人参花挥发油的质谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人参花蕾系采集五加科(Araliaceae)植物人参(Panax Ginseng C.A. Meyer )生长4年以上的花蕾,人参生于以红松为主的针阔混交林或杂木下,分布于中国、朝鲜、俄罗斯境内。我国人参的野生及栽培地区主要覆盖于吉林、辽宁、黑龙江及河北北部的山地。研究表明,人参挥发油主要成分有倍半萜烯类、脂肪族、芳香族及杂环类,具有消炎、镇咳、抗疲劳,抗肿瘤的作用。关于人参花的挥发性成分研究国内外的研究较少,国内报道基本见于20世纪90年代初,由于实验条件限制,对人参花的挥发性成分的研究还不够全面,所以有必要利用现代技术对其进行深入的研究。
     本文结合了传统的水蒸汽蒸馏法和现代的超临界CO2萃取的方法对人参花的挥发油的进行了工艺的优化,通过单因素考察确定水蒸汽法提取人参花的最佳工艺是:粉碎粒度为过10目筛,料液比为1:8,提取时间为8小时,回收率为0.184%;通过正交试验得出超临界CO2萃取法最佳条件为萃取压力30MPa,萃取温度50℃,萃取时间2 h,回收率为2.15%。
     首次采用GC-MS对超临界CO2萃取法(SFE)萃取人参花中的挥发性成分进行了分析鉴定,结合分析传统方法水蒸汽蒸馏法(SD)法提取的挥发油,将二者的成分进行了比较。两种方法分别鉴定了67种和20种成分,分别占挥发油总流出物峰面积的89.67 %及61.84 %。人参花水蒸汽法提取人参花挥发油中组分中含量超过1%的共有11个,全部为萜类;SFE法提取人参花挥发油流出物中,含量在1%以上的有9个化合物。
     运用酸催化法结合GC—MS分析并鉴定出人参花中含有13种脂肪酸,主要为亚油酸、十四甲基-十五酸、亚麻酸,棕榈酸。实验结果表明人参花中含有丰富的不饱和脂肪酸。鉴定出的不饱和脂肪酸有3种,分别为亚油酸,亚麻酸,十六碳三烯酸。不饱和脂肪酸总含量达到总流出物峰面积的58.62%。
     首次采用HS-SPME-GC-MS联用技术对人参花中的挥发性成分进行分析,实验优化了分析人参花挥发性成分的条件为样品在70℃下平衡30 min后,用65μm聚二甲基硅氧烷-二乙烯基苯( PDMS-DVB )纤维头对人参花样品顶空吸附45 min,于250℃下解吸5 min,然后采用GC-MS对解吸物进行分离鉴定,共鉴定出38种成分,相对含量在1%以上的共有8种,与SD提取的人参花挥发油成分相同的组分有23种,两种方法提取的主要成分基本一致,通过对SPME的方法准确性和精密度的检验,证明了该方法稳定可靠,一定程度上可以取代SD法进行快速的定性和半定量分析。
     采用静态顶空-气相色谱-质谱法(SHS-GC-MS )分离鉴定了人参花中的挥发性成分,实验中优化了SHS的萃取条件,在80℃下平衡40min后用锁式气体针精密抽取10ml人参花粉末顶空的空气,用GC-MS进行分离鉴定,共鉴定其出18种挥发性成分,占色谱总流出物面积的50.3%。
     综合鉴定出的SD、SFE、SPME和HS四种提取方法提取的人参花挥发油成分共计103种,与已报道的文献比对,首次从人参挥发油中检测出的化合物共计58种。
     利用现代质谱技术与代谢组学相的方法,筛选出人参挥发油引起的大鼠尿液中显著性变化的3种生物标记物,分别为C16 H34 N4 O3,C14 H32 N6 O5,C38 H74 N10 O17。这些热证标记物的发现对寻找人参导致“上火”的热证的原因起到重要的作用。
     通过对超临界CO2萃取法所提取人参花挥发油,进行抗氧化活性实验得出,人参花挥发油具有一定的清除自由基的能力,样品浓度在1mg/ml~1.8ml/ml范围内,抗氧化剂浓度与DPPH清除率之间基本呈线性关系,本实验数据为进一步摸清人参花活性部位及开发利用该资源奠定了基础。
Ginseng flower bud is the flower bud of Araliaceae (Araliaceae) plant ginseng (Panax Ginseng CA Meyer),which is growing more than 4 years, The ginseng mainly grows in conifer and broadleaf mixed forest or weed-tree which dominated by Korean pine, Distributed in China, Korea, Russia. In China, wild areas and cultivation area of Ginseng include Jilin, Liaoning, Heilongjiang and Hebei northern mountainous region.
     The research show that the main ingredients of volatile oil of ginseng are sesquiterpenes, aliphatic, aromatic and heterocyclic compounds, It has anti-inflammatory, antitussive, anti-fatigue, anti-tumor effect. The research on the main ingredients of volatile oil of ginseng flower bud is few between domestic and foreign research, domestic reports are earlier, Most reports found in the early 90s of the 20th century, but have not been reported recently. Some literature have carried on the comparison to the different parts of the volatile components of ginseng, conclusion is that the volatile components of each part of ginseng varied, so it can not replace each other, Therefore, it is necessary to conduct the thorough research to it.
     This paper has carried on to the extraction process optimization of volatile oil of ginseng flower bud combining the traditional steam distillation and the modern supercritical CO2 extract method, Through single factor inspection,to determine the best technology to extract ginseng flower bud is steam distillation, the smashing granularity has sieved for 10 items, ratio of material to liquid is 1:8, the extraction time is 8 hours, the returns-ratio is 0.184%; Through orthogonal test, obtained the best conditions by supercritical CO2 extraction method is extract pressure is 30MPa, the extract temperature is 50℃, extract time is 2 h, the returns-ratio is 2.15%.
     For the first time using GC-MS to analyze and identify the ingredients of volatile oil of ginseng flower bud which is extracted by supercritical CO2 method, And steam distillation (SD) extraction of ingredients of volatile oil of ginseng flower bud are analyzed together, of the two components were compared. Two different methods identified 67 kinds and 20 kinds of components, accounting for total volatile oil of 89.67% and 61.84%. Ginseng Flower steam extraction of essential oil components containing above 1% is eleven, all of them are terpenes; SFE extraction of ginseng flower essential oil effluent, the content above 1% is nine.
     Combined with acid catalysis method GC-MS to analyze and identify 13 kinds of fatty acids existed in ginseng flower bud, mainly is linoleic acid, 14-methyl pentadecanoicacid, linolenic acid, palmitic acid. The results show that ginseng flower bud is rich in unsaturated fatty acids. The total content of unsaturated fatty acids of the oil is up to 58.62%
     For the first time using HS-SPME-GC-MS coupling technique to analyze the ingredients of volatile oil of ginseng flower bud, the experiment optimized the analysis condition on the ingredients of volatile oil of ginseng flower bud, condition is that the sample at 70℃after 30 m in equilibrium, with 65μm polydimethylsiloxane - divinyl benzene (PDMS-DVB) fiber head to headspace adsorb the ginseng flower bud sample 45 min, to desorb at 250℃for 5 min, Then use GC-MS to Separate and identify the desorptionsubstance, 38 kinds of components were identified, the content above 1% is eight, compare to SD method, there are 23 kinds of components are the same, main components are basically the same using two extraction methods, examine accuracy and precision of the SPME method, The method proved reliable, To a certain extent, it can replace the SD method for rapid qualitative and semi-quantitative analysis.
     Using static headspace - gas chromatography - mass spectrometry (SHS-GC-MS) to identify the ingredients of volatile oil of ginseng flower bud, in the experiment optimized the SHS extract condition, at 70℃after 30 m in equilibrium, precisely extract the 10ml headspace air of Ginseng flower powder using lock gas needle, Using GC-MS to isolate and identify, identify 18 kinds of volatile components, the total area of chromatographic effluent accounted for 50.3%.
     The SD, SFE, SPME and HS extraction method totally identified 103 kinds of components in the volatile oil of ginseng flower bud, compared with the reported literature, For the first time detected a total of 59 components in the volatile oil of ginseng flower.
     Three biomarkers were screened by using a modern mass spectrometry and metabolomics in the of ginseng volatile oil, they are C16 H34 N4 O3,C14 H32 N6 O5,C38 H74 N10 O17
     Ginseng flower essential oil has some antioxidant activity, which was extrated by SFE-CO2, the concertration is between 1mg/ml~1.8ml/ml, DPPH antioxidant concentration and clearance rate are linearity related. Development and utilization of the resource basis were assisted by the experiment data.
引文
[1]李文兰,王伟明,杨征武等,气相色谱在中草药及中成药研究中的应用黑龙江人民出版社1999年3月第一次印刷154 ,1-6;
    [2]谢建春,孙宝国,郑福平等,采用同时蒸馏萃取一气相色谱/质谱分析小茵香的挥发性成分,食品与发酵工业2004,30(12):113-116;
    [3]姚兴东,聂园梅等,不同紫锥花种属中挥发性组分的气相色谱/质谱分析,广西民族学院学报(自然科学版)2004 10 (4) : 78-83;
    [4]张梅,董小萍,王慧等,藏药波棱瓜子脂肪油成分的气相色谱一质谱分析,成都中医药大学学报2004,27 (4) :49-50;
    [5]谢建英,宋文东,张翠荣,气相色谱一质谱法分析香蕉叶挥发油化学成分,湛江海洋大学学报2004,24 (3) : 61-64;
    [6]吕日青,秦军,陈桐,气相色谱一质谱法分析荷花穗挥发油化学成分理化检验.化学分册2004,40(7):405-407;
    [7]董岩,崔庆新,魏兴国,陈皮挥发油化学成分气相色谱一质谱分析,山东中医杂志2004 23 (6) :370-372;
    [8]冯长根,江洪武,任启生,赶黄草挥发油化学成分的气相色谱一质谱分析,生命科学仪器2003,5: 17-19;
    [9]吴汉夔,樊玉平,巴杭等,毛菊芭种子精油化学成分的气相色谱一质谱法分析,光谱实验室2005,22 (4) :694-696 ;
    [10]鲍忠定,秦志荣,许荣年等,杭白菊挥发油化学成分的气相色谱一质谱联用技术分析食品科学2003,24 (6 ): 120-121;
    [11]翁雪香,邓春晖,宋国新等,筒篙挥发性成分的固相微萃取气相色谱-质谱分析,分析测试学报2003,22 (3): 87-89;
    [12]尹庚明,孙宁,朱锦瞻等,艾叶挥发性成分的提取及其化学成分的气相色谱/质谱分析,分析化学1999;
    [13]李英姬,朴惠善,宋成岩等,毛细管气相色谱质谱法测定关苍术中的挥发性成分中国野生植物资源2002 21 (3): 50-51;
    [14]吉力,敖平,潘炯光等,苍术挥发油的气相色谱一质谱联用分析,中国中药杂志2001 26 (3):182-186;
    [15]田赏,刘廷礼,崔兆杰,丘琴GC/MS法测定木香挥发油化学成分,理化检验一化学分册2001 37(8):346-348;
    [16]毕和平,宋小平,韩长口,降香檀叶挥发油成分的研究中药材2004,27(10):733-735;
    [17]郭治安,赵景蝉,谢志海,气相色谱一质谱联用分析花椒挥发油的成分,色谱,2001,19 (6 ): 567-568;
    [18]张玖,姜洪芳,张卫明,花椒气相色谱指纹图谱共有峰的GC/MS研究中国野生植物资源2003,22 (6 ): 46-47;
    [19]顿文亮,江西积壳挥发油成分的气相色谱一质谱法分析时珍国医国药2005 16(10):988-989;
    [20]朱晓兰吕春伟,柠檬皮挥发性化学成份的气相色谱一质谱分析安徽农业大学学报2003 30(2):224-226;
    [21]王玲,陈红平,夏锋气,相色谱一质谱法分析佛手香挥发油的化学成分质谱学报2005,26 (1) :62-64;
    [22]鲁佳,慧宁德,山涂等,黄连、吴茱英配伍后挥发油成分的气相色谱一质谱联用分析广州中医药大学学报,2003,20 (4): 312-315;
    [23]彭玉谦,郭志峰,秋季薄荷挥发油成分的对比研究河北大学学报(自然科学版)2000,20(4):351-354;
    [24]陇梅,苏镜娱等,蕾香茎、叶和花挥发油成分分析中药材,2000,23 (3):149-151;
    [25]赵伟亮,赵怡崔,兆杰,气相色谱一质谱联用分析广蕾香挥发油成分含量中草药,1999 ,30(12);
    [26]郑旭东,胡浩斌,庆阳,香蕾挥发油化学成分的研究,光谱实验室,2005,22(1):179-182;
    [27]张继,土振恒,姚健,高原香蕾挥发性成分的分析研究,兰州大学学报(自然科学版),2004,40 (5) :69-72;
    [28]于萍,邱琴,崔兆杰, GC/MS法分析山东荆芥穗挥发油化学成分中成药,2002 ,24(12):959-962;
    [29]董岩,刘洪玲,于新芳,乌药挥发油化学成分的微波一蒸馏GC-MS分析山东中医杂志2005,24(6):370-372;
    [30]董岩,魏兴国,刘明成,肉桂挥发油化学成分的GC/MS分析齐鲁药事2004,23 (3):34-35;
    [31]黄业,黄际薇,陶玲,不同树龄肉杜挥发油的成分比较中山大学学报(自然科学版)2005 ,44(1):82-85;
    [32]沈群,陈飞龙,罗佳波,桂枝、肉杜挥发油化学成分GC-MS分析中药材2002,25 (4):257-258;
    [33]谭睿,于波,陈士林,气相色谱一质谱法分析藏茴香药材挥发油成分中药材2003,26(12): 869-870;
    [34]吴玫,涵聂,凌云,刘云等,气相色谱一质谱法分析不同产地小茴香药材挥发油成分药物分析杂志,2001,21 (6 ): 415-418;
    [35]张强,马鹏,陈聪等,厚朴挥发油化学成分的气相色谱一质谱联用研究,华西医科大学学报,1997,28 (3) : 338-340;
    [36]赵晨曦,梁逸曾,公丁香与母丁香挥发油化学成分的GC/MS研究,现代中药研究与实践,2004,18,增刊:92-95;
    [37]刘布鸣,彭维,白千层挥发油化学成分分析,分析测试学报,1999,18 (6);
    [38]孙星衍等:神农本草经,商务印书馆,1955年
    [39] Zhang JT. The chemistry, metabolism and biological activities of ginseng. Beijing: Chemical Industry Press,2006:3-17, 59-86, 87-95, 358-366.
    [40] Tormey.H.J.and Cheny. F. M.St, Bonaveture Sci. studies, 1939, 7(4), 9-13.
    [41]高桥三雄等:药学杂志84(8):752, 1964
    [42]高桥三雄等:药学杂志84(8):757, 1964
    [43]陈英杰,黄祯,李念平等,人参化学成分的研究,沈阳药学院学报,1983.3,17
    [44]孙允秀,张惠祥,吉林人参挥发性成分分析(II),科学通报,1986,7,512-519
    [45]张惠祥,孙允秀,人参挥发性成分分析(V),吉林大学自然科学学报,1987,2,89-94
    [46]张惠祥,孙允秀,吉林人参挥发性成分分析—人参芦头油的分析,1985, 15,1153
    [47]孙允秀,张惠祥,人参挥发性成分分析(IV)—吉林省不同产地的人参根部挥发性成分的研究,吉林大学自然科学学报,1987,1,107-112
    [48]侯冬岩,人参地上部位挥发性成分的研究,鞍山师专学报,1990 ,3,34-40
    [49]李树毅,鲁歧,富力,人参天然挥发性成分的研究,中药材,1991,14(4)
    [50]阎吉昌,张宏等,人参挥发油的提取和分析,分析测试学报,1994,13(3)
    [51]毛坤元,孙允秀,张惠祥,吉林人参花蕾挥发油成分的分离和鉴定-吉林人参挥发油研究(VII), l 9 8 9,2(2),105-108
    [52]马家聪,汪捷等,人参花、叶挥发油化学成分的研究,中成药,1992,14(4),35-38
    [53]王慧,刘在群等,人参茎叶挥发油中倍半萜烯化合物的分离与鉴定,吉林大学自然科学学报,200l,1(1),88-91
    [54]王继彦,李向高等,人参果中挥发油和无机元素的分析,吉林农业大学学报2004,26(1):53~56
    [55]王满霞,李凤文等,人参挥发油对体外培养SGC-823胃癌细胞化学成分的影响,中国中药杂志,1992, 17(2),110-114
    [56]陈玉仁,李志,抗癌新药β-榄香烯的研究及展望,中华实用医药杂志, 2009 9( 2 ),
    [57]倪润洲,邵建国.β-榄香烯对2 -乙酰氨基芴诱发实验性鼠肝癌的影响.中国肿瘤临床, 2001, 28( 8) : 614 - 617.
    [58]胡胜军,杨玲,朱清静,等.β-榄香烯对实验性肝纤维化大鼠T、G F -β1、α- S M A、GOl - l表达的影响.世界华人消化杂志,2007, 15( 12) : 1324 - 1330 .
    [59]陈龙邦,臧静,王靖华,等.β-榄香烯对小鼠B16黑色素瘤细胞粘附、运动和间隙连接通讯功能的影响.肿瘤防治研究, 1999, 26,195 - 197.
    [60]高天慧,段芳龄,周云等。β-榄香烯对脂质体瘤苗抗小鼠H22肝癌的免疫增强作用.中国误诊学杂志, 2005, 5 ( 18) : 3409 -3411.
    [61]方宁,陈代雄,王海燕,β一榄香烯诱导小鼠肝癌细胞早期凋亡,贵州医药,2001 , 25 ( 2) : 1061 - 1062.
    [62]胡军,金伟,杨佩满.β-榄香烯逆转人乳腺癌MCF - 7 /ADM细胞对阿霉素耐药性的研究.中华肿瘤杂志, 2004, 26( 5 ) : 268-270.
    [63]方宁,陈代雄,王海燕。β-榄香烯对肿瘤细胞内钙离子的影响遵义医学院学报, 2002, 25(1) : 4 - 5.
    [64]王一,方美云,姜风,等,三氧化二砷、人参皂甙和β-榄香烯对K562细胞株端粒-端粒酶系统作用机制的研究.中国实验血液学杂志, 2004, 12( 3):315 - 320 .
    [65]钟瑞敏,张振明,曾庆孝等,金叶含笑中芳香精油成分的气相色谱-质谱分析,植物生理学通讯,2005,41(4):505-508;
    [66]龚先玲,陈志红,典灵辉等,半边旗挥发油化学成分气相色谱一质谱计算机联用技术分析时珍国医国药2005 16(8):697-698;
    [67]陈丰连,王术玲,徐鸿华,广金钱草挥发油的气相色谱一质谱分析广州中医药大学学报2005,22 (4) :302-303;
    [68]李文絮,刘会峦,乐陵枣挥发油化学成份的气相色谱一质谱分析,青岛大学学报(自然科学版)2005,18 (1) :67-70;
    [69]周海梅,戚军超,董苗菊,固相微萃取-气相色谱-质谱分析牡丹花的挥发性成分,化学分析计量,2008,17(3)
    [70]谢建春,孙宝国,郑福平等,固相微萃取/气相色谱—质谱法分析小茴香香挥发性成分,精细化工2005 22(7):518-520;
    [71]宋国新,邓春晖,吴丹等,静态顶空固相微萃取一气相色谱/质谱分析砂仁的挥发性成分复旦学报(自然科学版)2004 43 (4) :676-679;
    [72]陆宁,宛晓春,固相微萃取—气相色谱/质谱联用技术分析白兰精油化学成分,食品研究与开发2004 ,25 (2) :125-127;
    [73]陆宁,宛晓春,固相微萃取—气相色谱/质谱联用技术分析茉莉精油化学成分,中国食品添加剂2004,l: 111-114;
    [74]李祖光,莫卫民,胡伟等,固相微萃取—气相色谱/质谱分析黑胡椒粉的挥发性成分,色谱2003 21 (6 ): 630;
    [75]宋国新,邓春晖,吴丹等,固相微萃取—气相色谱/质谱分析生姜的挥发性成分2003 42 (6 ): 939-944;
    [76]郑孝,华翁,雪香,固相微萃取气相色谱—质谱分析佛手挥发性成分浙江师范大学学报(自然科学版)2004 ,27 (1): 48-51;
    [77]朱晓兰,刘百战,宗若雯等,辣椒油化学成分的气相色谱一质谱分析分析测试学报2003 ,22 (1): 67-70;
    [78]于燕萍,甘肃产柴胡挥发性成分的超临界萃取一气相色谱一质谱联用分析,兰州大学学报(医学版)2005 31(2):61-63;
    [79]金晓玲,何新霞,杜红岩等,超临界流体萃取佛手挥发油的气相色谱/质谱分析浙江师范大学学报(自然科学版),2005, 28(1):61-65;
    [80]李伟东,杨光明,蔡宝昌等,二种方法提取当归挥发油的气相色谱-质谱比较,广州中医药大学学报2004 ,21(3) :206-210;
    [81]刘珍伶,田绽,用气相色谱/质谱联用技术分析瘤果棱子芹挥发性化学成分,西北植物学报2004 ,24 (4) :693-697;
    [82]程朝晖,龚春晖,金波等,辛夷超临界萃取物的气相色谱-质谱分析,中国食品添加剂2003 ,2: 109-111;
    [83]廖远熹,于吴阳,郭寅龙等,中药柴胡挥发性成分的静态顶空-气相色谱一质谱分析质谱学报2005,26(3):187-192;
    [84]吴惠勤,黄晓兰,黄芳等,草果挥发油的气相色谱-质谱指纹图谱质谱学,2004,25 (2) :92-95;
    [85]回瑞华,侯冬岩,李铁纯,微波-萃取木香挥发性化学成分的气相色谱-质谱分析质谱学报,2003,24 (4): 471-476;
    [86]丁毅,吴国胜,刘晓颖,用裂解气相色谱-质谱法分析丁香油中的成分中国生化药物杂志2003 24 (1): 36-37;
    [87] Francisco J. et al. Isolation of Antioxidant Compounds from Orange Juice by Using Countercurrent Supercritical Fluid Extraction (CC-SFE), J. Agric. Food Chem. 2001, 49, 6039-6044
    [88] Cao Lei, Cao Wei, Study on extraction process for volatile oil from Pericar piumCitri Reticulatae Viride by supercritical carbon dioxide, CHEMICAL ENGINEERING(CH INA), 2007, 35, 9
    [89] Ling Yu Zhao , Zeng Man zhi , Yan Zhi Yun, Analysis of Components in Essential oil from Ardisia mamillata by GC - MS with Supercritical Fluid Extraction, FINE CHEM ICALS, 2 0 0 5, 22, 10.
    [90] Zhang Jie et al, Analysis of Triterpenoids in Fruiting Bodies of Ganoderma Lucidum with Off line Supercritical Fluid Extraction-High Performance Liquid Chromatography System, Chinese Journal of Analytical Chemistry, 2006, 34(4), 447~450.
    [91] Arthur C L, Paw liszyn J.Solid phase- with thermal desorption using fused silica optical fibers. Anal Chem, 1990, 62: 2145~2148
    [92] Steffen A,Paw liszyn J. Analysis of flavor volatiles using headspace solid-phase microextraction. J Agric Food Chem, 1996, 44:2187~2193
    [93] Verhoeven H, BeuerleT, Schwah W. Solid- phase microextraction: artifact formation and its avoidance.Chromatographia,1997,46(1-2).63~66
    [94] Fisher C, Fisher U .Analysis of cork taint in wine and cork materia at olfactory subthreshold lever by solid- phase microextraction. J agric Food Chew, 1997, 45: 1995~1997
    [95] Field J A, Nickerson G. Determination of essential oils in hop by headspace solid-phase microextraction. J Agric Food Chew, 1996,44:1768~1772
    [96] Young R, Lopez- Avila V, Beckert W F. On- line determination of orgmlochlorine pesticides in water by solid- phase microextraction and gas chromagraphy with electron capture detection. J High Resol Chromatogr, 1996, 19: 247~256
    [97] Lee X T, Kumazawa T,Sato k. Detection of orgallophosphate pesticides in human body fluids by headspace solid- phase microextraction and capillary gas chromatography with nitrogel-phosphorus detection. Chromatographia, 1996, 42( 3/4):135~140
    [98] Magdic S, Boyd- Bolmld A,Jinno K. Analysis of orgmlophosphorus insecticides from environmental samples using solid- phase microextraction. J chrmatogr A.1996.736: 219~228
    [99] M agdic S, Paw liszyn J. Analysis of orgmlochlorine pesticides using solid- phase microextraction. J chrmatogr A, 1996, 723: 111 [l00] Denis P B, Lacroix G. Application of solid- phase microextraction to the headspcce gas chromatographic analysis of semivolitile orgallochlorine contaminants in aqueous matrices. J chrmatogr A.1997.757: 173~182
    [101] lshii A, Sano H, Kumazawa T. Simple extraction of phencyclidine from humanlhody fluids by headspace solid phase microex-traction. Chromatographia, 1996, 43( 5/ 6):331~333
    [102] Kumazawa T., Sato K, Sano H. Extraction of local anaesthetics from human blood by direct immersion- solid phase microextracti on.Chromctogrcphia, 1996,43( 1/2):59~62
    [103] Nishikawa M.Servo H, lshii A, et a1. Simple analysis of diphenyhnethane antihistaminics and their analogues in bodily fluids by headspace solid- phase microextraction- capillary gas chromatography. J Chrmato Sci, 1997, 35: 275~279
    [104] Matich A J, Row an D D, Banks N H. Solid phase microextraction quantitative headspace sampling of apple volatiles. Anal Chem, 1996, 68(23):4114~4118
    [105] Yang X G, Peppard T. Solid- phase microextraction for flavor analysis. J Agric Food Chew, 1994, 42: 1925~1930
    [106] Pelusio F, Nilsson T, Montanarella L, et a1. Headspace solid phase microextraction analysis of volatile sulfur compounds in black and white truffle aromc. J Agric FoodChew, 1994, 42: 1925~1930
    [107] David C R, Rohert ,J B. Solid- phase microextraction analysis of static- air emission of ammonia, methylamine and putrescine from a lure for the M exican fruit fly. J Agric. Food Chem, 1996, 44: 3554~3559
    [108] Hawthorne S, Miller D, Paw liszyn J. Solventless determination of caffeine in beverages using solid microextraction with fused- silica fibers. J Chromatogr A, 1992, 603: 185~191
    [109] Page B D, Lacroix G. Application of solid phase microextraction to the headspace gas chromatography analysis of halogenated volatiles in selected foods. J Chromatogr A.1993. 648: 199~211
    [110] Boyd- Boland A A, Pawliszyn J B. Solid phase microextraction of nitrogen- containing herbicides. J Chromatogr A, 1995,704:163~172
    [111] Pan L, Adames M.Paw liszyn J. Determination of fatty acids using solid- phase microextraction. Anal Chem, 1995, 67: 4396~4403
    [112] Pan L, Paw liszyn J. Derivatization solid- phase microextraction: new approach to polar analytes. Anal Chew, 1997, 69( 2)196~205
    [113] Krogh M .Grefslie H, Rasmusser K E. Solvent一modified solid- phase microextraction for the determination of diazepam in human plasma samples by capillary has chromatography. J Chromatogr B, 1997 .689:357~364
    [114] Garcia D, Magnaghi S,Reichenbacher M, et al. Systematic optimization of the analysis of wine bouquet components by solid一phase microextraction J High Resol Chromatogr, 1996, 19: 257~262
    [115] Buchholz K D, Pawliszyn J. Optimization of solid一phase microextraction conditions for determination of phenols. Anal Chem, 1994, 66: 160~167
    [116] Kumazawa T, Seno H, Lee X D. Detection of ethanol in human body fluid by headspace solid- phase microextraction/capillary gas chromatography. Chromatogr aphia,1996, 43(7-8):393~397
    [117] Zhang Zh Y, Paw liszyn J. Analysis of orangic compounds in environment samples by headspace solid- phase microextraction.J High Resol Chromato, 1993, 16: 689~692
    [118] Wang Y W , Bonilla M.M chain H M.Solid- phase microextraction associated withmicrowave assited extraction of food products. J High Resol Chromatogr, 1997, 20( 4):213~216
    [119] Motlagh S, Paeliszyn J. On- line monitoring of flowing samples using solid phase microextraction- gas chromatography. Anal Chim Acta, 1993, 284( 1):265~273
    [120] Gorecki T, Mindrup K, Paw liszyn J. Pesticides by solid- phase microextraction results of round robin test. Analyst, 1996, 121(10):1381~1386
    [121] Dragull K. Beck JJ. Merrill GB. Essential oil yield and composition of Pistacia vera 'Kerman' fruits, peduncles and leaves grown in California. Journal of the science of food and agriculture, .2010, 90(4), 664-8
    [122] Fabbri D. Adamiano A. Torri C. GC-MS determination of polycyclic aromatic hydrocarbons evolved from pyrolysis of biomass.Analytical and bioanalytical chemistry. 2010. Mar.
    [123] Rios JJ. Morales A. Márquez-Ruiz G.. Headspace solid-phase microextraction of oil matrices heated at high temperature and phthalate esters determination by gas chromatography multistage mass spectrometry. Talanta.2010,80(05),2076-82
    [124] Mikuma T. Kaneko T. A quick discrimination of vegetable oil by solid-phase microextraction method. 2010 Feb.
    [125] Ozek G. Demirci F. et al. Gas chromatographic-mass spectrometric analysis of volatiles obtained by four different techniques from Salvia rosifolia Sm.,and evaluation for biological activity.Journal of chromatography. A. 2010, 1217 (05) 741-8
    [126] Wang YC. Ding WH. Determination of synthetic polycyclic musks in water by microwave-assisted headspace solid-phase microextraction and gaschromatography-mass spectrometry. Journal of chromatography . A. 2009, 1216(40), 6858-63页
    [127] Skalicka-Wozniak K. Los R. Glowniak K. Malm A. Volatile compounds in fruits of Peucedanum cervaria (Lap.) L. Chemistry & biodiversity, 2009(6), 07, 1087-92
    [128] Chen Huan-We et al., Chinese Journal of Analytical Chemistry, 2007, 35(8), 1-233—1240
    [129] Chen HW, Pan ZZ, Talaty N, Raftery D, Cooks RG. Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation. Rapid Commun. Mass Spectrom. 2006;20:1577.
    [130] Chen HW, Li M, Zhou JG, Fei Q, Jiang J, Jin QH, Zhang TM, Zhang X. Desorption electrospray ionization mass spectrometry for direct analysis of clinic urine samples. Chem. J. Chin. Univ.-Chin. 2006; 27: 1439.
    [131] Chen HW, Wortmann A, Zhang WH, Zenobi R. Rapid in Vivo fingerprinting of Non-volatile Compounds in breath by extractive Electrospray Ionization Quadrupole Time-of-flight Mass Spectrometry. Angew. Chem. Int. Ed. Engl. 2007; 46: 580.
    [132] Wei Wu, Cunyu Yan, Li Li, Zhiqiang Liu, Shuying Liu. Studies on the flavones using liquid chromatography- electrospray ionization tandem mass spectrometry, Journal of Chromatography A, 2004, 1047, 213-220
    [133] Wei Wu, Zhiqiang Liu, Fengrui Song, Shuying Liu. Structural Analysis of Selected Characteristic Flavones by Electrospray Tandem Mass Spectrometry. Analytical Sciences, 2004, 20, 1103-1105
    [134] Wei Wu, Fengrui Song, Cunyu Yan, Zhiqiang Liu, Shuying Liu. Structural Analysis of Protoberberine Alkaloids in Medicine Herbs by Using HPLC-ESI-MSn, Journal of pharmaceutical and biomedical analysis,2005, 37, 437-446.
    [135]吴巍,宋凤瑞,刘志强,刘淑莹.利用HPLC-ESI-MS/MS区分黄芩中黄酮C-苷异构体的研究.高等化学学报,2005, 26, 27-30
    [136]吴巍,周奕含,刘志强,刘淑莹.黄芩苷与铝离子配合物的电喷雾质谱研究.分析化学,2005, 33, 683-686.
    [137] H. Yue, Z.F. Pi, H.L. Li, F.R. Song, Z.Q. Liu and S.Y. Liu. Stability study of diester-diterpene alkaloids from plants of the genus Aconitum L. by liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Phytochem. Anal. 19 (2008) 141-147 .
    [138]白云静,申洪波,孟庆刚等,中医证候复杂性特性及证候研究思路探析,中国中医药信息杂志,2004 ,11(9) :7541
    [139] Nicholson J K, Connelly J , Lindon J C , et all Metabonomics : a plat form for studying drug toxicity and gene functionl Nat Rev Drug Discov ,2002 ,1(2) :1531
    [140] Raamsdonk L M, Teusink B , Broadhurst D , et al1 A functional genomics strategy that uses metabolome data to reveal the phenptype of silent mutation at Biotech ,2001 ,19(3) :451
    [141] Taylor J , King R D , Altmann T , et al. Application of metabolomics to plant genotype discrimination using statistics and machine learning Bioinformatics ,2002 ,18(2) :S2411
    [142] Nicholson J K, Wilson ID. Understanding“global”systems biology:metabonomics and the continuum of metabolism [ J ]. Nature Rev Drug Discover, 2003, 2: 676 - 688.
    [143] Nicholson JK, Bollard ME , Lindon JC et al . Metabonomics : aplatformfor studying drug toxicity and gene function. Nat Rev Drug Discov , 2002 , 1 :153 - 162
    [144] Griffin JL , Williams HJ , Sang E et al . Metabolic profiling of genetic disorders : a multitissue 1H nuclear magnetic resonance spectroscopic and pattern recognition study into dystrophic tissue. Anal Biochem , 2001 , 293 (1) : 16 - 21
    [145] Brindle JT , Antti H , Holmes E et al . Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR based metabonomics. Nat Med , 2002 ,8 (12) : 1439 - 1444
    [146] Bollard ME , Holmes E , Lindon JC et al . Investigations into biochemical changes due to diurnal variation and estrus cycle in female rats using high resolution 1H NMR spectroscopy of urine and pattern recognition. Anal Biochem , 2001 , 295 :194 - 202
    [147] Waters NJ , Holmes E , Waterfield CJ et al . NMR and pattern recognition studies on liver extracts and intact livers from rats treated with anaphthy lisothiocyanate. Biochem Pharmacol , 2002 , 64 : 67- 77
    [148] Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics :mathematical solutions to characterising and interpreting complex biological NMR spectra. ANALYST , 2002 , 127 :1549 - 155
    [149] Gavaghan CL , Wilson ID , Nicholson JK. Physiological variation inmetabolic phenotyping and functional genomic studies : use of orthogonal signal correction and PLSDA. FEBS Lett , 2002 , 530 :191 - 196
    [150] Beckwith Hall BM, Brindle JT , Barton RH et al . Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H NMR spectra of biofluids. Analyst , 2002 , 127 : 1283 - 1288
    [151] Nicholson JK, Wilson ID. Understanding‘Global’systems biology :metabonomics and the continuum of metabolism. Nature Reviews ,2003 , 2 : 668 - 677
    [152] Ideker T , Thorsson V , Ranish JA et al . Integrated genomic and proteomic analyses ofa systematically perturbed metabolic network. Science , 2001 , 292 : 929 - 934
    [153] Henry CM. New‘ome’in town. Chem Eng News , 2002 , 80 (48) :66 - 70
    [154] Keun HC , Ebbels TMD , Antti H et al . Analytical reproducibility in 1H-NMR Based metabonomic urinalysis. Chem Res Toxicol , 2002 ,15 :1380 - 1386
    [155] Pelander A , Ojanpera I , Laks S et al . Toxicological screening with formula based metabolite identification by liquid chromatography time of flight mass spectrometry. Anal Chem , 2003 , 75 : 5710-5718
    [156] Yang J , Xu G, Zheng Y et al . A strategy for metabonomics research based on high performance liquid chromatography and LC-MS/MS , Submitted to J . Chromatogr. A.
    [157] Jonsson P , Gullberg J , NordstrêmA et al . A strategy for identifying differences in large series of metabolomic samples analyzed by GC-MS. Anal Chem , 2004 , 76 : 1738 - 1745
    [158] Kell DB , King RD. On the optimization of classes for the assignment of unidentified reading frames in functional genomics programmes : the need for machine learning. TBTECH , 2003 , 18 :93-98
    [159] Wang Y,BollardM E, Keun H, et al. Spectral editing and pattern recognition methods app lied to high-resolution magic-angle spinning 1H nuclear magnetic resonance spectroscopy of liver tissues [ J ]. Anal Biochem, 2003, 323 (1) : 26 - 32.
    [160] Beckwith-Hall B M,Brindle J T,Barton R H, et al. Application of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H -NMR spectra of biofluids [ J ]. Analyst, 2002, 127 (10) : 1283 - 1288.
    [161] Gavaghan C L, Wilson ID, Nicholson J K. Physiological variation in metabolic phenotyping and functional genomic studies: use of orthogonal signal correction and PLS-DA [ J ]. FEBS Lett, 2002, 530 (2) : 191 - 196.
    [162] Holmes E, Antti H. Chemometric contributions to the evolution of metabonomics: mathematical solutions to characterising and interpreting comp lex biological NMR spectra [ J ]. Analyst, 2002, 127 (12) : 1549 - 1557.
    [163] Wang Y,BollardM E, Keun H, et al. Spectral editing and pattern recognition methods applied to high-resolution magic-anglespinning 1H nuclearmagnetic resonance spectroscopy of liver tissues [ J ]. AnalBiochem, 2003, 323 (1) : 26 - 32.
    [164] BeckwithOHall B M,Brindle J T,Barton R H, et al. App lication of orthogonal signal correction to minimise the effects of physical and biological variation in high resolution 1H-NMR spectra of biofluids [ J ]. Analyst, 2002, 127 (10) : 1283 - 1288.
    [165] Gavaghan C L,Wilson ID,Nicholson J K. Physiological variation in metabolic phenotyp ing and functional genomic studies: use of orthogonal signal correction and PLSODA [ J ]. FEBS Lett, 2002, 530 (2) : 191 - 196.
    [166] Holmes E,Antti H. Chemometric contributions to the evolution ofmetabonomics: mathematical solutions to characterising and interp reting comp lex biologicalNMR spectra [ J ]. Analyst, 2002, 127 (12) : 1549 - 1557
    [167]章观德,等.药学学报,1980 ,15 :175.
    [168]国家药典委员会.中国药典,Ⅰ部[S].北京:化学工业出版社,2005:附录XD57,2390
    [169]潘年松,张学愈,邹俊,水蒸气蒸馏提取过50目筛与过325目筛温莪术挥发油收率比较,时珍国医国药, 2007,18(10),2389
    [170]杨艳辉,杨兴斌,王燕,人参脂肪酸和挥发油成分的GC-MS分析, 2007,Mar,35 (1)
    [171]寇秀颖,于国萍,脂肪和脂肪酸甲酯化方法的研究,食品研究与开发,2005,4,26( 2)
    [172] D. H. Aue, M.T. Bowers, Gas Phase Ion Chemistry, Vol. 2, Chapter 9, M.T. Bowers Ed, Academic Press, New York, 1979
    [173] Spanel P and Smith D, Medical &Biological Engineering&Computing, November 1996, 409-419
    [174] Spanel P and Smith D, J.Phys. Chem, 1995, 99(42):15551-15556
    [175] P.Kebarle, J. Chem. Phys., 1970, 52, 212:222
    [176] P.Kebarle, J. Am. Chem. Soc, 1976,98,1320
    [177] E.P.L.Hunter, S. G. Lias, J. Phys. Chem. Fef. Data, 1998, 27,413
    [178]陈奇.中药药理实验方法[M ].北京:人民卫生出版社,1994: 205- 208.
    [179] Blois. Ms. Antioxidant Determinations by the use of a stable free radical. Nature, 1958, 181:1199-1200.
    [180]许申鸿,杭瑚.一种筛选自由基清除剂的简便方法[J].中草药,2000,31(2)96-97.
    [181] Huili Qiao, Elena Tuccori, Xiaoli He, et al. Discrimination of alarm pheromone (E)-β-farnesene by aphid odorant-binding proteins, Insect Biochemistry and Molecular Biology, Volume 39, Issues 5-6, May-June 2009, Pages 414-419
    [182] I.F. Delgado, A.C.M. de Almeida Nogueira, C.A.M. Souza, et al, Peri- and postnatal developmental toxicity ofβ-myrcene in the rat, Food and Chemical Toxicology, Volume 31, Issue 9, September 1993, Pages 623-628
    [183]李传刚,李墨林,周琴,等.β-榄香烯对人膀胱癌BIU - 87细胞磷脂膜功能及Bcl - 2表达的影响.中草药, 2007, 38 ( 6) : 886 -889.
    [184]李传刚,刘用楫,冯秉安,等.β-榄香烯对人BIU - 87细胞诱导凋亡的实验研究.中国中西医结合外科杂志, 1999, 5 ( 6 ) : 388 -390.
    [185]倪润洲,邵建国.β-榄香烯对2 -乙酰氨基芴诱发实验性鼠肝癌的影响.中国肿瘤临床, 2001, 28( 8) : 614 - 617.
    [186]胡胜军,杨玲,朱清静,等.β-榄香烯对实验性肝纤维化大鼠TG F -β1、α- S M A、GOl - l表达的影响.世界华人消化杂志,2007, 15( 12) : 1324 - 1330 .
    [187]陈龙邦,臧静,王靖华,等.β-榄香烯对小鼠B16黑色素瘤细胞粘附、运动和间隙连接通讯功能的影响.肿瘤防治研究, 1999, 26( 3 ) : 195 - 197.
    [188]高天慧,段芳龄,周云,等.β-榄香烯对脂质体瘤苗抗小鼠H22肝癌的免疫增强作用.中国误诊学杂志, 2005, 5 ( 18) : 3409 -3411.
    [189] Shi-Yong Wang, Zhen-Jun Yang, Huan Yu, et al, In vivo and in vitro anti-tumor effects ofβ-elemene liposome, Shijie Huaren Xiaohua Zazhi 2008,16(10): 1059-1063
    [190]黄汉昌,朱宏吉,张名贤,李庆武,林强,兰天路.β-榄香烯脂质体的制备工艺研究,中草药2006,37:1799-1802

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700