An integrated agent architecture of software defined radio. Doctor of Technology ,Royal Inst. Technol. (KTH), Stockholm, Sweden, 2000.
    [7] FCC, Facilitating Opportunities for Flexible, Efficient, and Reliable Spectrum Use Employing Cognitive Radio Technologies, NPRM & Order, ET DOCKNET NO.03-108, FCC 03-322, 2003.
    [8] Simon Haykin. Cognitive Radio:Brain-Empowered Wireless Communications. IEEE Journal on Selected Areas in Communications, 2005, 23(2): 201-220.
    [9] P.Pawelczak, R.V.Prasad, Xia Liang, I.G.M.M.Niemegeers, Cognitive radio Emergency Networks Requirements and Design, New Frontiers in Dynamic Spectrum Access Networks, Nov. 2005, pp: 601-606.
    [10] Jun Zhao, Haitao Zheng, Guanghua Yang. Spectrum sharing through distributed coordination in dynamic spectrum access networks. Wireless Communications and Mobile Computing. 2007, 7: 1061-1075.
    [11] Xiaofei Zhou , Kamya Y. Yazdandoost ,Honggang Zhang , and Imrich Chlamtac. CUWB:Spectrum Adaptation and Evolution in Cognitive UltraWideband Radio.
    [12] Weiss T, Jondral. F. Spectrum pooling: An innovative strategy for the enhan- cement of spectrum efficiency.IEEE Radio Communications Magazine, 2004, 42(3): 8-12.
    [13] McHenry M, Livsics E, Nguyen T, et al. XG dynamic spectrum access field test results[J]. IEEE Communications Magazine, 2007, 45: 51-57.
    [14] End-to-End Reconfigurability E2R_WP5_D5.3_050727, [online].
    [15] D. Grandblaise, C. Kloeck. K. Moessner, et al. Techno-economic of collaborative based secondary spectrum usage-E2R research project outcomes overview, DySPAN 2005, Nov. 2005, pp: 318-327.
    [16]蒋师,屈代明等,“动态频谱接入技术的分类和研究现状”,通信技术, 2008年第11期.
    [17] Robert W. Brodersen, Adam Wolisz, Danijela Cabric, Shridhar Mubaraq Mishra and Daniel Willkomm, CORVUS: a cognitive radio approach for usage of virtual unlicensed spectrum, white paper, Berkeley Wireless Research Center, UC Berkeley, July 29, 2004.
    [18] Jun Zhao, Haitao Zheng, Guanghua Yang. Distributed coordination in dynamic spectrum allocation networks, The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN), Nov. 2005. pp:259-268.
    [19] H. Zheng, L. Cao. Device-centric spectrum management, IEEE DySPAN 2005, Nov. 2005, pp: 56-65.
    [20] I. F. Akyildiz, W. Lee, M. C. Vuran and S. Mohanty. Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey, Computer Networks, 50(2006), pp: 2127-2159.
    [21] M. M. Buddhikot, P. Kolodzy, S. Miller, et al. DIMSUMnet: new directions in wireless networking using coordinated dynamic spectrum access, WoWMOM 2005, June 2005, pp: 78-85.
    [22]莫文承,“认知无线电的频谱分配算法研究”,西安电子科技大学硕士学位论文, 2008年3月.
    [23] Ghasemi, Sousa ES. Collaborative spectrum sensing for opportunistic access in fading environment. In Proc. IEEE DySPAN 2005, pp: 131-136.
    [24] Sahai A, Hoven N, Tandra R. Some fundamental limits in cognitive radio. Aller- ton Conf. on Commun..Control and Computing 2004, 2004.
    [25]谢显中编著,感知无线电技术及其应用.电子工业出版社, 2008.
    [26] Fehske A, Gaeddert JD, Reed JH. A new approach to signal classification using spectral correlation and neural networks. In Proc. IEEE DySPAN 2005, pp:144-150.
    [27] Tang H. Some physical layer issues of wide-band cognitive radio system. In Proc. IEEE DySPAN 2005, pp: 144-150.
    [28] FCC, ET DOCKNET NO.03-237 Notice of inquiry and notice of proposed Rulemaking, 2003.
    [29] D. Cabric, S. M. Mishra, R. W. Brodersen, Implementation Issues in Spectrum Sensing for Cognitive Radios, Asilomar Conference on Signals, Systems, and Computers, 2004.
    [30]周贤伟,孟潭,王丽娜等,“认知无线电研究综述”,电讯技术, 2006年第6期.
    [31] Zheng H, Cao L. Device-centric spectrum management[C]. Proc. IEEE DySPAN 2005, Nov. 2005: 56-65.
    [32] Kloeck. C, Jaekel. H, Jondral. F.K. Dynamic and local combined pricing, allocation and billing system with cognitive radios, The First IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN), 2005, pp: 73-81.
    [33] Zheng H, Peng C. Collaboration and Fairness in Opportunistic Spectrum Access. In Proc. 40th annual IEEE International Conference on Communications. June 2005.
    [34] Wei Wang, Xin Liu. List-Coloring Based Channel Allocation for Open-Spectrum Wireless Networks. IEEE Vehicular Technology Conference (VTC’05), 2005, 1: 690-694.
    [35] James Neel. How Does Game Theory Apply to Radio Resource Management. [online].Available.
    [36] J. Neel, J. H. Reed, R. P. Gilles. The Role of Game Theory in the Analysis of Software Radio Networks. SDR Forum Technical Conference, 2002, 2:NP-3-02.
    [37] J. Neel, J. H. Reed, R. P. Gilles. Convergence of Cognitive Radio Networks, Wireless Communications and Networking Conference(WCNC’04), 2004, 4: 2250-2255.
    [38] J. Huang, R. Berry, and M. L. Honig. Auction-based Spectrum Sharing. ACM/Springer Mobile Networks and Applications, 2006, 11(3): 405-418.
    [39] L. L. Cao and Haitao Zheng. Distributed Rule-Regulated Spectrum Sharing. IEEE Journal on Selected Areas in Communications, 2008, 26(1): 130-145.
    [40] Y. Xing, C. N. Mathur, M. A. Haleem, et a1. Dynamic Spectrum Access with QoS and Interference Temperature Constraints. IEEE Transactions on Mobile Computing, 2007, 6(4): 423-433.
    [41] P. K. Tang, Y. H. Chew, L. C. Ong, et al. Performance of Secondary Radios in Spectrum Sharing with Prioritized Primary Access. Military Communications Conference(MILCOM’06), 2006, l: 1-7.
    [42] Y. Xing, R. Chandramouli, S. Mangold. Dynamic Spectrum Access in Open Spectrum Wireless Networks. IEEE Journal on Selected Areas in Communica-tions, 2006, 24(3): 626-637.
    [43] Q. Zhao, L. Tong, and A. Swami. Decentralized Cognitive MAC for Dynamic Spectrum Access. IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks(DySPAN’05), 2005, 1: 224-232.
    [44] Q. Zhao, L. Tong, and A. Swami, et al.Decentralized Cognitive MAC for Opportunistic Spectrum Access in Ad Hoc Networks: A POMDP Framework. IEEE Journal on Selected Areas in Communications, 2008, 25(3): 589-600.
    [45] Y Chen, Q. Zhao, and A. Swami. Joint Design and Separation Principle for Opportunistic Spectrum Access in the Presence of Sensing Errors. Asilomar Conference on Signals, Systems, Computers(ACSSC’06), 2006, l: 696-700.
    [46] J. Jia, Q. Zhang, and X. Shen. HC-MAC: A Hardware-Constrained Cognitive MAC for Efficiency Spectrum Management. IEEE Journal on Selected Areas in Communications, 2008, 26(1):106-117.
    [47] Jie Xiang, Yan Zhang, Tor Skeie. Medium access control protocols in cognitive radio works. Wireless Communications and Mobile Computing. 2009, 10(1): 31-49.
    [48] Q. Zhao. Spectrum Opportunity and Interference Constraint in Opportunistic Spectrum Access. IEEE Acoustics, Speech, Signal Processing(ICASSP’07), 2007, 3: 605-608.
    [49] N. Clemens, C. Rose. Intelligent Power Allocation Strategies in an Unlicensed Spectrum, IEEE DySPAN’05, Nov. 2005, pp: 37-42.
    [50] Qing Zhao, Brian M. Sadler. A Survey of Dynamic Spectrum Access: Signal Processing, Networking, and regulatory policy, IEEE signal processing magazine MAY 2007.
    [51] Xu L, Tonjes R, Paila T, et al. DRiVE-ing to the Internet: Dynamic Radio for IP services in Vehicular Environments. Proc. of 25th Annual IEEE Conference on Local Computer Networks. Tampa, USA, Nov. 2000.
    [52] Menon R, Buehrer R M, Reed J H. Outage probability based comparison of underlay and overlay spectrum sharing techniques. Proc. IEEE DySPAN. Maryland, USA, Nov. 2005.
    [53] R. Smallwood and E. Sondik. The optimal control of partically observable Markov process over a finite horizon. Operations Research, pp:1071-1088,1971.
    [54] Y Chen, Q. Zhao, and A. Swami. Distributed cognitive MAC for energy constrained opportunistic spectrum access. Proc. IEEE Military Communication Conference, Oct. 2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700