东亚飞蝗Toll-9受体基因及组织定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫没有获得性免疫系统,其免疫防御体系主要依赖其高效的先天性免疫,包括细胞免疫和体液免疫。其中由昆虫脂肪体合成、分泌抗菌肽而形成的体液免疫比细胞免疫更快更早地产生防御应答。抗菌肽的合成由两条不同的信号通道调节:Toll信号途径和Imd信号途径,它们介导合成不同的抗菌肽。其中Toll信号途径能够介导机体对入侵的病原真菌和革兰氏阳性细菌的感染快速地产生相应的抗菌肽。Toll受体是昆虫Toll信号转导途径的一个重要组成成员,主要功能是将胞外识别蛋白探测到的危险信号传递到胞内,激活昆虫机体对入侵病原微生物的先天性免疫应答,在昆虫的先天性免疫系统中起着十分重要的作用。本研究采用RT-PCR和RACE方法从东亚飞蝗(Locusta migratoria manilensi)中克隆了Toll-9受体基因(缩写名为LmToll-9)的部分cDNA序列(GeneBank登录号:EU573213),分析了该基因在不同组织的表达特征。获得的cDNA包括3'端,长1231 bp,含一个长918 bp的开放阅读框,编码305个氨基酸,推测的氨基酸序列与其他昆虫的Toll-9受体基因有较高的相似性。已经获得的东亚飞蝗Toll-9受体部分氨基酸序列具有昆虫Toll受体家族的部分典型结构,包括胞内的TIR结构域和跨膜区域。半定量RT-PCR研究表明,LmToll-9基因只在东亚飞蝗的中肠组织中表达,而在东亚飞蝗的头部、脂肪体、后腿和血细胞中均未发现该基因的转录。
Insects lack an acquired immune system, but have a well-developed innate response. The innate immune system of insects is divided into humoral and cellular defense responses. Humoral that comprised of rapid and massive syntheses of antimicrobial peptides provides a local first line of defense against microorganisms. The synthese of antimicrobial peptides are mediated by two different signaling pathway, Toll and Imd signaling transduction pathway. The two pathway control expression of different kinds of antimicrobial peptides genes. Toll signaling pathway can activate rapid syntheses and secretion of antifungal and antibacterial peptides against invading fungi and Gram-positive bacteria infection. Toll-receptor family is an important member in Toll signaling pathway. It mainly transfers danger signals that extracellular recognition protein detected into cytoplasm, which is important to activate innate immune response of insects. The partial cDNA of Toll-9 receptor gene of Locusta migratoria manilensis (Meyen) was cloned by means of RT-PCR and 3'-RACE (GeneBank accession number: EU573213). The result showed that the cDNA was 1231bp in length and contained an open reading frame (ORF) of 918bp, which encoded 305 amino acids. The deduced amino acdi sequence, which was composed of Toll/IL-1 receptor homologous region (TIR) and transmembrane domain, showed a high similarity with Toll-9 receptors of other insects. Semi-quantitative RT-PCR indicated that LmToll-9 expressed only in the midgut, but not in the head, hind-leg, fat body and blood corpuscle of L. migratoria manilensis.
引文
[1]刘举鹏.浅谈我国一些重要代表性蝗虫[J].生物学通报, 1996, 31(10): 8-10.
    [2]王翠玲,覃荣,席永士.生物农药的研究与开发[J].西藏科技, 2003, 7: 16-18.
    [3]蒋琳,马承铸.生物农药研究进展[J].上海农业学报, 2000, 16(增刊): 73-77.
    [4] NAS (National Academy of Sciences). Report of the research briefing panel on biological control in managed ecosystems[M]. Washington, DC. National Academy Press, 1987.
    [5]李阜棣,胡正嘉.微生物学[M].北京:中国农业出版社. 2000, 283-284.
    [6] Jeremy P. Gillespie, Andy M. Bailey, Andreas ViIcinskas, et al. Fungi as elicitors of insect immune response[J]. Archives of Insect Biochemistry and Physiology, 2000, 44(2): 49-68.
    [7] Hoffmann J.A.,Reichhart J.-M. Drosophila immunity[J]. Trends in Cell Biology, 1997, 7(8) : 309-316.
    [8] Ranjiv S. Khush, Bruno Lemaitre. Genes that fight infection: what the Drosophila genome says about animal immunity[J]. Trends in Genetics, 2000, 16(10): 442-449.
    [9] Jeremy P. Gillespie, Claire Burnett, A. Keith Charnley. The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium anisopliae Var acridum[J]. Journal of Insect Physiology, 2000, 46: 429-437.
    [10] Péter Vilmos,éva Kurucz. Insect immunity: evolutionary roots of the mammal in innate immune System[J]. Immunology Letters, 1998, 62(2): 59-66.
    [11] M.D. Lavine, M.R. Strand. Insect hemocytes and their role in immunity[J]. Insect Biochemistry and Molecular Biology, 2002, 32: 1295-1309.
    [12] M.D. Lavine, G. Chen, M.R. Strand. Immune challenge differentially affects transcript abundance of three antimicrobial peptides in hemocytes from the moth Pseudoplusia includens[J]. Insect Biochemistry and Molecular Biology, 2005, 35: 1335-1346.
    [13] Alan Aderem, Richard J. Ulevitch. Toll-like receptors in the induction of the innate immune response[J]. Nature, 2000, 406: 782-787.
    [14] Jean-Luc Imler, Jules A. Hoffmann. Toll receptors in innate immunity[J]. Trends in Cell Biology, 2001, 11(7): 304-311.
    [15] Tsuneaki Asai, Guillaume Tena, Joulia Plotnikova, et al. MAP kinase signalling cascade in Arabidopsis innate immunity[J]. Nature, 2002, 415: 977-984.
    [16] Roberts DW, Humber RA. Entomogenous fungi. In biology of conidial fungi[J]. New York: Academic Press, 1981, 2: 201-236.
    [17] Bruno Lemaitre, Emmanuelle Nicolas, Jules A. Hoffmann, et al. The dorsoventral regulatorygene cassette sp?tzle/Toll/cactus controls the potent antifungal response in drosophila adults[J]. Cell, 1996, 86: 973-983.
    [18] Kiyoshi Takeda, Shizuo Akira. Toll-like receptors in innate immunity[J]. International Immunology, 2005, 17(1): 1-14.
    [19] James Y. Ooi, Yoshimasa Yagi, Y. Tony Ip, et al. The Drosophila Toll-9 activates a constitutive antimicrobial defense[J]. EMBO reports, 2002, 3(1): 82-87.
    [20] Zakaria Kambris, Jules A. Hoffmann, Jean-Luc Imler, et al. Tissue and stage-specific expression of the Tolls in Drosophila embryos[J]. Gene Expression Patterns, 2002, 2: 311-317.
    [21] H. Bilak, S. Tauszing-Delamasure, J.-L. Imler. Toll and Toll-like receptors in Drosophila[J]. Biochemical Society Transactions, 2003, 31(3): 648-651.
    [22] Xin Du, Alexander Poltorak, Yongie Wei, et al. Three novel mammalian toll-like receptors: gene structure, expression, and evolution[J]. European Cytokine Network, 2000, 11(3): 362-371.
    [23]刘建柱,崔玉东,朴范泽. TLRs及其信号转导的研究进展[J].动物医学进展, 2002, 23 (5): 10-13.
    [24] Christiane Nüsslein-Volhard, Margit Lohs-Schardin, Klaus Sander, et al. A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila[J]. Nature, 1980, 283: 474–476.
    [25] Carl Hashimoto, Kathy L. Hudson, Kathryn V. Anderson. The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein[J]. Cell, 1988, 52: 269-279.
    [26] M.P. Belvin, K.V. Anderson. A conserved signaling pathway: the Drosophila toll-dorsal pathway[J]. Annu Rev Cell Dev Biol, 1996, 12:393-416.
    [27] Ruslan Medzhitov, Charles A. Janeway, Jr. Innate immunity: the virtues of a nonclonal system of recognition[J]. Cell, 1997, 91(3): 295-298.
    [28] Myriam A. Armant, Matthew J. Fenton. Toll-like receptors: a family of pattern-recognition receptors in mammals[J]. Genome Biology, 2002, 3(8): reviews3011.1-3011.6.
    [29] Bruce Beutler. The Toll-like receptors: analysis by forward genetic methods[J]. Immunogenetics, 2005, 57(6): 385-932.
    [30] Ricardo T. Gazzinelli, Catherine Ropert, Marco A. Campos. Role of the Toll/interleukin-1 receptor signaling pathway in host resistance and pathogenesis during infection with protozoan parasites[J]. Immunological Reviews, 2004, 201(1): 9-25.
    [31] Jean-Luc Imler, Liangbiao Zheng. Biology of Toll receptors: lessons from insects and mammals[J]. Journal of Leukocyte Biology, 2004, 75: 18-26.
    [32] Mihai G. Netea, Chantal van der Graaf, Jos W. M. Van der Meer, Bart Jan Kullberg. Toll-like receptors and the host defense against microbial pathogens: bringing specificity to the innate-immune system[J]. Journal of Leukocyte Biology, 2004, 75: 749-755.
    [33] Robert A. Zambon, Madhumitha Nandakumar, Louisa P. Wu, et al. The Toll pathway is important for an antiviral response in Drosophila[J]. PNAS, 2005, 102(20): 7257-7262.
    [34] Cyril Jault, Laurent Pichon, Johanna Chluba. Toll-like receptor gene family and TIR-domain adapters in Danio rerio[J]. Molecular Immunology, 2004, 40:759-771.
    [35] Li-Shi Yang, Zhi-Xin Yin, Ji-Xiang Liao, et al. A Toll receptor in shrimp[J]. Molecular Immunology, 2007, 44:1999-2008.
    [36] Limei Qiu, Linsheng Song, Wei Xu, et al. Molecular cloning and expression of a Toll receptor gene homologue from Zhikong Scallop, Chlamys farreri[J]. Fish & Shellfish Immunology, 2007, 22:451-466.
    [37] Coralia Luna, Xuelan Wang, Yaming Huang, et al. Characterization of four Toll related genes during development and immune responses in Anopheles gambiae[J]. Insect Biochemistry and Molecular Biology, 2002, 32: 1171-1179.
    [38] Luke A.J. O'Neill. The role of MyD88-like adapters in Toll-like receptor signal transduction[J]. Biochem. Soc. Trans., 2003, 31: 643-647.
    [39] Alexander Poltorak, Xiaolong He, Bruce Beutler, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene[J]. Science, 1998, 282(5396): 2085-2088.
    [40] Alexzander Asea, Michael Rehli, Stuart K. Calderwood, et al. Novel signal transduction pathway utilized by extracellular HSP70: role of toll-like receptor(TLR)2 and TLR4[J]. The Journal of Biological Chemistry, 2002, 277(17): 15028-15034.
    [41] Holly E. Humphries, Martha Triantafilou, Benjamin L. Makepeace, et al. Activation of human meningeal cells is modulated by lipopolysaccharide(LPS)and non-LPS components of Neisseria meningitidis and is independent of Toll-like receptor(TLR)4 and TLR2 signalling[J]. Cell Microbiology, 2005, 7(3): 415-430.
    [42] Ute Buwitt-Beckmann, Holger Heine, Artur J. Ulmer, et al. Lipopeptide structure determines TLR2 dependent cell activation level[J]. FEBS Journal, 2005, 272(24): 6354-6364.
    [43] Takashi Shimizu, Yutaka Kida, Koichi Kuwano. A dipalmitoylated lipoprotein from Mycoplasma pneumoniae activates NF-kappa B through TLR1,TLR2,and TLR6[J]. The Journal Immunology, 2005, 175: 4641-4646.
    [44] Nicolas W. J. Schroder, Siegfried Morath, Ralf R. Schumann, et al. Lipoteichoic acid (LTA) of streptococcus pneumoniae and staphylococcus aureus activates immune cells via Toll-like receptor (TLR)-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 andMD-2 are not involved[J]. The Journal Biological Chemistry, 2003, 278(18): 15587-15594.
    [45]苏兆亮. TLRs在树突状细胞抗感染免疫中的作用研究进展[J].国际输血及血液学杂志, 2006, 29(1): 54-58.
    [46] J.M. Reichhart. TLR5 takes aim at bacterial propeller[J]. Nature Immunology, 2003, 4(12): 1159-1160.
    [47] Fanny N. Lauw, Daniel R. Caffrey, Douglas T. Golenbock. Of mice and man: TLR11(finally) finds profilin[J]. Trends in Immunology, 2005, 26(10): 509-511.
    [48] Benjamin N. Gantner, Randi M. Simmons, Scott J. Canavera, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2[J]. The Journal Experimental Medicine, 2003, 197(9): 1107-1117.
    [49] Charlotte Cunningham-Rundles, Lin Radigan, Adina Nakazawa, et al. TLR9 activation is defective in common variable immune deficiency[J]. The Journal Immunology, 2006, 176: 1978-1987.
    [50] Marco Prinz, Folker Garbe, Burkhard Becher, et al. Innate immunity mediated by TLR9 modulates pathogenicity in an animal model of multiple sclerosis[J]. The Journal of Clinical Investigation, 2006, 116(2): 456-464.
    [51] Miguel A. Sanjuan, Navin Rao, Lars Karlsson, et al. CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion[J]. J Cell Biol, 2006, 172(7): 1057-1068.
    [52] Marion Jurk, Florian Heil, Stefan Bauer, et al. Human TLR7 or TLR8 independently confer responsiveness to the antiviral compound R-848[J]. Nature Immunology, 2002, 3:499.
    [53] V.J. Philbin, M. Iqbal, A.L. Smith, et al. Identification and characterization of a functional,alternatively spliced Toll-like receptor 7(TLR7) and genomic disruption of TLR8 in chickens[J]. Immunology, 2005, 114(4): 507-521.
    [54] Kathy Triantafilou, Emmanouil Vakakis, Martha Triantafilou, et al. TLR8 and TLR7 are involved in the host's immune response to human parechovirus 1[J]. European Journal Immunology, 2005, 35(8): 2416-2423.
    [55] R.J. Binder, R. Vatner, P. Srivastava. The heat-shock protein receptors: some answers and more questions[J]. Tissue Antigens, 2004, 64(4): 442-451.
    [56] C.J. Kirschning, R.R. Schumann. TLR2: cellular sensor for microbial and endogenous molecular patterns[J]. Curr Top Microbiol Immunol, 2002, 270: 121-144.
    [57] Min-Fu Tsan, Baochong Gao. Endogenous ligands of Toll-like receptors[J]. Journal Leukocyte Biology, 2004, 76: 514-519.
    [58] Ramunas M. Vabulas, Parviz Ahmad-Nejad, Hermann Wagner, et al. HSP70 as endogenousstimulus of the Toll/interleukin-1 receptor signal pathway[J]. The Journal Biological Chemistry, 2002, 277(17): 15107-15112.
    [59] M. Majewska, M. Szczepanik. [The role of Toll-like receptors (TLRs) in innate and adaptive immune responses and their function in immune response regulation][J]. Postepy Hig Med Dosw (online), 2006, 60: 52-63.
    [60] Adone Baroni, Manuela Orlando, Elisabetta Buommino, et al. Toll-like receptor 2 (TLR2) mediates intracellular signalling in human keratinocytes in response to Malassezia furfur[J]. Archives Dermatological Reseach, 2006, 297(7): 280-288.
    [61] Catherine M. O'Connell, Irina A. Ionova, Robin R. Ingalls, et al. Localization of TLR2 and MyD88 to Chlamydia trachomatis inclusions. Evidence for signaling by intracellular TLR2 during infection with an obligate intracellular pathogen[J]. The Journal Biological Chemistry, 2006, 281(3): 1652-1659.
    [62] Takeshi Into, Kazuto Kiura, Ken-ichiro Shibata, et al. Stimulation of human Toll-like receptor(TLR)2 and TLR6 with membrane lipoproteins of Mycoplasma fermentans induces apoptotic cell death after NF-kappa B activation[J]. Cell Microbiology, 2004, 6(2): 187-199.
    [63] Colm P. Power, Jiang H. Wang, H. Paul Redmond, et al. Bacterial lipoprotein delays apoptosis in human neutrophils through inhibition of caspase-3 activity: regulatory roles for CD14 and TLR-2[J]. The Journal of Immunology, 2004, 173(8): 5229-5237.
    [64] Goutam Sen, Abdul Q. Khan, Clifford M. Snapper, et al. In vivo humoral immune responses to isolated pneumococcal polysaccharides are dependent on the presence of associated TLR ligands[J]. The Journal of Immunology, 2005, 175:3084-3091.
    [65] N.A. Skinner, C.M. MacIsaac, K. Visvanathan, et al. Regulation of Toll-like receptor(TLR)2 and TLR4 on CD14dimCD16+monocytes in response to sepsis-related antigens[J]. Clinical & Experimental Immunology, 2005, 141(2): 270-278.
    [66] Sharon L. McCoy, Stephen E. Kurtz, Steven H. Hefeneider, et al. Identification of a peptide derived from vaccinia virus A52R protein that inhibits cytokine secretion in response to TLR-dependent signaling and reduces in vivo bacterial-induced inflammation[J]. The Journal of Immunology, 2005, 174: 3006-3014.
    [67] Stefan Wirtz, Christoph Becker, Massimo F. Neurath, et al. EBV-induced gene 3 transcription is induced by TLR signaling in primary dendritic cells via NF-kappaB activation[J]. The Journal of Immunology, 2005, 174: 2814-2824.
    [68] Cory L. Ahonen, Christie L. Doxsee, Ross M. Kedl, et al. Combined TLR and CD40 triggering induces potent CD8+T cell expansion with variable dependence on type I IFN[J]. The Journal of Experimental Medicine, 2004, 199(6): 775-784.
    [69] Jelena Tomic, Dionne White, David E. Spaner, et al. Sensitization of IL-2 signaling through TLR-7 enhances B lymphoma cell immunogenicity[J]. The Journal of Immunology, 2006, 176: 3830-3839.
    [70] M. Hallman, M. Ramet, R.A. Ezekowitz. Toll-like receptors as sensors of pathogens[J]. Pediatr Res, 2001, 50(3): 315-321.
    [71] Hiroyuki Nagase, Shu Okugawa, Koichi Hirai, et al. Expression and function of Toll-like receptors in eosinophils:activation by Toll-like receptor 7 ligand[J]. The Journal of Immunology, 2003, 171: 3977-3982.
    [72] Masuhiro Nishimura, Shinsaku Naito. Tissue-specific mRNA expression profiles of human toll-like receptors and related genes[J]. Biological & Pharmaceutical Bulletin, 2005, 28(5): 886-892.
    [73]李庆军,黄引平. Toll样受体的研究进展[J].新乡医学院学报, 2005, 22(2): 167-170.
    [74]任光圆,晏春根,谢青. Toll样受体:免疫治疗的新靶位[J].中国新药与临床杂志, 2004, 23(10): 718-723.
    [75] Sarah L. Doyle, Luke A.J. O’Neill. Toll-like receptors: From the discovery of NF-κB to new insights into transcriptional regulations in innate immunity[J]. Biochemical pharmacology, 2006, 72(9): 1102-1113.
    [76] Taro Kawai, Shizuo Akira. Toll-like receptor downstream signaling[J]. Arthritis Res Ther, 2005, 7(1): 12-19.
    [77] Ruslan Medzhitov, CharleS. Jr Janeway. Innate immune recognition: mechanisms and pathways[J]. Immunological Reviews, 2000, 173(1): 89-97.
    [78] Elizabeth Kopp, Ruslan Medzhitov, Sankar Ghosh. ECSIT is an evolutionarily conserved intermediate in the Toll/IL-1 signal transduction pathway[J]. Genes Development, 1999, 13(16): 2059-2071.
    [79] Luke A.J. O'Neill, Aisling Dunne, Claudia Wietek, et al. Mal and MyD88: adapter proteins involved in signal transduction by Toll-like receptors[J]. J Endotoxin Res, 2003, 9(1): 55-59.
    [80] Shintaro Sato, Masanaka Sugiyama, Shizuo Akira, et al. Toll/IL-1 receptor domain-containing adaptor inducing IFN-beta(TRIF)associates with TNF receptor-associated factor 6 and TANK-binding kinase 1, and activates two distinct transcription factors, NF-kappa B and IFN-regulatory factor-3, in the Toll-like receptor signaling[J]. The Journal of Immunology, 2003, 171: 4304-4310.
    [81] T.Y. Wang, J.M. Wang, X.X. Yao. [Trif:A new member of Toll-like receptor-associated signal transduction][J]. Zhongguo Wei Zhong Bing Ji Jiu Yi Xue, 2004, 16(7): 447-448.
    [82] Masahiro Yamamoto, Shintaro Sato, Shizuo Akira, et al. Role of adaptor TRIF in theMyD88-independent toll-like receptor signaling pathway[J]. Science, 2003, 301:640-643.
    [83] Nicole Cusson-Hermance, S. Khurana, Michelle A. Kelliher, et al. Rip1 mediates the Trif-dependent toll-like receptor 3-and 4-induced NF-κB activation but does not contribute to interferon regulatory factor 3 activation[J]. The Journal of Biological Chemistry, 2005, 280: 36560-36566.
    [84] Brantley R. Herrin, Louis B. Justement. Expression of the adaptor protein hematopoietic Src homology 2 is up-regulated in response to stimuli that promote survival and differentiation of B cells[J]. The Journal of Immunol, 2006, 176: 4163-4172.
    [85] Stephanie H. Stovall, Ae-Kyung Yi, B. Keith English, et al. Role of vav1-and src-related tyrosine kinases in macrophage activation by CpG DNA[J]. The Journal of Biological Chemistry, 2004, 279(14): 13809-13816.
    [86] Senad Divanovic, Aurelien Trompette, Christopher L. Karp, et al. Inhibition of TLR-4/MD-2 signaling by RP105/MD-1[J]. Journal of Endotoxin Research, 2005, 11(6): 363-368.
    [87] Senad Divanovic, Aurelien Trompette, Christopher L. Karp, et al. Negative regulation of Toll-like receptor 4 signaling by the Toll-like receptor homolog RP105[J]. Nature Immunology, 2005, 6: 571-578.
    [88] Carolin Feterowski, Alexander Novotny, Heike Weighardt, et al. Attenuated pathogenesis of polymicrobial peritonitis in mice after TLR2 agonist pre-treatment involves ST2 up-regulation[J]. International Immunology, 2005, 17(8): 1035-1046.
    [89] Sophie Janssens, Kim Burns, Rudi Beyaert, et al. MyD88S, a splice variant of MyD88, differentially modulates NF-kappaB-and AP-1-dependent gene expression[J]. FEBS Letters, 2003, 548(1-3): 103-107.
    [90] Koichi Kobayashi, Lorraine D. Hernandez, Richard A. Flavell, et al. IRAK-M is a negative regulator of Toll-like receptor signaling [J]. Cell, 2002, 110(2): 191-202.
    [91] Tetsuji Naka, Minoru Fujimoto, Akihiko Yoshimura, et al. Negative regulation of cytokine and TLR signalings by SOCS and others[J]. Advances in Immunology, 2005, 87: 61-122.
    [92] H. Takagi, T. Sanada, A. Yoshimura, et al. [Regulation of cytokine and toll-like receptor signaling by SOCS family genes][J]. Nippon Rinsho, 2004, 62(12): 2189-2196.
    [93] Arnaud Didierlaurent, Brian Brissoni, Kimberly Burns, et al. Tollip regulates proinflammatory responses to interleukin-1 and lipopolysaccharide [J]. Molecular and Cellular Biology, 2006, 26(3): 735-742.
    [94] Guolong Zhang, Sankar Ghosh. Negative regulation of toll-like receptor-mediated signaling by Tollip[J]. The Journal of Biological Chemistry, 2002, 277(9): 7059-7065.
    [95] David L. Boone, Emre E. Turer, Eric G. Lee, et al. The ubiquitin-modifying enzyme A20 isrequired for termination of Toll-like receptor responses[J]. Nature Immunology, 2004, 5: 1052-1060.
    [96] Susan M. O'Reilly, Paul N. Moynagh. Regulation of Toll-like receptor 4 signalling by A20 zinc finger protein[J]. Biochemical and Biophysical Research Communications, 2003, 303(2): 586-593.
    [97] Luke A.J. O'Neill. SIGIRR puts the brakes on Toll-like receptors[J]. Nature Immunology, 2003, 4: 823-824.
    [98] Jinzhong Qin, Youcun Qian, Xiaoxia Li, et al. SIGIRR inhibits interleukin-1 receptor-and toll-like receptor 4-mediated signaling through different mechanisms[J]. The Journal of Biological Chemistry, 2005, 280(26): 25233-25241.
    [99] Elisabeth Thomassen, Blair R. Renshaw, John E. Sims. Identification and characterization of SIGIRR, a molecule representing a novel subtype of the IL-1R superfamily[J]. Cytokine, 1999, 11(6): 389-399.
    [100] Gary M. Kasof, Judith C. Prosser, Bruce C. Gomes, et al. The RIP-like kinase, RIP3, induces apoptosis and NF-kappaB nuclear translocation and localizes to mitochondria[J]. FEBS Letters, 2000, 473(3): 285-291.
    [101] Yonghui Yang, Jun Ma, Mian Wu, et al. Nucleocytoplasmic shuttling of receptor-interacting protein 3(RIP3): identification of novel nuclear export and import signals in RIP3[J]. The Journal of Biological Chemistry, 2004, 279(37): 38820-38829.
    [102] Elizabeth Eldon, Sandra Kooyer, Diana D’Evelyn. The Drosophila 18 wheeler is required for morphogenesis and has striking similarities to Toll[J]. Development, 1994, 120: 885-899.
    [103] Jennifer L. Mitcham, Patricia Parnet, Timothy P. Bonnert. T1/ST2 signaling establishes it as a member of an expanding interleukin-1 receptor family[J]. Biological Chemistry, 1996, 271(10): 5777-5783.
    [104] Chenghua Luo, Liangbiao Zheng. Independent evolution of Toll and related genes in insects and mammals[J]. Immunogenetics, 2000, 51(2): 92-98.
    [105] A. Seppo, P. Matani, M. Tiemeyer. Tollo regulates neural expression of the HRP-epitope in Drosophila[J]. Glycobiology, 1999, 9: 1138--1138.
    [106] Servane Tauszig, Emmanuelle Jouanguy, Jules A. Hoffmann, et al. Toll-related receptors and the control of antimicrobial peptide expression in drosophila[J]. PNAS, 2000, 97(19): 10520-10525.
    [107] Morikazu Imamura, Minoru Yamakawa. Molecular cloning and expression of a Toll receptor gene homologue from the silkworm, Bombyx mori[J]. Biochimica et Biophysica Acta, 2002, 1576: 246– 254.
    [108] Ting-Cai Cheng, Yu-Li Zhang, Chun Liu, et al.. Identification and analysis of Toll-related genes in the domesticated silkworm, Bombyx mori[J]. Developmental and Comparative Immunology, 2007.1-13.
    [109] Katherine Aronstein, Eduardo Saldivar. Characterization of a honey bee Toll related receptor gene Am18w and its potential involvement in antimicrobial immune defense[J]. Apidologie, 2005, 36: 3–14.
    [110] George K. Christophides, Evgeny Zdobnov, Carolina Barillas-Mury, et al. Immunity-related genes and gene families in Anopheles gambiae[J]. Science, 2002, 298: 159-165.
    [111] J. D. Evans, K. Aronstein, J.-L. Imler. Immune pathways and defence mechanisms in honey bees Apis mellifera[J]. Insect Molecular Biology, 2006, 15(5): 645–656.
    [112] Sang Woon Shin, Guowu Bian, Alexander S. Raikhel. A Toll receptor and a cytokine, Toll5A and spz1C, are involved in Toll antifungal immune signaling in the mosquito Aedes aegypti[J]. The Journal of Biological Chemistry, 2006, 281(51):39388-39395.
    [113] Jing-qun Ao, Erjun Ling, Xiao-Qiang Yu. A Toll receptor from Manduca sexta is in response to Escherichia coli infection[J]. Molecular Immunology, 2008, 45:543-552.
    [114]杨清武. Toll-like receptors研究进展[J].国外医学、生理、病理科学与临床分册, 2001, 21(4): 283-285.
    [115] Petros Ligoxygakis, Nade`ge Pelte, Jules A. Hoffmann, et al. Activation of Drosophila Toll during fungal infection by a blood serine protease[J]. Science, 2002, 297: 114-116.
    [116] Servane Tauszig-Delamasure, Hana Bilak, Jean-Luc Imler, et al. Drosophila MyD88 is required for the response to fungal and Gram-positive bacterial infections[J]. Nature Immunology, 2002, 3(1): 91-97.
    [117] Taeil Kim, Young-Joon Kim. Overview of innate immunity in Drosophila[J]. Journal of Biochemistry and Molecular Biology, 2005, 38(2):121-127.
    [118] Catherine Dostert, Jules A. Hoffmann, Jean-Luc Imler, et al. The Jak-STAT signaling pathway is required but not sufficient for the antiviral response of drosophila[J]. Nature Immunology, 2005, 6(9): 946-953.
    [119] Bruno Lemaitre, Jean-Marc Reichhart, Jules A. Hoffmann. Drosophila host defense: Differential induction of antimicrobial peptide genes after infection by various classes of microorganisms[J]. Proc. Natl. Acad. Sci. USA, 1997, 94: 14614–14619.
    [120] Neal Silverman, Tom Maniatis. NF-κB signaling pathways in mammalian and insect innate immunity[J]. Genes & Development, 2001, 15: 2321-2342.
    [121] Elena A. Levashina, Emma Langley, Jean-Marc Reichhart, et al. Constitutive activation ofToll-mediated antifungal defense in serpin-deficient Drosophila[J]. Science, 1999, 285(5435): 1917-1919.
    [122] Alexander N.R. Weber, Servance Tauszig-Delamasure, Nicholas J. Gay, et al. Binding of the Drosophila cytokine Sp?tzle to Toll is direct and establishes signaling[J]. Nature Immunology, 2003, 4(8): 794-800.
    [123] Y. Tony Ip, Michael Reach, Michael Levine, et al. Dif, a dorsal-related gene that mediates an immune response in Drosophila[J]. Cell, 1993, 75: 753-763.
    [124] Emmanuelle Nicolas, Jean Marc Reichhart, Bruno Lemaitre, et al. In vivo regulation of the IκB homologue cactus during the immune response of Drosophila[J]. The Journal of Biological Chemistry, 1998, 273(17): 10463-10469.
    [125] Jean-Luc Imler, Jules A. Hoffmann. Toll receptors in Drosophila: a family of molecules regulating development and immunity[J]. Curr. Top Microbiol. Immunol, 2002, 270: 63-79.
    [126] Marcia P. Belvin, Kathryn V. Anderson. A conserved signaling pathway: the Drosophila toll-dorsal pathway[J]. Annu. Rev. Cell Dev. Biol., 1996, 12: 393-416.
    [127] Mausumee Guha, Nigel Mackman. LPS induction of gene expression in human monocytes[J]. Cellular Signalling, 2001, 13: 85-94.
    [128] Xiaodi Hu, Yoshimasa Yagi, Y. Tony Ip, et al. Multimerization and interaction of Toll and Sp?tzle in Drosophila[J]. PNAS, 2004, 101(25): 9369-9374.
    [129] Elena A. Levashina, S. Ohresser, B. Lemaitre. Two distinct pathways can control expression of the gene encoding the drosophila antimicrobial peptide metchnikowin[J]. Journal Molecular Biology, 1998, 278(3): 515-527.
    [130] Kang L, Chen XY, Zhou Y, et al. The analysis of large-scale gene expression correlated to the phase changes of the migratory locust[J]. Proc . Natl. Acad. Sci. USA, 2004, 101: 17611-17615.
    [131] Sambrook J., Russell D. W. Molecular Cloning (Third edition)[M]. Cold Spring Harbor, New York. Cold Spring Harbor Laboratory Press, 2001.
    [132] Cooperetal SJB,Hewitt GM.Nuclear DNA sequence divergence between parapatric subspecies of the grasshopper Chorthippus parallelus[J].Insect Molecular Biology, 1993, 2(3): 185-194.
    [133] X.-Q. Yu, Y.-F. Zhu, M.R. Kanost. Pattern recognition proteins in Manduca sexta plasma[J]. Insect Biochemistry and Molecular Biology, 2002, 32: 1287-1293.
    [134] Masanori Ochiai, Masaaki Ashida. A pattern-recognition protein forβ-1,3-glucan[J]. The Journal of Biological Chemistry, 2000, 275(7): 4995-5002.
    [135] C. Ma, M.R. Kanost. Aβ-1,3-glucan recognition protein from an insect, Manduca sexta, agglutinates microorganisms and activates the phenoloxidase cascade[J]. The Journal of Biologyical Chemistry, 2000, 275(11): 7505-7514.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700