Graphene制备、表征以及Raman光谱对退火效应的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Graphene是由单层碳原子组成的碳二维材料。自从04年Novoselov小组在成功制备了大面积Graphene后,其研究工作迅速开展。Graphene之所以受到广泛关注,主要是由于其具有特殊的电学输运性质和独特的量子效应。与Graphene相关的研究工作,主要集中在:制备和表征、电学性质测量、量子效应的研究以及用Graphene制备电子器件等。而在这些研究领域中,Graphene制备和表征是所有研究的基础。
     本论文工作,以Graphene制备和表征为主,着重于以下两个方面: 1,Graphene的制备和表征。以机械剥离法为主,通过不同手段制备层数不同的Graphene。对比了不同制备方法的特点,找到有效制备Graphene的方法。利用光学显微镜、Raman光谱,对Graphene进行表征,研究了不同层数的Graphene在光学下和Raman光谱中的特征,确定了单层和双层Graphene。另外,在Graphene的研究中,经常会使用SEM对Graphene进行定位和操作,这需要事先对Graphene进行表征。为方便SEM在graphene研究中的应用,我们首次尝试了利用SEM对Graphene进行表征:通过改变SEM成像时电子的加速电压,得到不同加速电压下Graphene的SEM图像。根据衬度差异来确定Graphene的层数,实现Graphene在SEM下的更精细表征。
     2,对于Graphene在真空退火下的Raman光谱进行了研究。真空下退火是实现Graphene表面清洁的有效方法,但Graphene在退火后,结构上是否能够保持一致性,文献中一直没有这方面的讨论。我们借助于Raman光谱在Graphene结构研究方面的优势,研究Graphene在不同退火温度下的光谱特征,从而推断其结构在退火后的变化。我们发现:随着退火温度的升高,Graphene的G峰和2D峰逐渐蓝移,温度越高,移动越大。同时,峰的半高宽逐渐增大。另外,2D峰与G峰的相对强度随退火温度升高逐渐减小。我们认为,在退火下,Graphene结构会出现更多的褶皱,褶皱一方面使得Graphene中出现更多缺陷,使得峰展宽以及相对强度的减小;另一方面,Graphene中会出现多余的压应力,导致G峰和2D峰的蓝移。单层Graphene在退火后的结构变化,有助于理解Graphene的热力学稳定性,也有助于更快的使Graphene投入应用。
Graphene, which consists of only one plain layer of atoms arranged in a honeycomb lattice, is a special 2-dimensial material. Since 2004, a group of physicists from Manchester University, led by Novoselov, used a very different approach to obtain graphene and lead a revolution in the field. After that, the research on graphene grows rapidly, making graphene a focus of attention in the scientific research. What make graphene so attractive is: the special electrical transport properties and the unique quantum effect. At present, research on graphene is mainly in four aspects: 1, preparation and characterization of graphene; 2, special electrical transport properties; 3, novel quantum effects; 4, fabrication of electronic devices. For all of these works, preparation and characterization, aim to obtain graphene layers with high quality and large size by a proper method, are the basis of other graphene reaerches.
     The work in this thesis concentrates on fabrication and characterization of graphene layers, which mainly foucs on:
     1. Preparation and characterizztion of graphene layers by mechanical exfoliation. On the principle of mechanical exfoliating, we use different methods to obtain graphene layers from HOPG. We analyse the difference in the optical images and Raman spectra of single- and multi-layer graphene and identify them. We also use scanning electron microspecopy (SEM) to characterize graphene according to the contrast of single-layer graphene flakes in SEM image, in order to find a way to indentify single- and multilayer graphene under SEM.
     2. Investigation of the Raman property of single layer graphene after annealing at different temperature in vacuum. Annealing at several hundreds of Celsius in vacuum has been shown to remove contamination left on the graphene. However, it is not clear whether the annealing influences the structure of graphene. From the annealing temperature dependent of Raman spectra, we find blue-shift and broadening of both the G-band and the 2D-band, and decreasing of their relative intensity I2D/IG wih the annealing temperature. We suggeste that graphene is more crumpled after annealing, which is responsible for the changes in its Raman spectra.
引文
1 Mikhail I. Katsnelson. 2007. Graphene: carbon in two dimensions. Materials Today. 10, 1-2
    2 Chuhei Oshima and Ayato Nagashima. 1997. Ultra-thin epitaxial films of graphite and hexagonal boron nitride on solid surfaces. J. Phys.: Condens. Matter. 9, 1–20.
    3 K. S. Novoselov, A. K. Geim,* S. V. Morozov, et al. 2004. Electric Field Effect in Atomically Thin Carbon Films. Science. Vol 306, 666
    4 Palmer and D. Jason. 2006. Tuning the band gap in Graphene. Materials Today. Vol 9, 10
    5 K. S. Novoselov, A. K. Geim1, S. V. Morozov, et al. 2005. Two-dimensional gas of massless Dirac fermions in Graphene. Nature. Vol 438, 10
    6 J. C. Slonczewski and Weiss. 1957. Band Structure of Graphite. P.R.L. Vol 109, 2
    7 G. W. Semenoff. 1984. Condensed-Matter Simulation of a Three-Dimensional Anomaly. P.R.L. Vol 53, 26
    8 F. D. M. Haldane. 1988. Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the“Parity Anomaly”. P.R.L. Vol 61, 18
    9 Yuanbo Zhang, Yan-Wen Tan, Horst L. Stormer, et al. 2005. Experimental observation of the quantum Hall effect and Berry’s phase in Graphene. Nature, Vol 438, 10
    10 V. P. Gusynin1, and S. G. Sharapov. 2005. Unconventional Integer Quantum Hall Effect in Graphene. P. R. L. 95, 146801
    11 Xiaolin Li,* Xinran Wang,* Li Zhang, et al. 2008. Chemically Derived, Ultrasmooth Graphene Nanoribbon Semiconductors. Science. Vol 319, 29
    12 Melinda Y. Han, Barbaros O¨zyilmaz, Yuanbo Zhang, et al. 2007. Energy Band-Gap Engineering of Graphene Nanoribbons. P.R.L. 98, 206805
    13 Qimin Yan, Bing Huang, Jie Yu, et al. 2007. Intrinsic Current-Voltage Characteristics of Graphene Nanoribbon Transistors and Effect of Edge Doping. Nano.Lett. Vol7, 6
    14 Girit, V. Bouchiat, O. Naaman, et al. 2009. Tunable Graphene dc Superconducting Quantum Interference Device. Nano.Lett. Vol 9, 1
    15 K. S. Novoselov,1 Z. Jiang,2,3 Y. Zhang, et al. 2007. Room-Temperature Quantum Hall Effect in Graphene. Science. Vol 315, 9
    16 P. G. Silvestrov and K. B. Efetov. 2007. Quantum Dots in Graphene. P.R.L. 98, 016802
    17 L. A. Ponomarenko,1 F. Schedin,1 M. I. Katsnelson, et al. 2008. Chaotic Dirac Billiard in Graphene Quantum Dots. Science. Vol 320
    18 Kyle A. Ritter and JosephW. Lyding. 2009. The influence of edge structure on the electronic properties of Graphene quantum dots and nanoribbons. Nature Materials. Vol 8
    19 Bing Huang, Zuanyi Li, Zhirong Liu, et al. 2008. Adsorption of Gas Molecules on Graphene Nanoribbons and Its Implication for Nanoscale Molecule Sensor. J. Phys. Chem. C Vol 112, 13442–13446
    20 Jesse D. Fowler, Matthew J. Allen, Vincent C, et al. 2009. Practical Chemical Sensors from Chemically Derived Graphene. Acs.Nano. Vol 3, 2
    21 R. Arsat, M. Breedon, M. Shafiei, et al. 2008. Graphene-like nano-sheets for surface acoustic wave gas sensor applications. Chemical Physics Letters. 467, 344–347
    22 B. Obradovic, R. Kotlyar, F. Heinz, P, et al. 2006. Analysis of Graphene nanoribbons as a channel material for field-effect transistors. Appl. Phys. Lett. 88, 142102
    23 D. Gunlycke, D. A. Areshkin and C. T. White. 2007. Semiconducting Graphene nanostrips with edge disorder. Appl. Phys. Lett. 90, 142104
    24 Wei Chen,* Shi Chen, Dong Chen Qi, et al. 2007. Surface Transfer p-Type Doping of Epitaxial Graphene. J. AM. CHEM. SOC. Vol. 129, No. 34
    25 Xin-Zhong Yan, Yousef Romiah, and C. S. Ting. 2008. Electric transport theory of Dirac fermions in Graphene. PHYSICAL REVIEW B 77, 125409
    26 C. L. Kane and E. J. Mele. 2005. Quantum Spin Hall Effect in Graphene. P.R.L 95, 226801
    27 Changgu Lee, Xiaoding Wei, Jeffrey W. Kysar, et al. 2008. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. Vol 321, 18
    28 Zhengtang Luo, Ye Lu, Luke A. Somers, et al. 2009. High Yield Preparation of Macroscopic Graphene Oxide Membranes. J. AM. CHEM. SOC. Vol. 131, No. 3
    29 Inhwa Jung, Dmitriy A. Dikin, et al. 2008. Tunable Electrical Conductivity of Individual Graphene Oxide Sheets Reduced at“Low”Temperatures. Nano.Lett., Vol. 8, No. 12
    30 Zhengtang Luo, Patrick M. Vora, Eugene J. Mele, et al. 2009. Photoluminescence and band gap modulation in Graphene oxide. Appl. Phys. Lett. 94, 111909
    31 K. S. Novoselov*, D. Jiang*, F. Schedin*, et al. 2005. Two-dimensional atomic crystals. PNAS, Vol. 102, No. 30
    32 Ayako Hashimoto1, Kazu Suenaga1, Alexandre Gloter, et al. 2004. Direct evidence for atomic defects in Graphene layers. Nature. Vol 430, 19
    33 Jannik C. Meyer, A. K. Geim, M. I. Katsnelson, et al. 2007. The structure of suspended Graphene sheets. Nature. Vol 446, 1
    34 Masa Ishigami, J. H. Chen, W. G. Cullen, et al. 2007. Atomic Structure of Graphene on SiO2. Nano Lett., Vol. 7, No. 6
    35 A. Fasolino*, J. H. Los AND M. I. Katsnelson. 2007. Intrinsic ripples in Graphene. Nature Materials. Vol 6
    36 K. S. Novoselov*, D. Jiang*, F. Schedin*, et al. 2005. Two-dimensional atomic crystals. PNAS. Vol.102, No. 30
    37 J. Moser, A. Barreiro, and A. Bachtold. 2007. Current-induced cleaning of Graphene. Appl. Phys. Lett. 91, 163513
    38 Elena Stolyarova, Kwang Taeg Rim, Sunmin Ryu, et al. 2007. High-resolution scanning tunneling microscopy imaging of mesoscopic Graphene sheets on an insulating surface. PNAS. Vol. 104. No. 22
    39 Hannes C. Schniepp, Je-Luen Li, Michael J. McAllister, et al. 2006. Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide. J. Phys. Chem. B, Vol. 110, No. 17
    40 Sandip Niyogi, Elena Bekyarova, Mikhail E. Itkis, et al. 2006. Solution Properties of Graphite and Graphene. J. AM. CHEM. SOC. Vol 128
    41 Kimberly A. Worsley, Palanisamy Ramesh, Swadhin K. Mandal, et al. 2007. Soluble Graphene derived from graphite fluoride. Chemical Physics Letters. 445, 51–56
    42 Claire Berger, Zhimin Song, Tianbo Li, et al. 2004. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. B. 108 (52), 19912-19916
    43 Claire Berger, Zhimin Song, Xuebin Li, et al. 2006. Electronic Confinement and Coherence in Patterned Epitaxial Graphene. Science. Vol. 312, 26
    44 J. Hass, F. Varchon, J. E. Milla′n-Otoya, et al. 2008. Why Multilayer Graphene on
    4H-SiC(0001) Behaves Like a Single Sheet of Graphene. P.R.L 100, 125504
    45 Xiaosong Wu, Xuebin Li, Zhimin Song, et al. 2007. Weak Antilocalization in Epitaxial Graphene: Evidence for Chiral Electrons. P.R.L . 98, 136801
    46 Walt A. de Heera, Claire Berger, Xiaosong Wu, et al. 2007. Epitaxial Graphene. Solid State Communications. 143, 92–100
    47 Han Huang, Wei Chen, Shi Chen, et al. 2008. Bottom-up Growth of Epitaxial Graphene on 6H-SiC(0001). ACS Nano, 2 (12), 2513-2518
    48 Obraztsov, A. N., Obraztsova, et al. 2007. Chemical vapor deposition of thin graphite films of nanometer thickness. Carbon 45, 2017–2021
    49 Qingkai Yu, Jie Lian, Sujitra Siriponglert, et al. 2008. Graphene segregated on Ni surfaces and transferred to insulators. Appl. Phys. Lett. 93, 113103
    50 Keun Soo Kim1, Yue Zhao, Houk Jang, et al. 2009. Large-scale pattern growth of Graphene films for stretchable transparent electrodes. Nature. Vol 457, 5
    51 Alfonso Reina, Xiaoting Jia, John Ho, et al. 2009. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 9 (1), 30-35
    52 Helin Cao, Qingkai Yu, Deepak Pandey, et al. 2009. Large Scale Graphene Films Synthesized on Metals and Transferred to Insulators for Electronic Applications. Preprint at
    53 Liying Jiao1*, Li Zhang1*, Xinran Wang1, et al. 2009. Narrow graphene nanoribbons from carbon nanotubes. Nature. Vol 458, 16
    54 Dmitry V. Kosynkin1, Amanda L. Higginbotham1, et al. 2009. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. Vol 458, 16
    55 P. Nemes-Incze*, Z. Osva′tha, K. Kamara′s, et al. 2008. Anomalies in thickness measurements of Graphene and few layer graphite crystals by tapping mode atomic force microscopy. Carbon, 46, 1435-1442
    56 A. J. M. Giesbersa, U. Zeitlera, S. Neubeckb, et al. 2008. Nanolithography and manipulation of Graphene using an atomic force microscope. Solid State Communications. Vol 147, 9
    57 Ekaterina A. Obraztsova*, Alexander V. Osadchy, Elena D. Obraztsova, et al. 2008. Statistical analysis of atomic force microscopy and Raman spectroscopy data for estimation of Graphene layer numbers. Phys. Stat. Sol. (b) 245, No. 10, 2055–2059
    58 A. Gupta, G. Chen, P. Joshi, et al. 2006. Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett., Vol. 6, No. 12
    59 Jun Yan, Yuanbo Zhang, Sarah Goler, et al. 2007. Raman scattering and tunable electron–phonon coupling in single layer Graphene. Solid State Communications 143,(2007) 39–43
    60 D. Graf,* F. Molitor, K. Ensslin, et al. 2006. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett.
    61 L.G. Cancado, M. A. Pimenta, B. R. A. Neves, et al. 2006. Anisotropy of the Raman Spectra of Nanographite Ribbons. P.R.L. Vol 93, 4
    62 A. C. Ferrari,1,* J. C. Meyer,2 V. Scardaci, et al. 2006. Raman Spectrum of Graphene and Graphene Layers. P.R.L 97, 187401
    63 Andrea C. Ferrari. 2007. Raman spectroscopy of Graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47-57
    64 C. Stampfer, F. Molitor, D. Graf, et al. 2007. Raman imaging of doping domains in Graphene on SiO2. Appl. Phys. Lett. 91, 241907
    65 C. Casiraghia and S. Pisana, et al. Raman fingerprint of charged impurities in Graphene. Appl. Phys. Lett. 91, 233108
    66 Zhen Hua Ni, Hao Min Wang, Yun Ma, et al. 2008. Tunable Stress and Controlled ThicknessModification in Graphene by Annealing. Acs. Nano. Vol. 2, No. 5
    67 Ting Yu,* Zhenhua Ni, Chaoling Du, et al. 2008. Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect. J. Phys. Chem. C, Vol. 112, No. 33
    68 Anindya Das, Biswanath Chakraborty and A.K. Sood. 2007. Raman spectroscopy of Graphene on dierent substrates and infuence of defects. arXiv:0710.4160v1 [cond-mat.mtrl-sci] 22
    69 I. Calizo, A. A. Balandin,* W. Bao, et al. 2007. Temperature Dependence of the Raman Spectra of Graphene and Graphene Multilayers. Nano Lett., Vol. 7, No. 9
    70 I. Calizo, F. Miao, W. Bao, et al. 2007. Variable temperature Raman microscopy as a nanometrology tool for Graphene layers and Graphene-based devices. Appl. Phys. Lett. 91, 071913
    71 Dong Su Lee, Christian Riedl, Benjamin Krauss, et al. 2008. Raman Spectra of Epitaxial Graphene on SiC and of Epitaxial Graphene Transferred to SiO2. Nano Lett., Vol. 8, No. 12
    72 P. Blakea and E. W. Hill, et al. 2007. Making Graphene visible. Appl. Phys. Lett. 91, 063124
    73 S. Roddaro,* P. Pingue, V. Piazza, et al. 2007. The Optical Visibility of Graphene: Interference Colors of Ultrathin Graphite on SiO2. Nano Lett., Vol. 7, No. 9
    74 Z. H. Ni, H. M. Wang, J. Kasim, et al. 2007. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett., Vol. 7, No. 9
    1 K. S. Novoselov, A. K. Geim,* S. V. Morozov, et al. 2004. Electric Field Effect in Atomically Thin Carbon Films. Science. Vol 306, 666
    2 J. R?hrl, M. Hundhausen, K. V. Emtsev, et al. 2008. Raman spectra of epitaxial Graphene on Si(0001). Appl. Phys. Lett. 92, 201918
    3 Kimberly A. Worsley, Palanisamy Ramesh, Swadhin K. Mandal, et al. 2007. Soluble Graphene derived from graphite fluoride. Chemical Physics Letters. 445, 51–56
    4 Keun Soo Kim1, Yue Zhao, Houk Jang, et al. 2009. Large-scale pattern growth of Graphene films for stretchable transparent electrodes. Nature. Vol 457, 5
    5 Alfonso Reina, Xiaoting Jia, John Ho, et al. 2009. Large Area, Few-Layer Graphene Films on Arbitrary Substrates by Chemical Vapor Deposition. Nano Lett. 9 (1), 30-35
    6 Liying Jiao1*, Li Zhang1*, Xinran Wang1, et al. 2009. Narrow graphene nanoribbons from carbon nanotubes. Nature. Vol 458, 16
    7 Dmitry V. Kosynkin1, Amanda L. Higginbotham1, et al. 2009. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature. Vol 458, 16
    8 N. Staley, H. Wang, C. Puls, et al. 2007. Lithography-free fabrication of Graphene devices. Appl. Phys. Lett. 90, 143518.
    9 Nikolaos Tombros, Csaba Jozsa, Mihaita Popinciuc, et al. 2007. Electronic spin transport and spin precession in single Graphene layers at room temperature. Nature. Vol 448, 2
    10 D. Grafa, F. Molitora, K. Ensslina, et al. 2007. Raman imaging of Graphene. Solid State Communications 143, 44–46
    11 B. Huard, J. A. Sulpizio, N. Stander, et al. 2007. Transport Measurements Across a Tunable Potential Barrier in Graphene. P.R.L. 98, 236803
    12 P. Blakea and E. W. Hill, et al. 2007. Making Graphene visible. Appl. Phys. Lett. 91, 063124
    13 S. Roddaro,* P. Pingue, V. Piazza, et al. 2007. The Optical Visibility of Graphene: Interference Colors of Ultrathin Graphite on SiO2. Nano Lett., Vol. 7, No. 9
    14 A. Gupta, G. Chen, P. Joshi, et al. 2006. Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett., Vol. 6, No. 12
    15 A. C. Ferrari,1,* J. C. Meyer,2 V. Scardaci, et al. 2006. Raman Spectrum of Graphene and Graphene Layers. P.R.L 97, 187401
    16 Q. Ou, T. Tanaka, M. Mesko, et al. 2008. Characteristics of Graphene-layer encapsulated nanoparticles fabricated using laser ablation method. Diamond & Related Materials Vol 17, 664–668
    17 Ryan Muszynski, Brian Seger, and Prashant V. Kamat. 2008. Decorating Graphene Sheets with Gold Nanoparticles. J. Phys. Chem. C. Vol 112 (14), 5263-5266
    18 Tsutomu Takamura, Koji Endo, Lijun Fu, et al. 2007. Identification of nano-sized holes by TEM in the Graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochimica Acta. Vol 53, 1055–1061
    19 Solid state and materials research news. 2007. Ultrathin Graphene sheets. phys. stat. sol. (RRL) 1, No. 3, A40–A41
    20 Z. H. Ni, H. M. Wang, J. Kasim, et al. 2007. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett., Vol. 7, No. 9
    21 Simon Hadlington. 2007. Graphene sensor achieves ultimate sensitivity. Chemistry World. Vol 4, 9
    22 F. Schedin, A. K. Geim, S. V. Morozov, et al. 2007. Detection of individual gas molecules adsorbed on Graphene. Nature Materials. Vol 6
    23 Z. H. Ni, H. M. Wang, J. Kasim, et al. 2007. Graphene Thickness Determination Using Reflection and Contrast Spectroscopy. Nano Lett., Vol. 7, No. 9
    24 C. Casiraghi, A. Hartschuh, E. Lidorikis, et al. 2007. Rayleigh Imaging of Graphene and Graphene Layers. Nano Lett., Vol. 7, No. 9
    25 Jun Yan, Yuanbo Zhang, Sarah Goler, et al. 2007. Raman scattering and tunable electron–phonon coupling in single layer Graphene. Solid State Communications 143,(2007) 39–43
    26 D. Graf,* F. Molitor, K. Ensslin, et al. 2006. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett.
    27 L.G. Cancado, M. A. Pimenta, B. R. A. Neves, et al. 2006. Anisotropy of the Raman Spectra of Nanographite Ribbons. P.R.L. Vol 93, 4
    28 Abhay Shukla, Rakesh Kumar, Javed Mazher, et al. 2009. Graphene made easy: High quality, large-area samples. Solid State Communications. doi:10.1016/j.ssc.2009.02.007
    29 G. M. Rutter, J. N. Crain N. P. Guisinger, et al. 2008. Structural and electronic properties of bilayer epitaxial Graphene. J. Vac. Sci. Technol. A 26(4)
    30 Johan Nilsson, A. H. Castro Neto, F. Guinea, et al. 2008. Electronic properties of bilayer and multilayer Graphene. Physical Review B 78, 045405
    31 M. I. Katsnelson1,* and M. F. Prokhorova. 2008. Zero-energy states in corrugated bilayerGraphene. Physical Review B 77, 205424
    32 Yafis Barlas, R. Cote, K. Nomura, et al. 2008. Intra-Landau-Level Cyclotron Resonance in Bilayer Graphene. P.R.L. 101, 097601
    33 C. Casiraghi and S. Pisana, et al. 2007. Raman fingerprint of charged impurities in Graphene. Appl. Phys. Lett. 91, 233108
    34 C. Stampfer, F. Molitor, D. Graf, et al. 2007. Raman imaging of doping domains in Graphene on SiO2. Appl. Phys. Lett. 91, 241907
    35 Simone Posana, Michele Lazzer, Cinzia Casirghi, et al. 2007. Breakdown of the adiabatic Born–Oppenheimer approximation in Graphene. Nature Materials. Vol 6
    36 Andrea C. Ferrari. 2007. Raman spectroscopy of Graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47-57
    1 Simon Hadlington. 2007. Graphene sensor achieves ultimate sensitivity. Chemistry World. Vol 4, 9
    2 F. Schedin, A. K. Geim, S. V. Morozov, et al. 2007. Detection of individual gas molecules adsorbed on Graphene. Nature Materials. Vol 6
    3 C. Casiraghi and S. Pisana, et al. 2007. Raman fingerprint of charged impurities in Graphene. Appl. Phys. Lett. 91, 233108
    4 J. Moser, A. Barreiro, and A. Bachtold. 2007. Current-induced cleaning of Graphene. Appl. Phys. Lett. 91, 163513
    5 M. Ishigami, J. H. Chen, W. G. Cullen, et al. 2007. Atomic Structure of Graphene on SiO2. NanoLett. 7, 1643
    6 A. Gupta, G. Chen, P. Joshi, et al. 2006. Raman Scattering from High-Frequency Phonons in Supported n-Graphene Layer Films. Nano Lett., Vol. 6, No. 12
    7 D. Graf,* F. Molitor, K. Ensslin, et al. 2006. Spatially Resolved Raman Spectroscopy of Single- and Few-Layer Graphene. Nano Lett.
    8 A. C. Ferrari,* J. C. Meyer, V. Scardaci, et al. 2006. Raman Spectrum of Graphene and Graphene Layers. P.R.L 97, 187401
    9 C. Stampfer, F. Molitor, D. Graf, et al. 2007. Raman imaging of doping domains in Graphene on SiO2. Appl. Phys. Lett. 91, 241907
    10 Simone Posana, Michele Lazzer, Cinzia Casirghi, et al. 2007. Breakdown of the adiabatic Born–Oppenheimer approximation in Graphene. Nature Materials. Vol 6
    11 Ting Yu,* Zhenhua Ni, Chaoling Du, et al. 2008. Raman Mapping Investigation of Graphene on Transparent Flexible Substrate: The Strain Effect. J. Phys. Chem. C. Vol. 112, No. 33
    12 Zhen Hua Ni, Hao Min Wang, Yun Ma, et al. 2008. Tunable Stress and Controlled Thickness Modification in Graphene by Annealing. Acs Nano. VOL2, No.5, 1033–1039
    13 Andrea C. Ferrari. 2007. Raman spectroscopy of Graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects. Solid State Communications 143, 47-57
    14 Anindya Das, Biswanath Chakraborty and A K Sood. 2008. Raman spectroscopy of Graphene on different substrates and influence of defects. Bull. Mater. Sci. Vol. 31, No. 3
    15 Stephanie Reich1 and Christian Thomsen. 2004. Raman spectroscopy of graphite. Philos. Trans. R. Soc. London, Ser. A
    16 K. S. Novoselov*, D. Jiang*, F. Schedin*, et al. 2005. Two-dimensional atomic crystals. PNAS, Vol. 102, No. 30
    17 Mikhail I. Katsnelson. 2007. Graphene: carbon in two dimensions. Materials Today. 10, 1-2
    18 Ayako Hashimoto1, Kazu Suenaga1, Alexandre Gloter, et al. 2004. Direct evidence for atomic defects in Graphene layers. Nature. Vol 430, 19
    19 Masa Ishigami, J. H. Chen, W. G. Cullen, et al. 2007. Atomic Structure of Graphene on SiO2. Nano Lett., Vol. 7, No. 6
    20 A. Fasolino*, J. H. Los AND M. I. Katsnelson. 2007. Intrinsic ripples in Graphene. Nature Materials. Vol 6
    21 Daner Abdula, Taner Ozel, Kwangu Kang, et al. 2008. Environment-Induced Effects on the Temperature Dependence of Raman Spectra of Single-Layer Graphene. J. Phys. Chem. C. 112 (51), 20131-20134

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700