离子液体和聚苯胺纳米管修饰丝网印刷DNA生物传感器的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究构建了掺杂导电油墨制作的丝网印刷电极,并将其用于对特定DNA片段和肿瘤细胞进行识别和测定,为许多疾病的临床早期诊断提供基础性研究。本文着重进行了三种类型的DNA传感器的研制和性质研究:
     1.丝网印刷电极的构建。合成了形貌、尺寸和电导率适当的聚苯胺纳米管,然后将室温离子液体与所合成的聚苯胺纳米管共同掺杂入导电油墨中,用于制造三电极丝网印刷DNA传感器中的工作电极,再用壳聚糖膜加以覆盖修饰电极。优化了掺杂和修饰条件,在最佳条件下所得的电极具有较低的表面阻抗和较高的电化学灵敏度。
     2.基于这个传感器建立了一种基于酶放大的DNA夹心检测的方法。将avidin修饰的辣根过氧化物酶(avidin-HRP)固定到杂交好的DNA上,通过HRP催化底物邻氨基酚和双氧水反应产生信号。在实验选定的最佳条件下,得到了目标DNA的线性范围为8×10-14-2×10-13 M,检测限为8.37×10-15 M。另外,三碱基错配序列和完全非互补序列的杂交情况同样被检测。其中,三碱基错配序列显示有微弱的电化学信号而完全非互补序列则无信号检出。这说明我们设计的DNA传感器具有良好的选择性。
     3.在以上工作的基础上,我们改进了实验方法,研究了另一种灵敏度更高的基于六氨基钌和金纳米粒子放大信号的电化学方法法检测DNA特定序列的生物传感器。首先,将巯基修饰的捕获DNA固定在纳米金修饰的丝网印刷电极表面,之后分别与目标DNA和标记金纳米粒子的3'位巯基修饰的检测探针、探针杂交,形成了“夹心”式的DNA杂交复合物。通过六氨基钌特异性吸附到纳米金结合的单链DNA中,六氨基钌发生氧化还原反应产生信号通过计时电量法检测信号进一步增强了检测的灵敏度。结合以上两种因素,该DNA传感器可检测到10-17的低浓度的目标DNA,并在三碱基错配DNA的测定上显示出良好的选择性。同时,对实验的最佳检测条件进行了选择。在最佳条件下进行检测,得到了目标DNA的8×10-17 M的检测限,检测的线性范围为1.0×10-16 M到1.0×10-14 M。
     4.我们又深入研究制作了一种可以检测肿瘤细胞的传感器。这种传感器是以Ramos肿瘤细胞的适体识别以及DNA序列的循环复制替换为基础构建的。这一检测方案分两步进行:首先,将适体序列DNA固定在磁珠上后与“信使序列”杂交,Ramos细胞与这一杂交复合体结合导致信使序列DNA释放出来;将发卡序列固定在电极上,释放出的信使序列与其“环”部分杂交,颈环部分被打开,再与金纳米颗粒结合的引物DNA杂交形成杂交复合体,并在DNA复制酶、脱氧三磷酸核苷酸混合物(dNTP)和镁离子存在下引发以引物为起点的DNA聚合反应,反应过程中形成一条与发卡探针互补的新链,同时信使序列DNA被替换而释放到溶液中,找到另一个发卡探针开始新的循环复制。引物序列上的纳米金颗粒同时附有分子条码序列,其上吸附有六氨基钌,通过计时电量法检测六氨基钌的氧化还原信号,进一步增强了检测的灵敏度。结合以上两种因素,该DNA传感器可检测到10-17的低浓度的目标DNA,也可以检测1 ml溶液中含有100个细胞,并在三碱基错配DNA的测定上显示出良好的选择性。同时,对含有其他干扰细胞时该传感器也可以显示出良好的选择性。该研究还对实验的最佳检测条件进行了选择。
The main idea of the reseach was to modified the commercial graphite ink (Electrodag 423SS) for manufacture of high sensitivity, high selectivity, single-used and stable screen-printed DNA sensor, which also determinated DNA sequence and tumor cells. It provided a basic theoretical reseach for clinic diagnoses of many diseases at early stage. In this paper, we prepared three types of DNA biosensors which could be summarized as follows:
     1. Preparation of modified screen-printed electrode (SPE). Polyaniline nanotubes (PANINTs) with appropriate shape, size and conductivity were synthesized, and were doped into the commercial graphite ink together with room-temperature ionic liquid (RTIL) or the printing of the SPE, and chitosan was covered on the electrode surface. A homogeneous, stable and highly conductive electrode surface was thus obtained. The optimal amounts of PANINT, RTIL and chitosan were investigated.
     2. The DNA assay based on the SPE described above was established. The target DNA sequences were specifically recognized by the capture probes immobilized on the SPE surface and the reporter probes labeled with HRP through avidin-biotin binding. o-Phenylenediamine was catalyzed by HRP to produce 2,3-diaminophenazine, which generate electrochemical response. The target DNA could be quantitatively detected in the range from 8×10-13-2×10-14 M and a detection limit of 8.37×10-15 M was found for this sensor. The signal for the complementary DNA was much larger and apparently distinguishable from the control signal or the mismatched sequence signal. A good selectivity was thus obtained on this sensor.
     3. A novel and sensitive DNA sensor for the sequence specific DNA detection based on the signal amplification with gold nanoparticles and hexaamineruthenium(III) chloride (RuHex) was developed on the basis of our preceding work. A DNA detection protocol was established based on this sensor in sandwich hybridization mode. Au nanoparticles were bound to the hybridization complexes through reporter probes, and RuHex was attached to the bar-code DNA on nanoparticles. This sensor was found to be able to distinguish the complementary target DNA at low concentration and the three-base mismatched DNA at higher concentration. The target DNA could be quantitatively detected in the range from 1.0×10-16 M to 1.0×10-14 M, and a detection limit of 8.0×10-17 M was found.
     4. A new approach for the detecting of tumor cells, Ramos was established based on aptamer-based cell recognition and the isothermal circular DNA strand-displacement polymerization. This assay was carried out in two steps. A hybridization complex of the aptamer and its partially comlementary sequence (“messenger sequence”) were immobilized on the magnetic beads. The recognition of Ramos cells on this complex resulted in the release of the messenger, which triggered a strand-replacement DNA replication for itself, resulting in the multiplication of its concentration. The messenger hybridized with hairpin probes on the electrodes to open their stem parts, to which a gold nanoparticle with primer sequences and bio-bar-code sequences was hybridized, and an isothermal DNA polymerization was initiated, which replaced the intermediary target sequence and released it into the solution. The released messenger sequence found another hairpin probe to begin another strand-replacement polymerization. The signal was generated through the chronocoulometric interrogation of RuHex that was attached on the bio-bar-code sequences. A detection limit of 1.2×10-17 M was found for the DNA sequence detection, and 100 cells for cell detection. This sensor was found to be able to distinguish the complementary target DNA at low concentration and the three-base mismatched DNA at higher concentration. Selectivity in the cell detection was thus obtained on this sensor. The optimal experimental conditions were also explored.
引文
[1]张贤珍,刘旭辉,莫志宏,丝网印刷电化学传感器及其应用研究进展[J],现代科学技术,2002,(4)
    [2]郑德海,网版印刷技术(M),北京:中国轻工业出版社, 2001
    [3]马立人,蒋中华,生物芯片(M),北京:化学工业出版社, 2000: 125-126
    [4] Murielle Dequaire, Adam Heller, Screen Printing of Nucleic Acid Detecting Carbon Electrodes[J], Anal. Chem. 2002, 74: 4370-4377
    [5] Oliveira-Brett A.M., Silva da L.A., A DNA-electrochemical biosensor for screening environmental damage caused by s-triazine derivatives[J], Anal. Bioanal. Chem., 2002, 373(8): 717-23.
    [6] Wang J, Electrochemical biosensors: Towards point-of-care cancer diagnostics[J], Biosens. Bioelectron., 2006, 21: 1887-1892
    [7] Kubo R., Electrical properties of metallic fine particles[J], J Phys. Soc. Jpn., 1962, 17: 975-986
    [8] Leggett A. J., Chakravarty S., Dynamics of the dissipative two-state system[J], Rev. Mod. Phys., 1987, 59: 1-85
    [9] Awschalom D., Mccord M. A., Grinstein G., Observation of macroscopic spin phenomena in nanometer-scale magnets[J], Phys. Rev. Lett., 1990, 65: 783-786
    [10]王琦,张宏芳,骆凯等,纳米金、碳纳米管和纳米线及其在电化学生物传感器研究中的应用[J],化学研究与应用, 2008, 20(10): 1247-1253
    [11] Wang J., Xu D., Kawde A., et. al, Metal nanoparticle-based electrochemical stripping potentiometrie detection of DNA hybridization[J], Anal. Chem., 2001, 73: 5576-5581
    [12] Ho P S, Frederick C A, Saal D, Wang A H, Rich A. The interactions of ruthenium hexaammine with Z-DNA: crystal structure of a Ru(NH3)63+ salt of d(CGCGCG) at 1.2 A resolution[J]. Biomol Struct Dyn. 1987, 4(4):521-34
    [13] Steel A B, Herne T M, Tarlov M J. Electrochemical Quantitation of DNA Immobilized on Gold[J]. Anal. Chem., 1998, 70 (22): 4670-4677
    [14] Wang J., Liu G., Merkoi A., Electrochemical coding technology for simultaneous detection of multiple DNA targets[J], J. Am. Chem. Soc, 2003, 125(11): 3214-3215
    [15] Guido Carpini, Fausto Lucarelli, Giovanna Marrazza, Marco Mascini, Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing ofnucleic acids[J], Biosensors and Bioelectronics, 2004, 20: 167-175
    [16] Sophie Ledru, Nadine Ruill′e, Mohammed Boujtita, One-step screen-printed electrode modified in its bulk with HRP based on direct electron transfer for hydrogen peroxide detection in flow injection mode[J], Biosensors and Bioelectronics, 2006, 21: 1591-1598
    [17] Wei Zhang, Tao Yang, Da Ming Huang, Kui Jiao, Electrochemical sensing of DNA immobilization and hybridization based on carbon nanotubes/nano zinc oxide/chitosan composite film[J], Chinese Chemical Letters, 2008, 19: 589-591
    [18] A.K.M. Kafi, Fan Yin, Hoon-Kyu Shin, Young-Soo Kwon, Hydrogen peroxide biosensor based on DNA-Hb modified gold electrode[J], Thin Solid Films, 2006, 499: 420-424
    [19] Cai H., Lee T. M. H., Hsing I. M., Label-free protein recognition using an aptamer-based labe-free protein recognition using an aptamer-based impedance mea- surement assay[J], Sensors and Actuators B, 2006, 114: 433-437
    [20] Aihua Liu, Jun-ichi Anzai, A poly(4-vinylpyridine) derivative bearing Os(5,6-dmphen)2Cl (5,6-dmphen=5,6-dimethyl-1,10-phenanthroline): a novelelectrochemical indicator for detecting DNA hybridization[J], Materials Science and Engineering C, 2004, 24: 503-505
    [21] G. Marrazza, I. Chianella, M. Mascini, Disposable DNA electrochemical sensor for hybridizationdetection1[J], Biosensors & Bioelectronics, 1999, 14:43-51
    [22] Giacomo Chiti, Giovanna Marrazza, Marco Mascini, Electrochemical DNA biosensor for environmental monitoring[J], Analytica Chimica Acta, 2001, 427: 155-164
    [23] Joseph Wang , Danke Xu, Arzum Erdem , Genomagnetic electrochemical assays of DNA hybridization[J], Talanta, 2002, 56: 931-938
    [24] Guido Carpini, Fausto Lucarelli, Giovanna Marrazza, Marco Mascini, Oligonucleotide-modified screen-printed gold electrodes for enzyme-amplified sensing of nucleic acids[J], Biosensors and Bioelectronics, 2004, 20: 167-175
    [25] Fausto Lucarelli, Giovanna Marrazza, Ilaria Palchetti, Coupling of an indicator-free electrochemical DNA biosensor with polymerase chain reaction for the detection of DNA sequences related to the apolipoprotein E, Analytica Chimica Acta, 2002, 469: 93-99
    [26] Joseph Wang, Gustav Rivas, Xiaohua Cai, Narasaiah Dontha, Sequence-specific electrochemical biosensing of M. tuberculosis DNA, Analytica Chimica Acta, 1997, 337: 41-48
    [27] Lucilene Dornelles Mello, Silvia Hernandez, Giovanna Marrazza, Investigations of the antioxidant properties of plant extracts using a DNA-electrochemical biosensor, Biosensorsand Bioelectronics, 2006:21, 1374-1382
    [28] Graziana Bagni, Domenico Osella, Elena Sturchio, Deoxyribonucleic acid (DNA) biosensors for environmental risk assessment and drug studies, Analytica Chimica Acta, 2006, 573-574: 81-89
    [29] Gui-yun Xu, Jin-shi Fan, Kui Jiao, Immobilizing DNA on clay mineral modified carbon paste electrodes, Applied Clay Science, 2008, 40: 119-123
    [30] F. Lucarelli, A. Kicela, I. Palchetti, G. Marrazza, M. Mascini, Electrochemical DNA biosensor for analysis of wastewater samples, Bioelectrochemistry, 2002, 58: 113-118
    [31] Lucilene D. Mello, Regina M.S. Pereira, Alexandr C.H.F. Sawaya, Electrochemical and spectroscopic characterization of the interaction between DNA and Cu(II)-naringin complex, Journal of Pharmaceutical and Biomedical Analysis, 2007, 45: 706-713
    [32] Giovanna Marrazza, Iva Chianella, Marco Mascini, Disposable DNA electrochemical biosensorsfor environmental monitoring, Analytica Chimica Acta, 1999, 387: 297-307
    [33] Tai Hwan Ha, Sunhee Kim, Geunbae Lim, Kwan Kim, Influence of liquid medium and surface morphology on the response of QCM during immobilization and hybridization of short oligonucleotides, Biosensors and Bioelectronics, 2004, 20: 378-389
    [34] Elena Komarova, Matt Aldissi, Anastasia Bogomolova, Direct electrochemical sensor for fast reagent-free DNA detection, Biosensors and Bioelectronics, 2005, 21: 182-189
    [35] J. Schotter, P.B. Kamp, A. Becker, A. Pühler, G. Reiss, H. Brückl, Comparison of a prototype magnetoresistive biosensor to standard fluorescent DNA detection, Biosensors and Bioelectronics, 2004, 19: 1149-1156
    [36] M.T. Casta?eda, A. Merko?i, M. Pumera, S Alegret, Electrochemical genosensors for biomedical applications based on gold nanoparticles, Biosensors and Bioelectronics, 2007, 22: 1961-1967
    [37] M.H. Pournaghi-Azar, M.S. Hejazi, E. Alipour, Developing an electrochemical deoxyribonucleic acid (DNA) biosensor on the basis of human interleukine-2 gene using an electroactive label, Analytica Chimica Acta, 2006, 570: 144-150
    [38] Mehnert C. P., Cook R. A., Dispenziere N. C., et. a1, Supported ionic liquid catalysis-A new concept for homogeneous hydroformylation catalysis [J], J. Am. Chem. Soc., 2002, 124(44): 12932-12933
    [39] Zerth H. M., Leonard N. M., Mohan R. S., Synthesis of homoallyl ethers via allylation of acetals in ionic liquids catalyzed by trimethylsilyl trifluoromethanesulfonate [J], Org. Lett.,2003, 5(1): 55-57
    [40] Wang P., Zakeeruddin S. M., Humphry-Baker R., et. a1, A binary ionic liquid electrolyte to achieve 7% power conversion efficiencies in dye-sensitized solar cells [J], Chem. Mater., 2004, 16(14): 2694-2696
    [41]杨家振,金一,潘伟,在室温离子液体BPBF4中FeCl3电化学性质的研究[J],化学学报,2004, 62(20):2035-2039
    [42]季巍巍,徐立群,李冬梅等, CH2Cl2对离子液体BmimPF6中二茂铁电化学行为的影响[J],电化学,2008,14(4):411-414
    [43]王欢,叶小鹤,陈黎明等,离子液体中间硝基苯酚在玻碳电极上的电化学还原行为研究[J],高等学校化学学报,2005,26(2):326-329
    [44]杨家振,金一,曹英华等,室温离子液体电化学稳定性的研究[J],高等学校化学学报,2004,25(9):1733-1735
    [45] Anderson J. L., Armstrong D. W., High-stability ionic liquids. A new class of stationary phases for gas chromatography [J], Anal. Chem., 2003, 75 (18): 4851-4858
    [46]朱宏伟,吴德海,徐才录,纳米碳管(第一版)[M],北京:机械工业出版社, 2003:1-6
    [47]石士考,纳米材料的特性及其应用[J],大学化学, 2001, 16(2):39-42
    [48]张阳德,纳米生物材料学郑德海,网版印刷技术(M),北京:中国轻工业出版社, 2001,化学工业出版社, 2005
    [49] Awschalom D. D., Mccord M. A., Grinstein G., Observation of macroscopic spin phenomena in nanometer-scale magnets[J], Phys. Rev. Lett., 1990, 65: 783-786
    [50]王琦,张宏芳,骆凯等,纳米金、碳纳米管和纳米线及其在电化学生物传感器研究中的应用[J],化学研究与应用, 2008, 20(10): 1247-1253
    [51]胡瑞省,刘善堂,纳米粒子通过形成Au-S键的组装[J],物理化学学报, 1999, 15 (11): 12-15
    [52] Wang J., Xu D., Kawde A., et. al, Metal nanoparticle-based electrochemical stripping potentiometrie detection of DNA hybridization[J], Anal. Chem., 2001, 73: 5576-5581
    [53] Authier L., Grossiord C., Bmssier P., Gold nanoparticle-based quantitative electrochemical detection of amplified human cytomegalovirus DNA using disposable microband electrodes[J], Anal. Chem., 2001, 73: 4450-4456
    [54] Cai H., Zhu N. N., Fang Y. Z., et. al, Cu and Au alloy nanoparticle as oligonucleotides labels for electrochemical stripping detection of DNA hybridization[J], Biosens. Bioelectron., 2003, 18(11): 1311-1319
    [55] Ozsoz M., Erdem A., Kerman K., et. al, Electrochemical genosensor based on colloidal gold nanoparticles for the detection of factor V leiden mutation using disposable pencil graphite electrodes[J], Anal. Chem., 2003, 75: 2181-2187
    [56] Wang J., Polsky R., Danke X., Silver-enhanced colloidal electrochemical stripping detection of DNA hybridization[J], Langmuir, 2001, 17(19): 5739-5741
    [57] Retna Raj C., Okajima T., Ohsaka T., Gold nanoparticle arrays for the vohammetric sensing of dopamine[J], Electrochemistry Communications, 2003, 543: 127-133
    [58] Hansen J. A., Mukhopadhyay R., Hansen J., et. al, Femtomolar electrochemical detection of DNA targets using metal sulfide nanoparticles[J], J. Am. Chem. Soc, 2006, 128: 3860-3861
    [59] Kubo R., Electrical properties of metallic fine particles[J], J Phys. Soc. Jpn., 1962, 17: 975-986
    [60]张成孝,李晓霞,李延,适配体及其在临床检测和药物筛选分析中的应用[C],陕西药物分析学术研讨会论文集,陕西西安,西安交通大学, 2006
    [61] Minunni M., Tombelli S., Gullotto A., et. al, Development of biosensors with aptamers as bio-recognition element: the ease of HIV-1 Tat protein[J], Biosensors and Bioelectronics, 2004, 20: 1149-1156
    [62] Marrazza G., Chianella I., Mascini M., Electrochemical DNA biosensor for environmental monitoring[J], Anal Chim Acta, 2001, 427: 155-164
    [63] Polsky R., Gill R., Kaganovsky L., et. al, Nucleic acid-functionalized Pt nanoparticles: catalytic labels for the amplified electrochemical detection of biomolecules[J], Ana1. Chem., 2006, 78: 2268-2271
    [64] Abbaspour A., Baramakeh L., Nabavizadeh S. M., Development of a disposable sensor for electrocatalytic detection of guanine and ss-DNA using a modified sol-gel screen-printed carbon electrode [J], Electrochim. Acta, 2007, 52: 4798-4803
    [65] Oliveira-Brett A.M., Silva da L.A., A DNA-electrochemical biosensor for screening environmental damage caused by s-triazine derivatives. Anal. Bioanal. Chem., 2002, 373(8): 717-23.
    [66]陈勇,朱琼,万国江,导电聚苯胺高分子复合材料的研究进展[J].弹性体,2006,16(5):68-74
    [67] Lux F. Properties of electronically conductive polyaniline: a comparision between well-known literature data and some recent experimental findings[J]. Polymer, 1994, 35: 2915 -2936.
    [68]王利祥,王佛松,导电聚合物聚苯胺的研究进展[J].应用化学,1990,7(5):1-10.
    [69]王利祥,王佛松,导电聚合物聚苯胺的研究进展Ⅱ[J].应用化学,1990,7(6):1-8
    [70]罗利军,谭学才,邹小勇等,导电聚合物传感器的研究进展[J].分忻测试学报, 2005, 24(4):122-127
    [71]杨志建,蔡谨,袁中一,导电聚合物生物传感器的研究进展[J].传感器技术, 2003, 22(10): 74-77
    [72] Situmorang M., Gooding J. J., Hibbert D. B., et. al, Electrodeposited polytyramine as an immobilisation matrix for enzyme biosensors[J], Biosens. Bioelectron., 1998, 13(9): 953-962
    [73] Bouchet A., Chaix C., Marquette C.A., et. al, Cylinder-shaped conducting polypyrrole for labelless electrochemical multidetection of DNA[J], Biosens. Bioelectron., 2007, 23: 735-740
    [74] Manju G., Chaubey A., Mal hotra B. D., Application of conducting polymers to biosensors [J], Biosens. Bioelectron., 2002, 17(5): 345-359
    [75] Wong E. L. S., Gooding J. J., Charge transfer through DNA: a selective electrochemical DNA biosensor [J], Anal. Chem., 2006, 78(7): 2138-2144
    [76] Spadavecchia J., Prete P., Au nanoparticles prepared by physical method on Si and sapphire substrates for biosensor applications[J], Phys. Chem. B, 2005, 109(37): 17347-17349
    [77]朱宏伟,吴德海,徐才录,浮动催化裂解法制备碳纳米管的副产物(第一版)[M],北京:机械工业出版社, 2002, 11, 1-6
    [78]高梅,纳米粒子标记DNA探针在电化学DNA生物传感器中的应用[J],生物磁学, 2006, 6(1): 16-19
    [79]董献堆,陆君涛,查全性,巯基化合物组装单分子层的研究进展[J],电化学, 1995, 1: 248-258
    [80]赵明辉.亚微米电极/微电解池电化学检测单个中性粒细胞中的过氧化物酶[D].山东大学, 2005
    [81]张帆.毛细管电泳酶联免疫分析法检测肿瘤标志物的研究[D].青岛科技大学, 2007
    [82]王超.毛细管电泳技术在二陈汤指纹图谱研究和植物细胞单细胞分析中的应用[D].山东中医药大学, 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700