高功率单波长及多波长掺磷拉曼光纤激光器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着全球通信业务快速增长,对新一代的光纤通信系统的容量提出了越来越高的要求。从而,也相应地对现代光通信系统的核心部件——光放大器提出更高的挑战。目前,新一代光放大器——拉曼光纤放大器(RFA)被认为最具潜力和发展前景。其中首要问题是寻找合适的拉曼光放大器泵浦源。光纤激光器作为第三代激光器,与传统激光器相比具有许多优点,在许多方面己体现出具备理想泵浦源的优势。特别是拉曼光纤激光器(RFL)因其同时具有高功率输出及激射波长灵活可调的特性,能弥补目前半导体激光器的不足,而成为光通信系统中的理想泵浦源。
     本论文基于光纤中受激拉曼散射(SRS)现象的基本原理,围绕拉曼光纤激光器及多波长拉曼光纤激光器(MRFL)展开研究。
     首先,概述了SRS的基本原理,并对级联拉曼光纤激光器进行了理论分析。给出了拉曼光纤激光器的理论模型,通过对模型的分析给出了基于Newton-Raphson法的数值求解方法。同时为了提高运算速度及保证稳定性,我们采用拉曼光纤激光器动力学方程的近似解析解作为数值算法的初始值。结果表明,采用这种改进的数值算法可以有效提高运算速度和稳定性。
     其次,分别对Nd:YVO_4固体激光器泵浦和掺镱双包层光纤激光器(DCFL)泵浦的RFL进行实验研究。其中用Nd:YVO_4固体激光器泵浦的RFL获得了1.15W的1484nm拉曼激光输出,并且其功率波动在一小时内小于6%;采用DCFL泵浦RFL,获得了3.44W的1484nm拉曼激光输出,光-光转换效率为28.1%。实验结果都达到预期效果,并与理论基本一致。
     最后,在此基础上,我们结合保偏光纤Sagnac环梳状滤波功能及综合利用掺磷光纤中P_2O_5和SiO_2的拉曼频移,第一次成功地应用掺磷光纤的拉曼频移效应实现了O波段波长间隔可调谐的多波长拉曼光纤激光器。在1064nm的泵浦功率为2.5W情况下,分别实现波长间隔为0.8nm和0.43nm的多波长激光稳定输出,实验结果与理论分析一致。
With the rapid development of global communications, the ultra-high capacity of a new generation optical fiber communications system is demanded urgently. Therefore, as one of the vital components of optical communication systems, optical amplifiers are encountering a great challenge. Especially, Raman fiber amplifier (RFA) as a new generation amplifier has been thought as an ideal and potential solution. However, a key problem is that a suitable Raman pump source is very difficultly found. As a third-generation laser, fiber lasers are an excellent candidate as a Raman pump source, due to their advantages compared with conventional laser. Especially, because Raman fiber lasers (RFL) can be high-power output and the flexible lasing wavelength, they can perfectly meet the requirements of Raman pump sources and can replace the conventional diode laser.
     Based on the principle of stimulated Raman scattering (SRS) in single-mode fiber, the dissertation is focused on the study of RFL and multi-wavelength Raman fiber laser (MRFL).
     Firstly, the basic theory of SRS is introduced in details. The dynamics coupling equations governed the RFL are given and a Newton-Raphson-based shooting method is proposed to numerically solve it. In order to improve the efficiency and stability of the algorithm, the approximation solution of the coupling equations is used as an initially guessing value for the algorithm. It is shown that the computation time and stability can be significantly improved based on the improved algorithm.
     Secondly, the experiments of RFL pumped by the Nd: YVO_4 solid-state laser and double clad fiber laser (DCFL) are investigated, respectively. We obtain the output power of 1.15W/1484nm and the power fluctuation less than 6% in one hour pumped with a Nd:YVO_4 solid state laser. Furthermore, a higher output power of around 3.44W is also obtained when a DCFL is used as the Raman pump source. The optical conversion efficiency is about 28.1%. All experimental results are good agreement on the theoretical those.
     Finally, by use SRS of both P_2O_5 and SiO_2 in the P-doped fiber, it is the first time that a stable and spacing-adjustable phosphsilcate multi-wavelength Raman fiber in the O-band is achieved successfully. With the pump power of 2.5W, the multi-wavelength oscillations spaced at 0.8nm and 0.43nm have been observed, respectively.
引文
[1] K.Ueda, A.Liu. Future of high-power fiber lasers [J]. Laser Physics, 1998, 8(3): 774- 781.
    [2] E.Snitzer. Optical maser action of Nd3+in a barium glass [J]. Phys.Rev.Lett., 1961, 7(12): 444.
    [3] C.J.Koester, E.Snitzer. Amplification in a fiber laser [J]. Appl.Opt., 1964, 10: 1182-1186.
    [4] E.Snitzer, H.Po, F.Hakimi. Double-clad offset core Nd fiber laser [C]. Proc.OFC, 1988: PD5.
    [5] H.Po, E.Snitzer, R.Tummelini et al. Double clad high brightness Nd fiber laser pumped by GaAIAs phased array [CJ. Proc.OFC, 1989: PD7.
    [6] R.H.Stolen, E.R.lppen, Raman oscillation in glass optical waveguide [J]. Appl.Phys.Lett., 1972,20:62-64.
    [7] R.H.Stolen, E.P.Ippen. Raman gain in glass optical waveguide [J]. Appl.Phys.Lett. 1973, 22 (6): 276-278.
    [8] E.M.Dianov, D.GFursa, A.A.abramov et al. Raman fiber-optic amplifier of signals at the wavelength of 1.3μm [J]. Quantum.Electron. 1994,24: 749-751.
    [9] E.M.Dianov, M.V.Grekov et al. CW high power 1.24 um and 1.48 um Raman lasers based on low loss phosphosilicate fibre [J]. Electron.Lett. 1997, 33 (18): 1542-1544.
    [10] M.C.Farries, A.C.Carter, GGJones et al. Tuneable multiwavelength semiconductor laser with single fibre output [J]. Electron.Lett. 1991, 27 (17): 1498 - 1499.
    [11] H.Okamura, K.Iwatsuki, Simultaneous oscillation of wavelength-tunable, singlemode lasers using an Er-doped fibre [J]. Electron.Lett. 1992, 28 (5): 461 - 463.
    [12] Xavier Normandin, Florence Leplingard, Ekaterina Bourova et al. Experimental assessment of phospho-silicate fibers for three-wavelength (1427 nm, 1455 nm, 1480 nm) reconfigurable Raman lasers [C], OFC 2002: 9-11
    [13] Nam Seong Kim, Xingyu Zou, and Kirk Lewis. CW Depolarized Multiwavelength Raman Fiber Ring Laser with over 58 channels and 50 GHz channel spacing [C], OFC 2002: 640-641
    [14] S. Yamashita, Y. Inoue. Multiwavelength Er-Doped Fiber Ring Laser Incorporating Highly Nonlinear Fiber [J] Jap. Appl. Phys. 2005 44: 1080-1081.
    [15] 李乙钢,苏红新,樊亚仙等.级联拉曼光纤激光器[J], 中国激光,2001,05(28):394.
    [16] Z.Q.Luo, C.H.Huang, GY.Sun et al. 800 mW/1484 nm highly efficient two-cascaded phosphosilicate Raman fiber laser pumped by Nd:YVO4 solid-state laser, Opt. Commun. 2006, 265 (2): 616-619.
    [17] 周军,楼祺洪,朱健强等.采用国产大模场面积双包层光纤的714w连续光纤激光器[J],光学学报,2006,07(26):1119-1120.
    [18] 陈健;张巍;刘小明等,拉曼+EDFA宽带混合光放大器的实现和设计优化[J], 电子学报,2002年09期 1302-1304.
    [19] 贾东方,李世忱,宋立军.光纤拉曼放大器的优化设计问题[J],光学学报,2001,07:808-811.
    [20] 杜戈果,邓莹,陈慧玲.拉曼光纤激光器的初步研究[J], 激光与红外,2004,03:169-171.
    [21] E.Yablovovitch. Inhibited spontaneous Emission in Solid-State Physics and electronics [J], Phys.Rev.Lett., 1987, 58: 2059-2062.
    [22] S.John. Strong Localization of Photons in Certain Dielectric Superlattices [J]. Physical Rev.Lett., 1987,58 (3): 2486-2489
    [23] P.St.J.Russell, J.C.Knight, T.A.Birks et al. Recent Progress in Photonic Crystal Fibres [J]. Proc.OFC, 2000,3:98-100.
    [24] J.C. Knight, T.A. Birks. All-silica single-mode optical fiber with photonic crystal cladding. OptXett. 1996,21: 1547-1549
    [25] W.J. Wadsworth, J.C. Knight, W.H. Reeves et al. Yb-doped photonic crystal fiber laser [J]. Electron.Lett., 2000,36 (17): 1452-1453
    [26] J.Limpert, T.Schreiber et al [J]. High-power air-clad large-mode-area photonic crystal fiber laser [J]. Optics Express, 2003,11:818-823
    [27] J.Limpert, T.Schreiber et al. Thermo-optical properties of air-clad photonic crystal fiber lasers in high power operation [J]. Optics Express, 2003, 11 (22): 2982-2990.
    [28] E.M.Dianov, I.A.Bufetov, M.M.bubnov et al. Three-cascaded 1407-nm Raman laser based on phosphorus-doped silica fiber [J]. Optics Letters, 2000, 25 (6): 402-404.
    [29] E.M.Dianov, A.S.Kurkov et al. Raman fiber source for the 1.6-1.75 urn spectral region [J]. Laser Physics, 2003, 13 (3): 397-400.
    [30] 石顺祥,陈国夫,赵卫等.非线性光学[M].西安:西安电子科技大学出版社,2003:203-204.
    [31] W.克希耐尔. 固体激光工程[M].北京:科学出版社,2002:564-565.
    [32] C.V.Raman, K.S.Krishnan, A New Type of Secondary Radiation, Nature, 1928.
    [33] G.P.Agwal, Nonlinear Fiber Optics [M], Academic Press, San Diego, CA, 1989.
    [34] 刘德明,向清,黄德修,光纤光学[M],北京:国防工业出版社,1995.
    [35] 李玉权,崔敏.光波导理论与技术[M].北京:人民邮电出版社,2002:230-231.
    [36] H.Chaohong, H.Wencai, C.Zhiping. High power LD-end-pumped Nd:YVO4 laser as a pump source for Raman fiber laser [J]. 2007, Proc.of SPIE, 6279 62796C-1-6.
    [37] C.J.S.de Matos, D.A.Chestnut, P.C Reeves-Hall et al. Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 urn [J]. Electron.Lett., 2001, 37 (13): 825-826.
    [38] Do Ii Chang, Hak Kyu Lee, Kyong Hon Kim. Cascaded Raman fibre laser operating at 1.48μm. Electron.Lett., 1999, 35 (22): 1951-1952
    [39] C.A.Codemard, P.Dupriez, Y.Jeong et al. High-power continuous-wave cladding-pumped Raman fiber laser [J]. Opt. Lett., 2006, 31(15): 2290-2292.
    [40] Huang Kaidi, Zhou Xiaojun, Qin Zujun et al. A novel fast numerical algorithm for cascaded Raman fiber laser using the analytic approximate solution [J]. Opt. Commun., 2007,271 (1): 257-262.
    [41] 黄嘉福,黄朝红,蔡志平等,双端泵浦掺磷拉曼光纤激光器的数值模拟及优化[J].厦门大学学报自然科学版,2008,47(2):164-168.
    [42] F.Koch, P.Reeves-Hall, S.V.Cheraikov et al. CW, multiple wavelength, room temperature, raman fiber ring laser with external 19 channel, 10GHz pulse generation in a single electro-absorption modulator [C], OFC, 2001: WDD7.
    [43] C.S.Kim, R.M.Sova, J.U.Kang, Tunable multi-wavelength all-fiber Raman source using fiber Sagnac loop filter [J], Opt.Commun., 2003, 218(104): 291-295.
    [44] Y.G.Han, C.S.Kim, J.U.Kang, et al. Multiwavelength Raman fiber-ring laser based on tunable cascaded long-period fiber gratings [J]. Photon.Technol.Lett., 2003,15. 383-385.
    [45] J.A.Yeung, A.Yariv. Theory of cw Raman oscillation in optical fibers [J] .OSA., 1979, 69 (6): 903-807.
    [46] S.A.Babin, D.V.Churkin, E.V.Podivilov. Analytical model of a two-stage Raman fiber laser considering intensity interactions in cascades Laser [J]. Optics.Diode Lasers and Telecommunication Systems.Proceedings of the SPIE, 2004, 5480: 55-63.
    [47] B.Burgoyne, N.Godbout, S.Lacroix. Theoretical analysis of nth-order cascaded continuous-wave Raman fiber lasers.Ⅰ.Model and resolution [J], J.Opt.Soc.Am.B, 2005, 22: 764-771.
    [48] B.Burgoyne, N.Godbout, S.Lacroix. Theoretical analysis of nth-order cascaded continuous-wave Raman fiber lasers.Ⅱ.Optimization and design rules [J], J.Opt.Soc.Am.B, 2005, 22: 772-776.
    [49] Huang Chaohong, Cai Zhiping, Ye Chenchun et al. Analytic modeling of the P-doped cascaded Raman fiber lasers [J]. Opt. Fiber Technol., 2006, 13 (1): 22-26.
    [50] J.H.Zhou, J.P.Chen, X.W.Li et al. Exact analytical solution for Raman fiber laser[J] IEEE Photon. Technol. Lett. 18, 1097-1099 (2006).
    [51] C.H.Huang, Z.P.Cai, C.C.Ye et al. Optimization of dual-wavelength cascaded Raman fiber lasers using an analytic approach, Opt. Commun., 2007, 272 (2): 414-419
    [52] C.H.Huang, Z.P.Cai, C.C.Ye et al. Explicit solution for Raman fiber laser using Lambert W function, Opt. Express 2007, 15 (8): 4671-4676
    [53] G.Vareille, O.Audouin, E.Desurvire. Numerical optimization of power conversion efficiency in 1480nm multi-Stokes Raman fiber lasers [J]. Electron.Lett., 1998, 34 (7): 675-676.
    [54] Matteo Rini, Ilaria Cristiani, Vittorio Degiorgio. Numerical modeling and optimization of cascaded CW Raman fiber lasers [J]. Quantum Electronic, 2000, 36 (10): 1117-1122.
    [55] N Kurukitkoson, H Sugahara, S K Tusitsyn et al. Optimization of two-stage Raman converter based on phosphosilicate core fiber: Modeling and experiment [J]. Electron.Lett., 2001,37(21): 1281-1283.
    [56] Zhou Junhe, Chen Jianping, Li Xinwan. A novel algorithm for a multi-cavity Raman fiber laser [J]. Opt. Express, 2006, 14 (8): 3427-3432.
    [57] 电子科技大学应用数学系.实用数值计算方法 [M], 北京:高等教育出版社, 2001:87-88.
    [58] D.I1 Chang, D.S.Lim, M.Y. Jeon et al. Dual-wavelength cascaded Raman fibre laser[J], Electron.Lett. 2000, 36 (16): 1356-1358.
    [59] M.N Prabhu, S.Kim et al. Output characteristics of high-power continuous wave Raman fiber laser at 1484 nm using phosphosilicate fiber [J], Optical Review, 2000, 7 (5): 455-461.
    [60] Y.Wang, H.Po. Impacts of cavity losses on cw Raman fiber lasers [J]. Optical Engineering 2003,42 (10): 2872-2879.
    [61] J.C.Bouteiller. Spectral modeling of Raman fiber lasers [J], Photon.Technol.Lett. 2003, 15, 1698.
    [62] F.Leplingard, S.Borne, C.Martinell et al. FWM-assisted Raman laser for second-order Raman pumping [C]. Optical Fiber Communications Conference OSA., 2003, paper ThB4.
    [63] P.Suret and S.Randoux. Influence of spectral broadening on steady characteristics of Raman fiber lasers: from experiments to questions about validity of usual models [J], Opt. Commun. 2004,237: 201-212 .
    [64] F.Vanholsheeck, S.Coen, P.Emplit et al Cascaded Raman generation in optical fibers: influence of chromatic dispersion and Rayleigh backscattering [J], Opt.Lett. 2004 29 (9): 998-1000.
    [65] Sergey A. Babin, Dmitriy V. Churkin, Arsen E. Ismagulov et al. Four-wave-mixing-induced turbulent spectral broadening in a long Raman fiber laser [J], OSA. 2007, 24 (8): 1729-1738.
    [66] S. Yamashita and K. Hotate. Multiwavelength erbium doped fiber using intracavity etalon and cooled by liquid nitrogen [J], Electron.Lett. 1996, 32: 1298-1299.
    [67] J. Yao, Z.Deng, J.Liu. Investigation of Room-Temperature Multiwavelength Fiber-Ring Laser That Incorporates an SOA-Based Phase Modulator in the Laser Cavity [J], J.Lightwave Technol. 2005, 23: 2484-2489.
    [68] G.Y.Sun, Y.Chung , Z.Q.Luo, Z.P.Cai, C.C.Ye. Optimization of the multiwavelength erbium-doped fiber laser in a unidirectional cavity without isolator [J], Opt.Fiber Technol.2007, 13: 198-201.
    [69] Y.G.Han, T.V.A.Tran and S.B.Lee. Wavelength-spacing tunable multiwavelength erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber [J], Opt.Lett. 2006, 31: 697-699.
    [70] C.J.S.Matos, D.A.Chestnut, P.C.Reeves-Hall et al. Multi-wavelength, continuous wave fiber Raman ring laser operating at 1.55 μm [J], Electron.Lett., 2001,37: 825-826.
    [71] [73] C.S.Kim and J.U.Kang. Multiwavelength switching of Raman fiber ring laser incorporating composite Polarization-maintaining fiber Lyot-Sagnac filter [J], Appl.Opt., 2004,43:3151-3157.
    [72] Y.G.Han, T.V.A.Tran, S.H.Kim et al. Multiwavelength Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature [J], Opt. Lett., 2005, 30: 1282-1284.
    [73] Z.Wang, Y.Cui, B.Yun et al. Multiwavelength generation in a Raman fiber laser with sampled Bragg grating [J], Photon.Technol.Lett., 2005, 17, 2044-2046.
    [74] D.Chen, S.Qin, L.Shen et al. An all-fiber multi-wavelength Raman laser based on a PCF sagnac loop filter [J], Microw.Opt.Technol.Lett., 2006, 48: 2416-2418.
    [75] Z. Xiong, and T. Chen Multi-wavelength Raman fiber laser with 2- and 3-stage cavities in a phosphosilicate fiber [J] Opt. Fiber Technol., 2007, 13: 81-84.
    [76] N.S.Kim, M.Prabhu, C.Li et al. 1239/1484 nm cascaded phosphosilicate Raman fiber laser with CW output power of 1.36 W at 1484 nm pumped by CW Yb-doped double-clad fiber laser at 1064 nm and spectral continuum generation [J], Opt.Commun., 2000,176: 219-222 .
    [77] M.P.Fok, C.Shu. Spacing-adjustable multi-wavelength source from a stimulated Brillouin scattering assisted erbium-doped fiber laser [J], Opt.Exp., 2006, 14: 2618-2624.
    [78] H.Dong, G.Zhu, Q.Wang et al. Multiwavelength fiber ring laser source based on a delayed interferometer [J] Photon.Technol.Lett., 2005, 17: 303-305.
    [79] C.H.Yeh, T.T.Huang, H.C.Chien et al. Tunable S-band erbium-doped triple-ring laser with single-longitudinal-mode operation [J], Opt.Exp., 2007, 15: 382-386.
    [80] X.Liu, C.Lu. Self-stabilizing effect of four-wave mixing and its applications on multiwavelength erbium-doped fiber lasers [J], Photon.Technol.Lett., 2005, 17: 2541-2543.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700