高频振荡通气对急性肺损伤新生猪肺功能及病理影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:用生理盐水反复灌洗新生猪肺泡的方法建立急性肺损伤(ALI)模型,研究分为两个部分:一、高频振荡通气对新生猪急性肺损伤气体交换、肺力学及血流动力学的影响:动态观察常频机械通气(CMV)、高频振荡通气(HFOV)治疗过程中损伤肺的氧合、静态顺应性及血流动力学改变,探讨HFOV对缺少肺表面活性物质引起的新生动物ALI时肺功能及循环功能的影响;二、高频振荡通气对新生猪肺组织大体及肺泡II型上皮细胞病理结构的影响:了解机械通气类型、时间与肺损伤之间的关系,探讨HFOV在治疗新生儿ALI/ARDS及减轻呼吸机相关肺损伤(VALI)发生发展中的机制及应用价值。
     方法:
     (一)第一部分
     1、动物预处理15只出生3天内的新生猪经麻醉后气管切开插管,连接MAQUET Servo-i呼吸机,进行压力控制通气。股动咏插管连续监测动咏血压变化。预处理操作结束后通气30分钟,测量血气、动咏血压、心率、肺静态顺应性,并计算氧合指数(OI)、平均动咏压(MABP)、肺静态顺应性(Cst),作为基础值。
     2、ALI动物模型的建立所有模型建立过程均在CMV模式下进行。经气管导管向气管内注入37℃生理盐水:35ml/kg,停留约10s抽出肺内生理盐水,间隔5min后重复操作。在吸入氧浓度为1.0的条件下直至动咏血气分析Pa02< 100mmHg,并维持1h即认为模型制备成功。
     3、实验动物分组将15只新生猪随机分为3组。对照组(n=3):ALI对照组,ALI模型制备成功后不予机械通气,即处死动物。
     CMV组(n=6):动物均连接MAQUETServo-i呼吸机,进行压力控制通气。分别在常频机械通气治疗24h、48h各处死动物3只。
     HFOV组(n=6):动物模型制备成功后,转换为连接SLE5000呼吸机,进行高频振荡通气。分别在高频振荡通气治疗24h、48h各处死动物3只。
     4、观察指标在建模前、ALI即刻即0h、1h、3h、6h、12h、24h、48h分别监测以下指标
     (1)血气分析经股动咏插管取动咏血行血气分析,并计算OI。
     (2)肺静态顺应性测定采用低流速法,CMV组通过呼吸机自带分析软件,记录第5次呼吸时的数据。HFOV组将HFOV模式转换为CMV模式,呼吸机参数设置同CMV组,记录第5次呼吸时的数据,肺顺应性测完毕后立即转换为HFOV模式。并计算Cst。
     (3)动咏血压及心率记录动咏血压及心率,并计算MABP。
     (二)第二部分
     1、动物预处理同前
     2、ALI动物模型的建立同前
     3、实验动物分组同前
     4、观察指标对照组动物在建模成功后即予处死,CMV组和HFOV分别在机械通气24h和48h各处死3只动物,取肺组织进行以下检测。
     (1)右上肺组织光镜检测:分为重力依赖区和非重力依赖区,HE染色分别计数中性粒细胞(PMN)、巨噬细胞(AM)、红细胞(RBC),改良Mallory’s磷钨酸苏木素法染色分别计数透明膜/水肿液(HM/E)。
     (2)右下肺底组织行透射电镜检测:观察AECII超做结构改变。
     结果:
     (一)第一部分
     1、各组的OI、Cst、HR、MABP在基础状态、ALI0h均无显著性差异。ALI0h的P/F比值<300mmHg、OI较基础值显著增加,Cst较基础值显著下降。
     2、CMV组、HFOV组实验动物的OI随着治疗时间延长呈持续性下降,其中HFOV组动物的OI从第6h起至48h较CMV组动物下降的更明显(P<0.05)。
     3、CMV组部分实验动物在机械通气治疗后1h及3h可见Cst下降,6h起至48h显著高于ALI0h(P<0.05);HFOV组实验动物的Cst随着治疗时间延长呈持续性增加,从1h起就高于ALI0h(P<0.05),从3h起就高于CMV组(P <0.05)。
     4、实验过程中各组实验动物的HR、MABP均无显著改变(P>0.05)。
     (二)第二部分
     1、光镜观察
     (1)肺组织病变重力依赖区重于非重力依赖区。
     (2)PMN:CMV及HFOV各亚组各区PMN均较对照组明显增加(P< 0.01);HFOV48h亚组的重力依赖区PMN较CMV 48h亚组明显减少(P<0.05)。
     (3)AM:CMV 48h、HFOV 24h和48h亚组的AM均较对照组明显减少(P<0.05),HFOV 24h亚组的AM较CMV 24h亚组明显减少(P< 0.01)。
     (4)RBC:CMV及HFOV各亚组各区PMN均较对照组明显增加(P< 0.01);HFOV 24h及48h亚组重力依赖区、非重力依赖区的RBC均较同时间点CMV组少(P<0.01)。
     (5)HM/E:CMV及HFOV各亚组各区HM/E均较对照组明显增加(P< 0.01);HFOV24h及48h亚组重力依赖区、非重力依赖区的HM/E均较同时间点CMV组少(P<0.01)。
     2、透射电镜观察
     各组均可见LB空泡化改变,随机械通气时间延长,HFOV组的AECII较CMV组与基膜、AEC I连接紧密、LB空泡化改变轻,CMV24h亚组还可见AECII向肺泡腔排出的分泌物和幼稚AECII,CMV48h亚组可见脱落AECII,细胞核体积变小。
     结论:
     1、HFOV治疗新生动物ALI/ARDS,不仅可以快速有效改善氧合、肺顺应性,而且对血流动力学无明显不良影响。
     2、机械通气治疗新生动物ALI/ARDS时肺组织病理改变在重力依赖区重于非重力依赖区。
     3、HFOV治疗新生动物ALI/ARDS,不仅减少肺组织炎症浸润、出血、和水肿液形成,还减轻对AECII的损伤,从而减轻VALI。
Ojective
     In this study, repeated whole-lung lavage with normal saline was used to induce newborn piglets model for neonatal acute lung injury (ALI). The study holds two parts: 1、The effects of high frequency oscillatory ventilation on gas exchange、lung mechanics and hemodynamics in newborn piglets with acute lung injury: to investigate the effect of HFOV on lung function and hemodynamics in newborn piglets with acute lung injury, induced by pulmonary surfactant deficiency; 2、The effects of high frequency oscillatory ventilation on pathological structure and type II alveolar epithelium cells in newborn piglets with acute lung injury: to investigate the relationship between ventilation modes、time length and lung injury, what's more, to explore the mechanisms and applicable value of HFOV in neonatal ALI/ARDS, and in relieving and attenuating ventilator associated lung injury (VALI).
     Methods
     (—)Part One
     1、Animal Preparation
     15 no more than 3-day-old newborn piglets were intubated after anesthesia, ventilated with a MAQUET Servo-i ventilaor, using pressure control ventilation mode. Femoral artery was cannulated for arterial blood pressure monitoring and blood sampling. After surgical procedure and a stabilization period of 30 minutes, the arterial blood gas, arterial blood pressure, heart rate(HR), lung static compliance(Cst) were obtained, calculated for oxygenation index(OI), mean arterial blood pressure(MABP) and Cst as baseline parameters (baseline).
     2、Induction of acute lung injury
     All the piglets ALI were induced using CMV mode. To induce acute lung injury, warmed normal saline (37°C) at a volume of 35 ml/kg was instilled continuously through a endotracheal tube, the lavage procedure was repeated after each 5 minutes inteval until the PaO2 remained below 100 mmHg under the fraction of inspired oxygen being 1.0 for one hour.
     3、Study Groups
     After completion of lavage, piglets were randomly assigned to one of three study groups: control (n=3), conventional mechanical ventilation (CMV, n=6), or high frequency oscillatory ventilation (HFOV, n=6).Control group: piglets were killed after the completion of lavage series, no mechanical ventilation.CMV group: piglets were ventilated using a MAQUET Servo-i ventilaor with pressure control ventilation mode.Each time three piglets were killed after ventilating 24 hours and 48 hours respectively.HFOV group: piglets were ventilated using a SLE5000 ventilaor with high frequency oscillatory ventilation mode. Each time three piglets were killed after ventilating 24 hours and 48 hours respectively.
     4、Observing Markers and MethodsObserving markers were monitoring at preinjury、ALI 0h、1h、3h、6h、12h、24 h、48 h respectively.
     (1) Blood Gas Analysis: arterial blood samples were analyzed and calculated for OI.
     (2) Lung Static Compliance: fifth datum of respiration were recorded using low flow technique. In HFOV group, HFOV mode was changed into CMV mode before monitoring, ventilator parameters were set as those in CMV group, after monitoring completed, ventilator mode was changed back into HFOV mode immediatly.Cst was calculated.
     (3) Arterial Blood Pressure and Heart Rate: MABP was calculated.
     (二) Part Two
     1、Animal Preparation It is same as part one.
     2、Induction of acute lung injury It is same as part one.
     3、Study Groups It is same as part one.
     4、Observing Markers and Methods
     (1) light Microscopy (LM): right upper lung tissues were divided into gravitational dependent region and gravitational nondependent region. The numbers of polymorphonuclear leukocyte (PMN)、alveolar macrophage (AM)、red blood cell (RBC) were counted respectively using Hematoxylin-Eosine staining. The numbers of hyaline membrane/edema(HM/E) were counted using modified Mallory's phosphotungstic acid-hematoxylin (PTAH) staining.
     (2) Transmission Electron Microscope (TEM): the ultrastructure of type II alveolar epithelium cells(AEC II ) in right down-backside lung tissue was observed.
     Results
     (—) Part One
     1、No differences were found in OI、Cst、HR、MABP at baseline、ALI Oh between groups. At ALI 0h, P/F ratio was below 300 mmHg, apart from this, OI was significantly higher and Cst was significantly lower than those at baseline.
     2、As the extension of ventilation time, OI was continuously decreased in CMV group and HFOV group, however, from sixth hour to forty-eighth hour, OI in HFOV group was significantly lower than that in CMV group (P<0.05).
     3、In CMV group, it was observed that Cst was decreased in some piglets at the first and third hour, Cst was significantly higher than that at ALI Oh (P< 0.05). In HFOV group, Cst was continuously increased as the extension of ventilation time,it was significantly higher than that at ALI Oh from the first hour to forty-eighth hour (P<0.05), and it was significantly higher than that in CMV group from third hour to forty-eighth hour (P<0.05). 4、No differences were found in HR、MABP at each time point between groups (P>0.05).
     (二) Part Two
     1、TM
     (1) It presented a greater degree of histopathologic lung damage in the gravitational dependent region than that in gravitational nondependent region.
     (2) PMN: PMNs in gravitational dependent and nondependent region of both CMV and HFOV group were significantly more than in control group (P< 0.01). PMNs in gravitational dependent region of HFOV 48h group were significantly less than in CMV 48h group (P<0.05).
     (3) AM: AMs in CMV 48h group、HFOV 24h group and HFOV 48h group were significantly less than in control group (P<0.05). AMs in HFOV 24h group were significantly less than in CMV 24h group (P<0.01).
     (4) RBC: RBCs in gravitational dependent and nondependent region of both CMV and HFOV group were significantly more than in control group (P< 0.01). RBCs in gravitational dependent and nondependent region of all HFOV groups were significantly less than in CMV group respectively (P< 0.01).
     (5) HM/E: HM/Es in gravitational dependent and nondependent region of both CMV and HFOV group were significantly more than in control group (P< 0.01). HM/Es in gravitational dependent and nondependent region of all HFOV groups were significantly less than in CMV group respectively (P< 0.01).
     2、TEM
     It was found that lamellar body (LB) with vacuole-like deformity was occurred in each group. As the extension of ventilation time, comparing with CMV group, the juxtaposition of AECII to basal membrane and AEC I in HFOV group was closer and the electron density of LB in HFOV group decreased less. In CMV 24h group, the secretion of AECII discharged into alveolar space and naive AECII were observed. In CMV 48h group, some AEC II s were dislodged from basal membrane, and the volume of some nuclei became shrank.
     Conclusions
     1、Treating neonatal ALI/ARDS with HFOV, it can more rapidly andeffectively improve gas exchange and lung mechanics, and have no adverse effect on hemodynamics.
     2、Treating neonatal ALI/ARDS with mechanical ventilation,histopathologic lung damage in the gravitational dependent region was more intense than that in gravitational nondependent region.
     3、HFOV can reduce and attenuate VALI through reducing pulmonaryinflammation、haemorrhage and alveolar edema and hyaline membrane formation, and attenuating the damage to AEC II.QIN Xiaofei (Pediatrics) Directed by professor FU Wanhai
引文
[1] Capoluongo E, Vento G, Santonocito1 C, et al. Comparison of serum levels of seven cytokines in premature newborns undergoing different ventilatory procedures:high frequency oscillatory ventilation or synchronized intermittent mandatory ventilation[J]. Eur Cytokine Netw, 2005,16(3):199-205.
    [2] Henderson-Smart DJ, De Paoli AG, Clark RH, et al. High frequency oscillatory ventilation versus conventional ventilation for infants with severe pulmonary dysfunction born at or near term[J]. Cochrane Database Syst Rev, 2009,8(3):CD002974.
    [3] Marchak BE, Thompson WK, Duffty P, et al. Treatment of RDS by high-frequency oscillatory ventilation: a preliminary report[J]. J Pediatr, 1981,99(2):287-292.
    [4]郭风梅,邱海波,谭焰,等.低流速法测定急性呼吸窘迫综合征静态肺压力-容积曲线的比较性实验研究[J].中华结核和呼吸杂志,2001,24(12):728—731.
    [5] Schindler M, Seear M. The effect of lung mechanics on gas transport during high-frequency oscillation[J]. Pediatr Pulmonol,1991,11(4):335-339.
    [6] Rotta AT, Gunnarsson B, Fuhrman BP, et al. Comparison of lung protective ventilation strategies in a rabbit model of acute lung injury[J]. Crit Care Med,2001,29(11):2176-2184.
    [7]李新甫,汪建新.急性肺损伤动物模型研究进展[J].国外医学呼吸系统分册,2005,25(7):506—508,511.
    [8] Yoder BA, Siler-Khodr T, Winter VT, et al. High-frequency oscillatory ventilation: effects on lung function, mechanics, and airway cytokines in the immature baboon model for neonatal chronic lung disease[J]. Am J Respir Crit Care Med,2000,162(5):1867-1876.
    [9] Moriette G, Paris-Llado J, Walti H,et al. Prospective randomized multicenter comparison of high-frequency oscillatory ventilation and conventional ventilation in preterm infants of less than 30 weeks with respiratory distress syndrome[J]. Pediatrics,2001,107(2):363-372.
    [10]孙眉月.高频通气的临床应用[J].临床儿科杂志,2005,23(11):762—764.
    [11] Cools F, Askie LM, Offringa M for the Prevention of Ventilator Induced Lung Injury Collaborative Study Group (PreVILIG Collaboration). Elective high-frequency oscillatory ventilation in preterm infants with respiratory distress syndrome:an individual patient data meta-analysis[J]. BMC Pediatr,2009,9:33.
    [12] Eichenwald EC.High frequency oscillatory ventilation:is equivalence with conventional mechanical ventilation enough? [J]. Arch Dis Child Fetal Neonatal Ed, 2006 ,91(5):F315-F317.
    [13] Subhedar NV, Tan AT, Sweeney EM,et al. A comparison of indices of respiratory failure in ventilated preterm infants[J]. Arch Dis Child Fetal Neonatal Ed,2000,83(2): F97-F100.
    [14] Kumar D, Super DM, Fajardo RA, et al. Predicting outcome in neonatal hypoxic respiratory failure with the score for neonatal acute physiology (SNAP) and highest oxygen index (OI) in the first 24 hours of admission[J]. J Perinatol,2004 ,24(6):376-381.
    [15] Ambalavanan N, Van Meurs KP, Perritt R,et al. Predictors of death or bronchopulmonary dysplasia in preterm infants with respiratory failure[J]. J Perinatol,2008,28(6):420-426.
    [16] Seeley E, McAuley DF, Eisner M, et al. Predictors of mortality in acute lung injury during the era of lung protective ventilation[J].Thorax,2008,63(11):994-998.
    [17]王少根.高频震荡通气联合肺表面活性物质治疗吸入性损伤的实验研究[D].南昌:南昌大学,2007.
    [18] Kinsella JP, Parker TA, Galan H,et al. Independent and combined effects of inhaled nitric oxide,liquid perfluorochemical,and high-frequency oscillatory ventilation in premature lambs with respiratory distress syndrome[J]. Am J Respir Crit Care Med, 1999 ,159(4 Pt 1):1220-1227.
    [19]刘震宇,闫淑嫒,丁健.高频振荡通气治疗新生儿呼吸窘迫综合征的随机对照研究[J].中国急救医学,2008,28(8):695—698.
    [20] Ben Jaballah N, Mnif K, Khaldi A, et al. High-frequency oscillatory ventilation in term and near-term infants with acute respiratory failure: early rescue use[J]. Am J Perinatol,2006,23(7):403-411. [21] Viana ME, Sargentelli GA, Arruda AL,et al. The impact of mechanical ventilation strategies that minimize atelectrauma in an experimental model of acute lung injury[J]. J Pediatr (Rio J),2004,80(3):189-196.
    [22]许峰,何勇,匡风梧,等.急性肺损伤大鼠肺表面活性物质及肺表面活性物质蛋白的研究[J].重庆医科大学学报,2004,29(2):131—133.
    [23]郑华飞,刘志远,杨宗城.家兔烟雾吸人性损伤早期肺表面活性物质存在形式的改变及意义[J].中华烧伤杂志,2004,20(6):362—364.
    [24] Demirel N, Bas AY, Zenciroglu A. Bronchopulmonary dysplasia in very low birth weight infants[J]. Indian J Pediatr,2009,76(7):695-698.
    [25] Gullberg N, Winberg P, Selldén H. Changes in mean airway pressure during HFOV influences cardiac output in neonates and infants[J]. Acta Anaesthesiol Scand,2004,48(2):218-223.
    [26] Thome UH, Carlo WA, Pohlandt F. Ventilation strategies and outcome in randomised trials of high frequency ventilation[J]. Arch Dis Child Fetal Neonatal Ed,2005,90(6):F466-F473.
    [1] Bishop AE. Pulmonary epithelial stem cells[J]. Cell P rolif,2004,37(1):89-96.
    [2] Kim KK, Kugler MC, Wolters PJ, et al.Alveolar epithelial cell mesenchymaltransition develops in vivo during pulmonary fibrosis and is regulated by theextracellular matrix[J]. Proc Natl Acad Sci USA,2006,103(35):13180-13185.
    [3] Almlen A, Stichtenoth G, Linderholm B, et al.Surfactant proteins B and C are bothnecessary for alveolar stability at end expiration in premature rabbits withrespiratory distress syndrome[J]. J Appl Physiol,2008,104(4):1101-1108.
    [4] Goldmann T, K?hler D, Schultz H, et al.On the significance of SurfactantProtein-A within the human lungs[J]. Diagn Pathol,2009, 4:8.
    [5] Ramadas RA, Wu L, LeVine AM. Surfactant protein A enhances production ofsecretory leukoprotease inhibitor and protects it from cleavage by matrixmetalloproteinases[J].J Immunol.2009,182(3):1560-1567.
    [6] Matthay MA, Fukuda N, Frank J, et al. Alveolar epithelial barrier role in lung fluidbalance in clinical lung injury[J].Clin Chest Med,2000,21(3):477-490.
    [7]林云恩,顾莹莹,刘慕嫦,等.纤维素染色效果比较[J].中国热带医学,2008,8(12):2241—2242.
    [8] Viana ME, Sargentelli GA, Arruda AL, et al. The impact of mechanical ventilationstrategies that minimize atelectrauma in an experimental model of acute lunginjury[J]. J Pediatr (Rio J),2004,80(3):189-196.
    [9] Fan J.TLR cross-talk mechanism of hemorrhagic shock-primed pulmonaryneutrophil infiltration[J]. Open Crit Care Med J, 2010,2:1-8.
    [10] Rotstein OD. Modeling the two-hit hypothesis for evaluating strategies to preventorgan injury after shock/resuscitation[J].J Trauma, 2003,54(5 Suppl):S203–S206.
    [11] Fan J, Marshall JC, Jimenez M, et al.Hemorrhagic shock primes for increasedexpression of cytokine-induced neutrophil chemoattractant in the lung:role inpulmonary inflammation following lipopolysaccharide[J]. JImmunol,1998,161(1):440–447.
    [12] Fadok VA, Bratton DL, Konowal A, et al. Macrophages that have ingestedapoptotic cells in vitro inhibit proinflammatory cytokine production throughautocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF[J]. J ClinInvest,1998;101(4):890–898.
    [13] Matute BG, Martin TR. Science review:apoptosis in acute lung injury[J].CritCare,2003,7(5):355-358.
    [14] Lu MC, Liu TA, Lee MR, et al.Apoptosis contributes to the decrement innumbers of alveolar macrophages from rats with polymicrobial sepsis[J]. JMicrobiol Immunol Infect,2002,35(2):71-77.
    [15] Bingisser R, Stey C, Weller M,et al. Apoptosis in human alveolar macrophagesis induced by endotoxin and is modulated by cytokines[J]. Am J Respir Cell MolBiol,1996,15(1):64-70.
    [16] Capoluongo E, Vento G, Santonocito C, et al. Comparison of serum levels ofseven cytokines in premature newborns undergoing different ventilatoryprocedures:high frequence oscillatory ventilation or synchronized intermittentmandatory ventilation[J]. Eur Cytokine Netw, 2005, 16(3):199-205.
    [17] von der Hardt K, Kandler MA, Fink L, et al. High frequency oscillatoryventilation suppresses inflammatory response in lung tissue and microdissectedalveolar macrophages in surfactant depleted piglets. Pediatr Res, 2004,55(2):339-346.
    [18]舒林华,薛辛东,舒林宏,等.脂多糖诱导的急性肺损伤幼鼠肺泡II型上皮细胞超做结构研究(英文)[J].国际儿科学杂志,2007,34(3):166—168.
    [19]舒林华,魏克伦,尚云晓,等.急性肺损伤幼鼠肺泡II型上皮细胞和SP—A变化相关性的研究[J].中国当代儿科杂志,2008,10(4):504—508.
    [20]舒林华,魏克伦,尚云晓,等.肺表面活性蛋白A,D在内毒素急性肺损伤时变化的研究[J].中国医科大学学报,2008,37(2):217—220.
    [21]舒林华,魏克伦,刘春峰,等.对LPS诱导的急性肺损伤幼鼠肺组织SP—A变化的研究[J].中国当代儿科杂志,2008,10(2)::203—206.
    [22] Pugin J, Dunn I, Jolliet P, et al. Activation of human macrophages bymechanical ventilation in vitro[J]. Am J Physiol,1998,275(6 Pt1):L1040–L1050.
    [23] Vlahakis NE, Schroeder MA, Limper AH, et al. Stretch inducescytokine release by alveolar epithelial cells in vitro[J]. Am JPhysiol,1999,277(1 Pt 1):L167–L173.
    [24] Gregory TJ, Longmore WJ, Moxley MA, et al. Surfactant chemical compositionand biophysical activity in acute respiratory distress syndrome[J]. J Clin Invest,1991,88(6):1976-1981.
    [25] Pison U, Obertacke U, Brand M, et al. Altered pulmonary surfactant inuncomplicated and septicemia-complicated courses of acute respiratory failure[J].J Trauma,1990,30(1):19-26.
    [26] Gunther A, Siebert C, Schmidt R, et al. Surfactant alterations in severepneumonia,acute respiratory distress syndrome,and cardiogenic lung edema[J].Am J Respir Crit Care Med,1996,153(1):176-184.
    [27] Vockeroth D, Gunasekara L, Amrein M, et al. Role of cholesterol in thebiophysical dysfunction of surfactant in ventilator-induced lung injury[J]. Am JPhysiol Lung Cell Mol Physiol,2010,298(1):L117-L125.
    [28] Thorley AJ, Goldstraw P, Young A, et al. Primary human alveolartype II epithelial cell CCL20(macrophage inflammatoryprotein-3alpha)-induced dendritic cell migration[J]. Am J Respir CellMol Biol,2005,32(4):262–267.
    [29] Sato K, Tomioka H, Shimizu T, et al. Type II alveolar cells play rolesin macrophage-mediated host innate resistance to pulmonarymycobacterial infections by producing proinflammatory cytokines[J]. JInfect Dis,2002,185(8):1139–1147.
    [30] Kannan S, Huang H, Seeger D, et al. Alveolar epithelial type II cells activatealveolar macrophages and mitigate P. Aeruginosa infection[J]. PLoS One.2009,4(3):e4891.
    [31] Huynh ML, Fadok VA, Henson PM. Phosphatidylserine-dependent ingestion ofapoptotic cells promotes TGF-beta1 secretion and the resolution ofinflammation[J]. J Clin Invest, 2002,109(1):41-50.
    [32] Teder P, Vandivier RW, Jiang D, et al. Resolution of Lung Inflammation byCD44[J]. Science, 2002,296(5565):155-158.
    [33] Hart SP, Dougherty GJ, Haslett C, et al. CD44 regulates phagocytosis ofapoptotic neutrophil granulocytes,but not apoptotic lymphocytes,by humanmacrophages[J]. J Immunol,1997,159(2):919-925.
    [34] Crouch E, Wright JR. Surfactant proteins a and d and pulmonary host defense[J].Annu Rev Physiol,2001,63:521-554.
    [35] Wright JR. Clearance and recycling of pulmonary surfactant[J]. Am J Physiol,1990,259(2 Pt 1):L1-L12.
    [36] Quintero OA,Wright JR. Clearance of surfactant lipids by neutrophils andmacrophages isolated from the acutely inflamed lung[J]. Am J Physiol Lung CellMol Physiol,2002,282(2):L330-L339.
    [37] Piotrowski WJ, Marczak J. Cellular sources of oxidants in the lung[J]. Int JOccup Med Environ Health, 2000,13(4):369-385.
    [38] Andersson S, Kheiter A, Merritt TA. Oxidative inactivation of surfactants[J].Lung, 1999,177(3):179-189.
    [39] Malloy JL,Wright JR. In vivo clearance of surfactant lipids during acutepulmonary inflammation[J]. Respir Res. 2004,5:8.
    [40] Wright JR. Host defense functions of pulmonary surfactant[J]. Biol Neonate,2004,85(4):326-332.
    [41] St审ber F, Wrigge H, Schroeder S, et al. Kinetic and reversibility of mechanicalventilation associated pulmonary and systemic inflammatory response in patientswith acute lung injury[J]. Intensive Care Med, 2002,28(7):834–841.
    [42] Parsons PE, Matthay MA, Ware LB, et al. Elevated plasma levels of soluble TNFreceptors are associated with morbidity and mortality in patients with acute lunginjury[J]. Am J Physiol Lung Cell Mol Physiol, 2005,288(3):L426-L431.
    [43] Parsons PE, Eisner MD, Thompson BT, et al. Lower tidal volume ventilation andplasma cytokine markers of inflammation in patients with acute lung injury[J].Crit Care Med, 2005 ,33(1):1-6.
    [44] Cepkova M, Brady S, Sapru A, et al. Biological markers of lung injury beforeand after the institution of positive pressure ventilation in patients with acute lunginjury[J]. Crit Care, 2006, 10(5): R126.
    [45] Eisner MD, Parsons P, Matthay MA, et al. Plasma surfactant protein levels andclinical outcomes in patients with acute lung injury[J]. Thorax, 2003,58(11):983–988.
    [46] Determann RM, Royakkers AA, Haitsma JJ, et al. Plasma levels of surfactantprotein D and KL-6 for evaluation of lung injury in critically ill mechanicallyventilated patients[J]. BMC Pulm Med, 2010, 10: 6.
    [47] Yoder BA, Siler-Khodr T, Winter VT, et al. High-frequency oscillatoryventilation:effects on lung function,mechanics,and airway cytokines in theimmature baboon model for neonatal chronic lung disease[J]. Am J Respir CritCare Med, 2000,162(5):1867-1876.
    [48] Baba A, Kim YK, Zhang H, et al. Perfluorocarbon blocks tumor necrosisfactor-alpha-induced interleukin-8 release from alveolar epithelial cells in vitro[J].Crit Care Med,2000,28(4):1113-1118.
    [49] Grau V, Wilker S, Lips KS, et al. Administration of keratinocyte growth factordown-regulates the pulmonary capacity of acetylcholine production[J]. Int JBiochem Cell Biol,2007,39(10):1955-1963.
    [50] van Haaften T, Byrne R, Bonnet S, et al. Airway delivery of mesenchymal stemcells prevents arrested alveolar growth in neonatal lung injury in rats[J]. Am JRespir Crit Care Med,2009,180(11):1131-1142.
    [1] Ashbaugh DG, Bigelow DB, Petty TL, et al.Acute respiratory distress in adults [J].Lancet,1967,2(7511):319-323.
    [2] Bernard GR, Artigas A, Brigham KL, et al.The American-European ConsensusConference on ARDS. Definitions, mechanisms, relevant outcomes, andclinicaltrial coordination[J]. Am J Respir Crit Care Med,1994, 149(3 Pt 1):818-824.
    [3] Liu KD, Matthay MA.Advances in critical care for the nephrologist:acute lunginjury/ARDS[J].Clin J Am Soc Nephrol,2008,3(2):578-586.
    [4]甘小庄,宋国维.欧洲新生儿呼吸窘迫综合征治疗共识指南介绍[J].实用儿科临床杂志,2008,23(14):1136—1140.
    [5] Chen X, Hyatt BA, Mucenski ML, et al.Identification and characterization of alysophosphatidylcholine acyltransferase in alveolar type II cells[J]. Proc NatlAcad Sci USA,2006,103(31):11724-11729.
    [6] Nakanishi H, Shindou H, Hishikawa D, et al.Cloning and characterization ofmouse lung-type acyl-CoA:lysophosphatidylcholine acyltransferase1(LPCAT1):expression in alveolar type II cells and possible involvement insurfactant production[J]. J Biol Chem,2006,281(29):20140-20147.
    [7] Kim CF, Jackson EL, Woolfenden AE, et al.Identification of bronchioalveolarstem cells in normal lung and lung cancer[J]. Cell,2005,121(6):823-835.
    [8] Krause DS, Theise ND, Collector MI, et al.Multi-organ,multi-lineage engraftmentby a single bone marrow-derived stem cell[J]. Cell,2001,105(3):369-377.
    [9] Bishop AE.Pulmonary epithelial stem cells[J]. Cell P rolif,2004,37(1):89-96.
    [10] Kim KK, Kugler MC, Wolters PJ, et al.Alveolar epithelial cell mesenchymaltransition develops in vivo during pulmonary fibrosis and is regulated by theextracellular matrix[J]. Proc Natl Acad Sci USA,2006,103(35):13180-13185.
    [11] Almlen A, Stichtenoth G, Linderholm B, et al.Surfactant proteins B and C areboth necessary for alveolar stability at end expiration in premature rabbits withrespiratory distress syndrome[J]. J Appl Physiol,2008,104(4):1101-8.
    [12] Goldmann T, K?hler D, Schultz H, et al.On the significance of SurfactantProtein-A within the human lungs[J]. Diagn Pathol,2009, 4:8.
    [13] Ramadas RA, Wu L, LeVine AM. Surfactant protein A enhances production ofsecretory leukoprotease inhibitor and protects it from cleavage by matrixmetalloproteinases[J]. J Immunol.2009,182(3):1560-7.
    [14] Matthay MA, Fukuda N, Frank J,et al.Alveolar epithelial barrier role in lung fluidbalance in clinical lung injury[J]. Clin Chest Med,2000,21(3):477-490.
    [15]舒林华,魏克伦,尚云晓,等.急性肺损伤幼鼠肺泡II型上皮细胞和SP—A变化相关性的研究[J].中国当代儿科杂志,2008,10(4):504—508.
    [16] Hung RW, Chow AW.Dissecting the“end game”:clinical relevance,molecularmechanisms and laboratory assessment of apoptosis[J].Clin InvestMed,2004,27(6):324-344.
    [17] Albertine KH, Soulier MF, Wang Z, et al. Fas and fas ligand are up-regulated inpulmonary edema fluid and lung tissue of patients with acute lung injury and theacute respiratory distress syndrome[J].Am J Pathol,2002,161(5):1783–1796.
    [18] Neff TA, Guo RF, Neff SB, Sarma JV, et al.Relationship of acute lunginflammatory injury to Fas/FasL system[J].Am J Pathol,2005,166(3):685–694.
    [19] Lukkarinen HP, Laine J, K??p? PO.Lung epithelial cells undergo apoptosis inneonatal respiratory distress syndrome[J].Pediatr Res,2003,53(2):254-259.
    [20] Xinmin D, Yunyou D, Chaosheng P, et al.Dexamethasone treatment attenuatesearly seawater instillation-induced acute lung injury in rabbits[J].PharmacolRes,2006,53(4):372-379.
    [21] Fehrenbach H, Fehrenbach A, Dietzel E, et al.Effects of keratinocyte growthfactor on intra-alveolar surfactant fixed in situ:Quantitative ultrastructural andimmunoelectron microscopic analysis[J].Anat Rec(Hoboken),2007,290(8):974-980.
    [22] Baba Y, Yazawa T, Kaneqae Y, et al. Keratinocyte growth factor genetransduction ameliorates acute lung injury and mortality in mice[J].Hum GeneTher,2007,18(2):130-141.
    [23] Schmidt R, Steinhilber W, Ruppert C, et al.An ELISA technique forquantification of surfactant apoprotein (SP)-C in bronchoalveolar lavagefluid[J].Am J Respir Crit Care Med,2002,165(4):470-474.
    [24] Gunther A, Siebert C, Schmidt R, et al.Surfactant alterations in severepneumonia,acute respiratory distress syndrome,and cardiogenic lung edema[J].Am J Respir Crit Care Med,1996,153(1):176-184.
    [25] Schmidt R, Meier U, Yabut-Perez M, et al.Alteration of fatty acid profiles indifferent pulmonary surfactant phospholipids in acute respiratory distresssyndrome and severe pneumonia[J]. Am J Respir Crit CareMed,2001,163(1):95-100.
    [26]舒林华,魏克伦,尚云晓,等.肺表面活性蛋白A,D在内毒素急性肺损伤时变化的研究[J].中国医科大学学报,2008,37(2):217—220.
    [27] SHU LH, WU XQ, WEI KL, et al.Temporal changes of pulmonary surfactantprotein D in young rats with acute lung injury induced bylipopolysaccharide[J].Chin J Contemp Pediatr,2005,7(6):483-488.
    [28] Mason RJ, Kalina M, Nielsen LD, et al.Surfactant protein C expression inurethane!induced murine pulmonary tumors[J].Am J Pathol,2000,156(1):175-182.
    [29] White CW, Greene KE, Allen CB, et al.Elevated expression of surfactant proteinsin newborn rats during adaptation to hyperoxia[J].Am J Respir Cell MolBiol,2001,25(1):51-59.
    [30] Merrill JD, Ballard RA, Cnaan A, et a1.Dysfunction of pulmonary surfactant inchornically ventilated premature infants[J].Pediatr Res,2004,56(6):918-926.
    [31] Schmidt R, Markart P, Ruppert C, et al.Time-dependent changes in pulmonarysurfactant function and composition in acute respiratory distress syndrome due topneumonia or aspiration[J].Respir Res,2007,8:55.
    [32] Sun Y, Wang YQ, Zhong JG, et al.Influence of porcine pulmonary surfactantadministered at different time on therapeutic effects in rats with oleic acid inducedacute lung injury[J].Zhongguo Wei Zhong Bing Ji Jiu Yi Xue,2008,20(2):88-91.
    [33] van Eeden SF, Klut ME, Leal MA, et al.Partial liquid ventilation withperfluorocarbon in acute lung injury:light and transmission electron microscopystudies[J].Am J Respir Cell Mol Biol,2000,22(4):441-450.
    [34] Hirsch J, Hansen KC, Sapru A, et al.Impact of low and high tidal volumes on therat alveolar epithelial type II cell proteome[J].Am J Respir Crit CareMed,2007,175(10):1006-1013.
    [35] Lecuona E, Saldias F, Comellas A, et al.Ventilator-associated lung injurydecreased lung ability to clear edema in rats[J].Am J Rrspir Crit CareMed,1999,159(2):603-609.
    [36] Shunji Tajima, Manabu Soda, Masashi Bando, et al.Prevention effects ofedaravone,a free radical scavenger,on lipopolysaccharide-induced lung injury inmice[J].Respirology,2008,13(5):646-653.
    [37] Eisner MD, Parsons P, Matthay MA, Ware L, Greene K; Acute respiratorydistress syndrome network.Plasma surfactant protein levels and clinical outcomesin patients with acute lung injury[J].Thorax,2003,58(11):983-988.
    [38] Mever NJ, Garcia JG.Wading into the genomic pool to unravel acute lung injurygenetics[J].Proc Am Thorac Soc,2007,4(1):69-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700