克林霉素磷酸酯乙醇水溶液的纳滤浓缩及其传递特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
制药行业中大量使用的有机溶剂造成了较严重的环境污染;另一方面,药物
    生产中广泛采用的真空蒸发浓缩工艺,不仅能耗较高,产品纯度低,且易破坏抗
    菌活性,亟待开发新的分离浓缩工艺。本文即以此为工业背景,以克林霉素磷酸
    酯(Clindamycin Phosphate,以下简称 CLP)树脂解吸液(乙醇水溶液)作为研
    究对象,筛选了适合于该溶液分离浓缩的纳滤膜,进行了纳滤浓缩实验研究,系
    统研究了该溶液纳滤分离过程中的影响因素、传递特性与膜污染现象,建立了工
    业试验装置并成功运行。
     首先考察了乙醇水溶液的通量和纯水通量的差异,结果表明乙醇水溶液的通
    量均小于纯水通量。然后通过实验,筛选出适合 CLP 乙醇水溶液浓缩分离的纳
    滤膜:DL 和 DK 膜,两种膜对 CLP 的表观截留率均在 99%以上,且可保持较高
    的通量。采用 DL 膜,系统地考察了压力、温度、切向流速和进料浓度等对 CLP
    乙醇水溶液纳滤膜过程的影响,并筛选出合适的操作条件。
     对本实验体系,适宜的操作压力为 1.2~1.6MPa,温度为 40~50?C。切向流速
    对纳滤膜的通量有较大影响,宜采用较高的切向流速;进料浓度较高时,易形成
    膜面结晶,从而造成通量的较快下降。
     纳滤浓缩实验将 CLP 乙醇水溶液由 40g/L 浓缩至 90g/L,随浓缩过程的进行,
    通量呈逐渐下降趋势,透过液浓度小于 0.5g/L,截留率保持在 99%以上。在此基
    础上,采用 DL2540 膜元件,在生产现场进行了实际料液的浓缩实验,截留率达
    到 99%以上。
     膜样品在 65?C 的乙醇水溶液中浸泡 420 小时后,对 CLP 的截留率仍可达到
    96%,表现出了很好的耐溶剂性能。
     对膜外传递和膜内传递进行了理论探索,建立了描述膜外传递的圆形膜池平
    行板间错流过滤模型—改进的 WZY 模型,实验结果表明,在进料浓度为 60g/L
    以下时,本文模型与实验值符合较好,而当进料浓度高于 60g/L 时,实验值比预
    测值略低。利用该模型对 CLP 乙醇水溶液的纳滤分离过程进行了较全面的预测,
    考察了压力、温度、切向流速、膜池通道的长度与缝宽等因素对过程的影响。在
    其它条件不变的情况下,流速越大,进料浓度越高,流道越窄、越短,浓差极化
    程度就越小,从而就越有利于纳滤过程;而较低的压差和较低的温度有利于保持
    较低的浓差极化程度。建立了描述膜内传递的 ESHPS 模型,并用来估算纳滤膜
    的结构参数,估算的 DL 纳滤膜的平均孔半径约为 0.6nm。对膜中传递速率的分
    析表明,本实验体系中,扩散传递与对流传递相比,前者起主导作用。
     XPS 测试结果显示,在较低的进料浓度下膜面有微量的 CLP 存在,进一步
     I
    
    
    分析表明膜与 CLP 的相互作用为较弱的物理吸附。SEM 观察结果表明,在较高
    的进料浓度(大于 60g/L)下,CLP 在膜面上易形成结晶。考虑到处理的是药物
    体系,我们采用了气液两相流冲洗和热水冲洗两种膜清洗方案,前者对于低浓度
    进料比较有效,后者对高浓度进料产生的膜面结晶的清洗效果较好,清洗后通量
    完全恢复。
    建立了 CLP 纳滤浓缩的工业试验装置并成功运行,膜元件为 DL8040。为期
    半年的运行结果表明,纳滤膜的性能稳定,对 CLP 的截留率可达到 98%。进行
    了 CLP 树脂解吸液纳滤浓缩工程项目的经济分析,结果表明该项目具有很好的
    经济效益,且社会效益和环境效益显著。
Pharmaceuticals are indispensable for human being. However, large amounts of
    organic solvents are used for the production of pharmaceuticals, some of them may be
    rejected into air and water, causing severely environmental pollution. Meanwhile, the
    energy consumption of vacuum evaporation utlized to concentrate the dilute
    pharmaceutical solution is high. Furthermore, owing to the heat sensitivity, the
    pharmaceuticals may be damaged to some extent by vacuum evaporation, thus
    resulting in a low product purity and the destruction of antibacterial activity.
    Therefore it is urgent to develop a new separation and concentration technology.
     Most pharmaceutical molecular weights are smaller than 1000 Dalton, which lie
    in the nanofiltration molecular weight cut-off range. It is promising to utilize
    nanofiltration for pharmaceutical organic solution or aqueous organic solution
    separation and concentration. However, the application in organic solution or aqueous
    organic solution is relatively scarce.
     Based on the above background, the feasibility of NF concentration of the
    pharmaceutical aqueous organic solution was carried out using clindamycin phosphate
    (CLP) ethanol aqueous solution as model solution. The most suitable membrane was
    screened out and the effects of various factors on the performance of NF membrane
    were investigated, the characteristics of mass transfer and the mechanism and cure of
    membrane fouling were also studied.
     The difference between the permeate flux of ethanol-water mixture and the pure
    water was experimentally studied, the result shows that the former is quite small than
    the latter. And then DL and DK membrane, which are screened out experimentally,
    have high rejection of more than 99% while remaining a high permeate flux, the
    permeate flux of DL is even higher than DK. Using DL membrane, the effects of
    pressure, temperature, bulk velocity in the channel, and the concentration of the feed
    solution on the separtion process were experimentally investigated. The suitable
    operating pressure range is in the range of 1.2 to 1.6MPa, the suitable temperature
    range is 40~50?C. Bulk velocity has much effect on the performance of the membrane.
    Higher Bulk velocity is preferred in the nanofiltration process. Feed concentration
    also has great effect on the performance of DL membrane. At higher feed
    concentration, CLP may form surface crystallization, resulting in the decrease of the
    permeate flux.
     III
    
    
    The anti-solvent property of DL membrane was investigated. DL can withstand
    ethanol-water mixture at temperature higher than 65?C, while remaining a rejection of
    96%. The nanofiltration concentration of CLP aqueous ethanol solution by DL
    membrane was investigated, the solution was concentrated from 40g/L up to 90 g/L.
    With the increase of the concentration of the pharmaceutical, the permeate flux
    decreases gradually. However, the rejection is higher than 99%. the permeate
    concentration remains lower than 0.5g/L, which was suitable for serving as desorpting
    solvent. Pilot scale experiment was performed in the pharmaceutical factory with DL
    2540 membrane to concentrate CLP resin desorption solution, the rejection of CLP
    was higher than 99%.
     The mass transfer phenomena outside and inside the membrane were
    investigated. A parallel plate crossflow filtration model -modified WZY model, was
    established. The permeate flux predicted by the modified WZY model agrees with the
    experimental value quite well at concentration lower than 60g/L. However, it
    overestimated the permeate flux at concentration higher than 60g/L which is due to
    the surface crystalization. The nanofiltration separation process of CLP aqueous
    ethanol solution was predicted using the modified WZY model, and the effects of
    pressure, temperature, bulk velocity, and length and width of the channel on the
    process were predicted. Higher feed flow rate and feed concentration of CLP,
    narrower membrane cell channel and shorter channel length, will cause
引文
[1] Eriksson P, Nanoflitration extends the range of membrane filtration,
     Environmental Progress, 1988, 7(1): 58~62.
    [2] 俞三传,高从堦,张建飞,复合纳滤膜及其应用,水处理技术,1997,
     23(3):139-145.
    [3] Tsuru T, Urairi M, Nakao S-I, and Kimura S, Negative rejection of anions in
     the loose reverse osmosis separation of mono-and divalent ion mixtures,
     Desalination, 1991, 81(1-3): 219-227.
    [4] Lals Jomarayan, P. Raman, M. Cheryan and N. Rajagopalan, Consider
     nanofiltration for membrane separation, Chem. Eng. Progr, 1994(3): 68-74.
    [5] Bowen W R, Doneva A, Yin H B, Systematic synthesis of polysulfone–
     sulfonated poly (ether ether ketone) blend membranes with characterisation
     by filtration and atomic force microscopy, J. Membr. Sci., 2001, 181 (2):
     253-263.
    [6] Bowen, W. Richard; Doneva, Teodora A., Yin, Huabing,The effect of
     sulfonated poly(ether ether ketone) additives on membrane formation and
     performance, Desalination, 2002, 145(1-3): 39-45.
    [7] Bowen, W. Richard; Doneva, Teodora A., Yin, Hua-Bing, Separation of
     humic acid from a model surface water with PSU/SPEEK blend UF/NF
     membranes, J. Membr. Sci., 2002, 206(1-2): 417-429.
    [8] 夏冰,董声华,金秀龙,郑领英,荷电纳滤膜的研究,水处理技术,1992,
     18(2):75-83.
    [9] 鲁学仁,高从堦,张建飞,呼忠华,PVDF 荷电膜的制备与性能研究,
     膜科学与技术,1994,14(2):22-25.
    [10] 俞三传,金可勇,等,聚哌嗪酰胺复合纳滤膜研制,膜科学与技术,2001,
     21(1):1-3, 34.
    [11] 翟晓东,陆晓峰,梁国明,张仪,许振良,王彬芳,界面缩聚法制备聚
     酰胺复合纳滤膜Ⅱ.复合纳滤膜的分离特性,华东理工大学学报:自然
     科学版,2001,27(6):648-650.
    [12] 宋玉军,程淑英,刘福安,孙本惠,制备 NF-TFC 膜的界面聚合反应研
     究,水处理技术,2000,26(4):203-206.
    [13] 宋玉军,刘福安,赵晨阳,孙本惠,复合型纳滤膜的制备及表征,北京
     172
    
    
    参考文献
     化工大学学报: 自科版,1999,26(3):38-40, 45.
    [14] 周金盛,陈观文,CA/CAT 共混不对称纳滤膜分离特性的研究,膜科学
     与技术,1999,19(1):34-39.
    [15] 梁雪梅,王彬芳,界面缩聚法制备聚芳酯复合纳滤膜:Ⅳ. NF—1 复合
     纳滤膜的性能及应用初探,华东理工大学学报:自科版,1999,25(5):
     489-493.
    [16] Dai Y, Jian XG, Liu XM, Guiver MD, Synthesis and characterization of
     sulfonated poly(phthalazinone ether sulfone ketone) for ultrafiltration and
     nanofiltration membranes, J. Appl. Poly. Sci., 2001, 79(9): 1685-1692.
    [17] Dai Y, Jian XG, Zhang SH, Guiver MD, Thermostable ultrafiltration and
     nanofiltration membranes from sulfonated poly(phthalazinone ether sulfone
     ketone), J. Membr. Sci, 2001, 188(2): 195-203.
    [18] Dai Y, Jian XG, Zhang SH, Guiver MD, Thin film composite (TFC)
     membranes with improved thermal stability from sulfonated
     poly(phthalazinone ether sulfone ketone) (SPPESK), J. Membr. Sci, 2002,
     207(2): 189-197.
    [19] 赛锡高,张守海,戴英,新型磺化聚醚砜酮复合纳滤膜,膜科学与技术,
     2001,21(1):11-14.
    [20] Duin O, Wessels P, Van der Roest H, Uijterlinde C, Schoonewille H, Direct
     nanofiltration or ultrafiltration of WWTP effluent? Desalination 2000,
     132(1-3): 65-72.
    [21] Harry Futselaar, Henk Schonewille, Walter van der Meer,Direct capillary
     nanofiltration -a new high-grade purification concept, Desalination 2002,
     145: 75-80.
    [22] Van der Bruggen B, Hawrijk I, Cornelissen E, Vandecasteele C, Direct
     nanofiltration of surface water using capillary membranes: comparison with
     flat sheet membranes, Sep. Purif. Technol, 2003, 31(2): 193-201.
    [23] Frank M, Bargeman, G, Zwijnenburg, A, Wessling, M, Capillary hollow
     fiber nanofiltration membrane, Sep. Purif. Technol. 2001, 22-23: 499 – 506.
    [24] 于品早,周冠生,陈小良,三醋酸纤维素中空纤维纳滤膜的研制,膜科
     学与技术,2001,21(6):2-4.
    [25] 于品早,周冠生,陈小良,HNF-130 型 CTA 中空纤维纳滤组件的研制,
     水处理技术,2001,27(6):318-321.
    [26] Futselaar H, Schonewille H, Van der Meer W, Direct capillary
     173
    
    
    参考文献
     nanofiltration-a new high-trade purification concept, Desalination, 2001,
     145(1-3): 75-80.
    [27] 高从堦,俞三传,张建飞,蔡惠如,纳滤,膜科学与技术,1999,19(2):
     1-5.
    [28] Kilduff J E, Mattaraj S, Pieracci, J P, Belfort G. Photochemical modification
     of poly(ether sulfone) and sulfonated poly(sulfone) nanofiltration
     membranes for control of fouling by natural organic matter, Desalination
     2000, 132(1-3): 133-142.
    [29] Taniguchi M, Kilduff JE, Belfort G, Low fouling synthetic membranes by
     UV-assisted graft polymerization: monomer selection to mitigate fouling by
     natural organic matter, J. Membr. Sci, 2003, 222(1-2): 59-70.
    [30] Good K, Escobar I, Xu XL, Coleman M, Ponting M, Modification of
     commercial water treatment membranes by ion beam irradiation,
     Desalination, 2002, 146(1-3): 259-264.
    [31] 陈观文,曾一鸣,施艳荞,膜成孔方法研究的若干进展,第四届全国膜
     和膜过程学术报告会论文集,南京,2002,38-40.
    [32] Huang Q,Paul D, Seibig B, Advances in solvelt-free manufacturing of
     polymer membrane, Desalination, 2002, 144(1-3): 1-3.
    [33] Krause B, Van der Vegt NFA, Wessling M. New ways to produce porous
     polymeric membranes by carbon dioxide foaming, Desalination, 2002,
     144(1-3): 5-7.
    [34] Ozaki H, Sharma K, Saktaywin W, Wang D, Yu Y. Application of ultra low
     pressure reverse osmosis (ULPRO) membrane to water and wastewater,
     Water Sci. Technol, 2000, 42(12): 123-135.
    [35] Pierre Cote, The role of membranes for the treatment of freshwater: the
     French example, IDA proceeding, 1995, 265-274.
    [36] Ventresque C, Gisclon V, Bablon G, Chagneau, Gérard, An Outstanding freat
     of modern technology: the Mery-sur-Oise Nanofiltration treatment Plant(340,
     000m3/d), Desalination, 2000, 131(1-3): 1-16.
    [37] Van der Bruggen B, Schaep J, Maes W, Wilms D, Vandecasteele C.
     Nanofiltration as a treatment method for the removal of pesicides from
     ground water, Desalination, 1998, 117(1-3): 139-147.
    [38] Sato Y, Kang M, Kamei T, Magara Y. Yuko S, Meek K, Tasuku K, Yasumoto
     M, Performance of nanofiltration for arsenic removal, Water Res, 2002,
     174
    
    
    参考文献
     36(13): 3371-3377.
    [39] Vrijenhoek E M, Waypa J J, Arsenic removal from drinking water by a:
     loose: nanofiltration membrane, Desalination, 2000, 130(3): 265-277.
    [40] Introduction of Nuclear Desalination A Guidebook, Technical Report No.
     400, Internaltional Atomic Energy Agency, Vienna, 2000.
    [41] 中华人民共和国国家统计局,中华人民共和国《2003 年国民经济和社会
     发展统计公报》,2004 年 2 月 26 日.
    [42] 王世昌,人类需要海水淡化技术,国际学术动态,1997,(1):13-14.
    [43] Cadotte J, Forester R, Kim M, Petersen R, Stocker T, Nanofiltration
     membranes broden the use of membrane separation technology, Desalination,
     70, 1988, 77-88.
    [44] Mark A. Plummer, Littleton Colo., Preventing plugging by insoluble salts in
     a hydrocarbon-bearing formation and associated production wells,
     US4723603, 1988.
    [45] M. WILF, P. Chebt, P. Lange, et. al, Design and Performance of a Large
     Reverse Osmosis Softing Plant, IDA Conference, 1991, 1-25.
    [46] Hassan, A. M, Al-Sofi M. A. K, Al-Amoudi, et. al. A new approach to
     membrane and thermal seawater desalination processes using nanofiltration
     membranes (Part 1) Desalination, 1998, 118 (1-3): 35-51.
    [47] Al-Sofi Mohammad A. K, Hassan, Ata M, Mustafa, Ghulam M, et. al,.
     Nanofiltration as a means of achieving higher TBT of ≥120°C in MSF.
     Desalination, 1998, 118(1-3): 123-129.
    [48] Abdul-Kareem Al-Sofi, Mohammad. Seawater desalination — SWCC
     experience and vision. Desalination, 2001, 135 (1-3): 121-139.
    [49] Hassan, A. M, Farooque, A. M, Jamaluddin, A. T. M, et. al. A demonstration
     plant based on the new NF—SWRO process, Desalination, 2000, 131 (1-3):
     157-171.
    [50] Al-Sofi MA, Hassan AM, Hamed OA, Dalvi AGI, Kither MNM Mustafa
     GM, Bamardouf, K, Optimization of hybridized seawater Desalination
     process, Desalination, 2000, 131(1-3): 147-156.
    [51] 张国亮,陈益棠,纳滤膜软化技术在海岛饮用水制备中的应用,水处理
     技术,2000,26(2):67-70.
    [52] Ohya H., Suzuki T., Nakao S., Integrated system for complete usage of
     components in seawater: A proposal of inorganic chemical combinat on
     175
    
    
    参考文献
     seawater, Desalination, 2001, 134(1-3) 29-36.
    [53] Koyuncu I, Kural E, Topacik D. Pilot scale nanofiltration membrane
     separation for waste management in textile industry, Water Sci. Technol,
     2001, 43(10): 233-240.
    [54] Taleb-Ahmed, Mourad, Taha, Samir, Maachi, Rachida, Dorange, Gérard,
     The influence of physico-chemical on the retention of chromium ions during
     nanofiltration, Desalination, 2002, 145(1-3)103-108.
    [55] Wong F-S, Qin J-J, Wai M N, Lim A L, Adiga M. A pilot study on a
     membrane process for the treatment and recycling of spent final rinse water
     from electroless plating, Sep. Purif. Technol, 2002, 29(1): 41-51.
    [56] 楼永通,陈益棠,王寿根等,膜分离技术在电镀镍漂洗水回收中的应用,
     膜科学与技术,2002,22(2):43-47.
    [57] Hwang E-D, Lee K-W, Choo K-H, Choi S-J, Kim S-H, Yoon C-H, et. al.
     Effect of precipitation and complexation on nanofiltration of
     strontium-containing nuclear wastewater, Desalination, 2002, 147(1-3):
     287-294.
    [58] Jakobs, Dirk; Baumgarten, Goetz, Nanofiltration of nitric acidic solution
     from picture Tube production, Desalination, 2002, 145(1-3): 65-68.
    [59] Capal Madireddi, B. Levine, J. Glater, et. al, Membranes for advanced water
     reclamation: a Lake Arrowhead Pilot Plant, IDA proceeding, 1997.
    [60] Ernst, M, Jekel, M, Advanced treatment combination for groundwater
     recharge of municipal wastewater by nanofiltration and ozonation, Water Sci.
     Technol, 1999, 40(4-5): 277-284.
    [61] Choi, JH, Dockko, S, Fukushi, K, Yamamoto, K, A novel application of a
     submerged nanofiltration membrane bioreactor (NF MBR) for wastewater
     treatment, Desalination, 2002, 146(1-3): 413-420.
    [62] Horst Chmiel, Valko Mavrov, Eric Belieres, Treatment of low-contaminated
     process water in the food industry for reuse, IDA proceeding, 1999.
    [63] Koyuncu, I, Turan, M, Topacik, D, Ates, A, Application of low pressure
     nanofiltration membranes for the recovery and reuse of dairy industry
     effluents, Water Sci. Technol, 2000, 41(1): 213-221.
    [64] 刘军,栾居科,李文涛,大豆低聚糖、乳清蛋白的提取,中国油脂,2002,
     27(4):45-46.
    [65] 袁其朋,马润宇,膜分离技术处理大豆乳清废水,水处理技术,2001,
     176
    
    
    参考文献
     27(3):161-163.
    [66] 朱安娜,纪树兰,龙峰,吴卓,荆一风,纳滤膜在洁霉素废水浓缩分离
     中的应用,环境科学,2002,23(2):39-44.
    [67] 纪树兰,朱安娜,龙峰,吴卓,荆一风,平板型纳滤膜处理洁霉素废水
     的膜性能比较,中国环境科学,2002,22(1):36-39.
    [68] Ahn, Kyu-Hong, Cha, Ho-Young, Yeom, Ick-Tae, Song, Kyung-Guen,
     Application of nanofiltration for recycling of paper regeneration wastewater
     and characterization of filtration resistance, Desalination, 1998, 119(1-3):
     169-176.
    [69] 刘梅红,纳滤膜技术处理印染废水试验研究,水处理技术,2002,28(1):
     42-44.
    [70] Koyuncu, I, Direct filtration of Procion dye bath wastewaters by
     nanofiltration membranes: flux and removal characteristics, J. Chem.
     Technol. Biot, 2003, 78(12): 1219-1224.
    [71] Koyuncu, I, Topacik, D, Effects of operating conditions on the salt rejection
     of nanofiltration membranes in reactive dye/salt mixtures, Sep. Purif.
     Technol, 2003, 33(3): 283-294.
    [72] Akbari A, Remigy, J C, Aptel, P, Treatment of textile dye effluent using a
     polyamide-based nanofiltration membrane, Chem. Eng. Process, 2002, 41(7):
     601-609.
    [73] Kelly, J. and Kelly P, Desalination of acid casein whey by nanofiltration, int.
     Dairy J, 1995, 5: 291-303.
    [74] Alkhatim H S, Alcaina M I, Soriano E, et. al, Treatment of whdy effluents
     from diary industries by nanofiltration membranes, Desalination, 1998,
     119(1-3): 177-184.
    [75] Pouliot Y, Wijers MC, Gauthier SF, Nadeau L. Fractionation of whey protein
     hydrolysates using charged UF NF membranes, J. Membr. Sci, 1999,
     158(1-2): 105-114.
    [76] Wijers MC, Pouliot Y, Gauthier SF, Pouliot M, Nadeau L. Use of
     nanofiltration membranes for the desalting of peptide fractions from whey
     protein enzymatic hydrolysates, LAIT, 1998, 78(6): 621-632.
    [77] 俞三传,陈小良, 潘巧明,金可勇,高从堦,多糖纳滤浓缩初步研究,
     水处理技术,2001,27(1):9-11.
    [78] 杨刚,王焕章,邢卫红,徐南平,时钧,木糖溶液的纳滤浓缩,膜科学
     177
    
    
    参考文献
     与技术,2000,20(5):21-26.
    [79] Capelle N, Moulin P, Charbit F, Gallo R. Purification of heterocyclic drug
     derivatives from concentrated saline solution by nanofiltration, J. Membr.
     Sci. 2002, 196(1): 125-141.
    [80] 楼永通,张来红,陶洁,纳滤应用于卡那霉素浓缩,水处理技术,2003,
     29(2):106-107.
    [81] 叶榕,李春艳,超滤-纳滤集成技术提纯浓缩卡那霉素,福建医科大学
     学报,2002,36(3):306-308.
    [82] 蔡邦肖,纳滤膜技术在螺旋霉素生产中应用初探,膜科学与技术,1999,
     19(5):55-57.
    [83] M. P. Gonzalez, et. al, Purification of phosphoric acid solutions by reverse
     osmosis and nanofiltration, Desalination 2002, 147: 315-320.
    [84] 高从堦,张建飞,鲁学仁,俞三传,纳滤纯化和浓缩染料试验,水处理
     技术,1996,22(3):147-150.
    [85] 蔡惠如,高从堦,纳滤膜对染料截留行为的研究,膜科学与技术,2002,
     22(3):1-5.
    [86] 杨刚,邢卫红,徐南平,应用膜技术精制水溶性染料,膜科学与技术,
     2002,22(2):24-28.
    [87] Levbenstein R, Hasson D, Semiat R, Utilization of the Donnan effect for
     improving electrolyte separation with nanofiltration membranes, J. Membr.
     Sci, 116(1996): 77-92.
    [88] 郭明远,杨牛珍,纳滤膜分离活性染料溶液的研究,水处理技术,1996,
     22(2):97-98.
    [89] 周花,蒋林烃,蓝伟光,等, 纳滤在制备高浓度活性红 3BS 中的应用,
     膜科学与技术,2001,21(5):42-44, 47.
    [90] 柴红,周志军,陈欢林,纳滤膜脱盐浓缩染料的研究,高校化学工程学
     报,2000,14(5):461-464.
    [91] Nair Dinesh, Luthra Satinder Singh, Scarpello Justin T, White Lloyd S,
     Freitas dos Santos Luisa M, et. al. Homogeneous catalyst separation and
     reuse through nanofiltration of organic solutions, Desalination 2002,
     147(1-3): 301~306.
    [92] 刘忠洲,续曙光,李锁定,微滤、超滤过程中的膜污染与清洗,水处理
     技术,1997,23(4):187-193.
    [93] M. Elimelech, S. Bhattacharjee, A novel approach for modeling
     178
    
    
    参考文献
     concentration polarization in crossflow membrane filtration based on the
     equivalence of osmotic pressure model and filtration theory, J. Membr. Sci.,
     1998, 145, 223-241.
    [94] 张林,天津大学硕士学位论文,天津大学,1987 年.
    [95] 王世昌,张林,余国琮,平行板超滤系统过滤速率研究,化工学报,1989,
     6:726-732.
    [96] Sangho Lee, Chung HaK Lee, Effect of operation conditions on CaSO4
     scale formation .mechanism in nanofiltraion for water softening, Water Res,
     2000, 34(15): 3854-3866.
    [97] Lee S, Kim J, Lee CH, Analysis of CaSO4 scale formation mechanism in
     various nanofiltration modules, J. Membr. Sci, 1999, 163(1): 63-74.
    [98] Van der Bruggen B, Braeken L, Vandecasteele C. Evaluation of parameters
     describing flux decline in nanofiltration of aqueous solutions containing
     organic compounds, Desalination, 2002, 147(1-3): 281-288.
    [99] Lee Sangyoup, Moon Jihee, Yim Seong-Keun, Moon Seung-Hyeon, Cho
     Jaeweon, The relation between flux declind of NF membranes with NOM
     transport charactgeristics: convection and diffusion, Desalination 2002,
     147(1-3): 237~241.
    [100] Cho Jaeweon,Amy Gary,Pellegrino John, Membrane filtration of natural
     organic matter: comparison of flux decline, NOM rejection, and foulants
     during filtration with three UF membranes, Desalination, 2000, 127(3):
     283-298.
    [101] Manttari M, Puro L, Nuortila-Jokinen J, Nystrom M. Fouling effects of
     polysaccharides and humic acid in nanofiltration, J. Membr. Sci, 2000,
     165(1): 1-17.
    [102] Knyazkova, T. V, Maynarovich, A. A, Recognition of membrane fouling:
     testing of theoretical approaches with data on NF of salt solutions containing
     a low molecular weight surfactant as a foulantm, Desalination, 1999,
     126(1-3): 163-169.
    [103] Schafer AI, Fane AG, Waite TD. Nanofiltration of natural organic matter:
     Removal, fouling and the influence of multivalent ions, Desalination, 1998,
     118(1-3): 109-122.
    [104] Schafer AI, Fane AG, Waite TD. Fouling effects on rejection in the
     membrane filtration of natural waters, Desalination, 2000, 131(1-3):
     179
    
    
    参考文献
     215-224.
    [105] Seidel A, Elimelech M, Coupling between chemical and physical
     interactions in natural organic matter (NOM) fouling of nanofiltration
     membranes: implications for fouling control, J. Membr. Sci, 2002, 203(1-2):
     245-255.
    [106] Gwon EM, Yu MJ, Oh HK, Ylee YH. Fouling characteristics of NF and RO
     operated for removal of dissolved matter from groundwater, Water Res, 2003,
     37(12): 2989-2997.
    [107] Yoon S-H, Lee C-H, Kim K-J, Fane A G. . Effect of calcium ion on the
     fouling of nanofilter by humic acid in drinking water production, Water Res,
     1998, 32(7): 2180-2186.
    [108] Flemming H C, Schaule, G., Biofouling on membranes -a microbiological
     approach, Desalination, 1988, 70, (1-3): 95-119.
    [109] Speth TF, Summers RS, Gusses AM, Nanofiltration foulants from a treated
     surface water, Environ. Sci. Technol, 1998, 32(22): 3612-3617.
    [110] Speth TF, Gusses AM, Summers RS. Evaluation of nanofiltration
     pretreatments for flux loss control, Desalination, 2000, 130(1): 31-44.
    [111] 罗敏,王占生,候立安,纳滤膜污染的分析与机理研究,水处理技术,
     1998,24(6):318-323.
    [112] 伍艳辉,何菲,王志,王世昌,膜与蛋白质溶液的相互作用及膜污染机
     制的能谱研究,化工学报,2001,52(11):1026-1029.
    [113] 王志,伍艳辉,任延,王世昌,糖类和蛋白类物质污染聚砜膜的不同特
     性和微观机制,水处理技术,2000,26(5):273-276.
    [114] Beverly, S, Seal, S, Hong, S, Identification of surface chemical functional
     groups correlated to failure of reverse osmosis polymeric membranes,
     Journal of Vacuum Science & Technology, 2000, 18(4): 1107-1113.
    [115] Hilal, N, Mohammad, AW, Atkin, B, Darwish, NA, Using atomic force
     microscopy towards improvement in nanofiltration membranes properties
     for Desalination pre-treatment: a review, Desalination, 2003, 157(1-3):
     137-144.
    [116] Matsuura T, Progress in membrane science and technology for seawater
     Desalination -a review, Desalination, 2001, 134(1-3): 47-54.
    [117] Bowen, W. Richard; Doneva, Teodora A. Atomic force microscopy studies
     of nanofiltration membranes: surface morphology, pore size distribution and
     180
    
    
    参考文献
     adhesion, Desalination,2000, 129(2): 163-172.
    [118] Bowen WR, Doneva TA, Stoton JAG. The use of atomic force microscopy to
     quantify membrane surface electrical properties, Colloid and Surfaces
     A-Physicochemical and Engineering Aspects, 2002, 201(1-3): 73-83.
    [119] 罗敏,王浪,王占生,纳滤膜的场发射扫描电镜、能量色散 X 射线、原
     子力显微镜珊傅里叶转换红外光谱分析,膜科学与技术,2001,21(5):
     20-24.
    [120] 时钧,袁权,高从堦,膜技术手册,北京:化学工业出版社.2001.
    [121] 刘东方,陈璐,纪涛,纳滤膜处理高浓废工业废液浓差极化与膜污染, 城
     市环境与城市生态,2003,16(1):16-18.
    [122] 赵之平,王志,王世昌,膜污染程度及清洗效果的流动电位与通量协同
     表征,化工学报,2003,54(3):417-418.
    [123] 罗敏,侯立安,王占生,纳滤膜对有机物的截留机理研究,环境科学学
     报,2000,20(5):523-527.
    [124] 朱安娜,纳滤过程的污染问题及纳滤膜性能的影响因素,膜科学与技术,
     2003,23(1):43-49.
    [125] 环国兰,张宇峰,杜启云,膜污染分析及防治,水处理技术,2003,29(1):
     1-4.
    [126] Vrijenhoek EM Hong, S, Elimelech, M, Influence of membrane surface
     properties on initial rate of colloidal fouling of reverse osmosis and
     nanofiltration membranes, J. Membr. Sci, 2001, 188(1): 115-128.
    [127] Reiss, C. Robert, Taylor, James S, Robert, Christophe, Surface water
     treatment using nanofiltration — pilot testing results and design
     considerations,Desalination, 1999, 125(1-3): 97-112.
    [128] Liikanen R, Miettinen I, Laukkanen R. Selection of NF membrane to
     improve quality of. chemically treated surface water, Water Res, 2003, 37(4):
     864-872.
    [129] Amy K Zander, N. Kevin Curry, Membrane and solution effects on solute
     rejection and productivity, Water Res, 2001,. 35(18): 4426-4432.
    [130] Ferrarini, Roberto, Versari, Andrea, Galassi, Sergio, A preliminary
     comparison between nanofiltration and reverse osmosis membranes for
     grape juice treatment, J. Food Eng. 2001, 20(2): 113-116.
    [131] Lee S, Lee CH. Effect of operating conditions on CaSO4 scale formation
     mechanism in nanofiltration for water softening, Water Res, 2000, 34(15):
     181
    
    
    参考文献
     3854-3866.
    [132] Bian R, Yamamoto K, Watanabe Y. The effect of shear rate on controlling
     the concentration polarization and membrane fouling, Desalination, 2000,
     131(1-3): 225-236.
    [133] Nystrom M, Pihlajamaki A, Liikanen R, Manttari M, Influence of process
     conditions and membrane/particle interaction in NF of wastewaters,
     Desalination, 2003, 156(1-3): 379-387.
    [134] Wilbert Michelle Chapman, Pellegrino, John, Zydney, Andrew, Bench-scale
     testing of surfactant-modified reverse osmosis/nanofiltration membranes,
     Desalination 1998, 115(1) 15-32.
    [135] Combe C, Molis E, Lucas P, Riley R, Clark MM. The effect of CA
     membrane properties on adsorptive fouling by humic acid, J. Membr. Sci,
     1999, 154(1): 73-87.
    [136] Pupunat L, Rios GM, Joulie R, Persin M, Pourcelly G, Electronanofiltration:
     A new process for ion separation, Sep. Sci. and Technol., 1998, 33 (1):
     67-81.
    [137] No?l, Isabelle M., Lebrun, Rémi; Bouchard, Christian R.,
     Electro-nanofiltration of a textile direct dye solution, Desalination, 2000,
     129(2): 125-136.
    [138] No?l, Isabelle M., Lebrun, Rémi E., Bouchard, Christian R., Nanofiltration
     of NaCl solutions using a SPPO membrane (BQ01) Part 2. Membrane
     behavior with an electric field, Desalination, 2003, 155(3): 243-254.
    [139] Vedavyasan, C. V., Pontential use of magnetic fields — a perspective
     Desalination 2001, 134(1-3): 105-108.
    [140] Bian, Rulin; Watanabe, Yoshimasa; Tambo, Norihito; Ozawa, Genzo
     Removal of Humic Substances by UF and NF Membrane Systems, Water
     Sci. Technol., 1999, 40(9): 121-129.
    [141] 陈健,郭祀远,李琳,肖凯军,超声波强化超滤的研究进展,水处理技
     术,2003,29(4):191-193.
    [142] Kobayashi, T., Chai, X., Fujii, N. Ultrasound enhanced cross-flow
     membrane filtration, Sep. Sci. Technol., 1999, 17(1): 31-40.
    [143] Field, R. W., Wu, D., Howell, J. A., Gupta, B. B., Critical flux concept for
     microfiltration fouling, J. Membr. Sci. 1995, 100(3): 259-272.
    [144] Howell, John A., Sub-critical flux operation of microfiltration, J. Membr.
     182
    
    
    参考文献
     Sci., 1995, 107: (1-2): 165-171.
    [145] Mallubhotla, Hanuman; Hoffmann, Sven; Schmidt, Meike; Vente, Johan;
     Belfort, Georges, Flux enhancement during dean vortex tubular membrane
     nanofiltration. 10.Design, construction, and system characterization, J.
     Membr. Sci., 1998, 141(2): 183-195.
    [146] Mallubhotla, Hanuman; Schmidt, Meike; Hyun Lee, Kwang; Belfort,
     Georges, Flux enhancement during Dean vortex tubular membrane
     nanofiltration: 13. Effects of concentration and solute type, J. Membr. Sci.,
     1999, 153(2): 259-269.
    [147] Lee S., Lueptow RM., Control of scale formation in reverse osmosis by
     membrane rotation, Desalination, 2003, 155(2): 131-139.
    [148] 张国俊,刘忠洲,超滤膜的超声波助清洗研究,环境科学,2003,24(6):
     130-134.
    [149] Chai Xijun; Kobayash Takaomi; Fujii Nobuyuki, Ultrasound effect on
     cross-flow filtration of polyacrylonitrile ultrafiltration membranes, J. Membr.
     Sci., 1998, 148(1): 129-135.
    [150] 柴国墉,A. R. Greenberg,W. B. Krantz,超声监测技术在膜分离过程中
     的应用研究,膜科学与技术,2003,23(4):134-140.
    [151] Thurman, E. M., Organic Geochemistry of Natural Waters, Martinus
     Nijhoff/Dr. W. Junk Publishers, Boston, MA, 1985.
    [152] Hong, S. and M. Elimelech, Chemical and physical aspects of natural
     organic matter (NOM) fouling of nanofiltration membranes, J. Membr. Sci.,
     1997, 132, 159-181.
    [153] Paul, J. H., and W. H. Jeffrey, The Effect of Surfactants on the Attachment of
     Estuarine and Marine Bacteria on Surface, Can. J. Microbiol., 1984, 31,
     224-228.
    [154] Liikanen R, Yli-Kuivila J, Laukkanen R, Efficiency of various chemical
     cleanings for nanofiltration membrane fouled by conventionally-treated
     surface water, J. Membr. Sci, 2002, 195(2): 265-276.
    [155] Lee H, Amy G, Cho JW, Yoon YM, Moon SH, Kim IS. Cleaning strategies
     for flux recovery of an ultrafiltration membrane fouled by natural organic
     matter, Water Res, 2001, 35(14): 3301-3308.
    [156] Van Paassen JAM, Kruithof JC, Bakker SM, Kegel FS, Integrated
     multi-objective membrane systems for surface water treatment:
     183
    
    
    参考文献
     pre-treatment of nanofiltration by riverbank filtration and conventional
     ground water treatment, Desalination, 1998, 118(1-3): 239-248.
    [157] Molinari R, Argurio P, Romeo L, Studies on interactions between
     membranes (RO and NF) and pollutants(SiO2, NO3-, Mn2+ and humic acid)
     in water, Desalination, 2001, 138(1-3): 271-281.
    [158] Fievet P, Szymczyk A, Aoubiza B, Pagetti J. Evaluation of three methods for
     the characterization of the membrane – solution interface: streaming
     potential, membrane potential and electrolyte conductivity inside pore, J.
     Membr. Sci., 2000, 168(1-2): 87-100.
    [159] Afonso Maria Diná, Hagmeyer Georg; Gimbel Rolf, streaming potential
     measurements to assess the variation of nanofiltration membranes surface
     charge with the concentration of salt solution, Sep. Purif. Technol, 2001,
     22-23: 529-541.
    [160] Peeters J M M, Mulder M H V, Strathmann H, Streaming potential
     measurements as a characterization method for nanofiltration membranes,
     Colloids and Surfaces A: Physicochemical and Engineering Aspects
     150(1999): 247-259.
    [161] Benavente J, Hernandez A, Jonsson G, Proper and adsorbed carges on the
     surfaces of the polysulfonic support of a composite membrane from
     electrokinetic phenomena, J. Membr. Sci. 1993, 38(1): 221-225.
    [162] Hernandex A, Gimenez L M, Gomez M V, Concentration dependence of the
     adsorbed charges and the zeta potentials on the walls of neutral and charged
     microporous membranes, J. Colloid Interface Sci., 1993, 158: 429.
    [163] Tsuru, Toshinori, Hironaka, Daisuke, Yoshioka, Tomohisa, Asaeda, Masashi,
     Effect of divalent cations on permeate volume fluc through porous titania
     membranes, Desalination 2002, 147(1-3): 213-216.
    [164] Kedem and A. Katchalsky. Permeability of composite membranes: Part1:
     Electric current, volume flow and flow of solute through membranes, Trans.
     Faraday Soc. 1963, 59, 1918.
    [165] K. S. Spiegler and O. Kedem, thernodynamics of hyperfiltration (revderse
     osmosis): Criteria for efficient membranes, Desalination, 1966, 1, 311.
    [166] J. Gilron, N. Gara, O. Kedem, Experimental analysys of negative salt
     rejection in nanofiltration membranes, J. Membr. Sci. 2001, 185(2):
     223-236.
     184
    
    
    参考文献
    [167] Verniory, R. Du Bois, P. Decoodt, J. P. Gassee, Measurement of the
     permeability of biological membranes, J. Gen. Physiol., 1973, 62: 489-507.
    [168] Chhabra, R. P., Agarwal, S., Chaudhary, K, A note on wall effect on the
     terminal falling velocity of a sphere in quiescent Newtonian media in
     cylindrical tubes, Powd. Technol., 2003, 129(1-3): 53-58.
    [169] Shin-ichi Nakao and Shoji Kimura, Models of membrane transport
     phenomena and their applications for ultrafiltration data, J. Chem.Eng. Jap.,
     1982, 15(2): 200-205.
    [170] Nakao, Shin-ichi, Determination of pore size and pore size distribution
     3.Filtration membranes, J. Membr. Sci., 1994, 96(1-2): 131-165.
    [171] Wang Xiao-Lin; Tsuru Toshinori; Togoh Masanori; Nakao Shin-ichi; Kimura
     Shoji, Transport of organic electrolytes with electrostatic and
     steric-hindrance effects through nanofiltration membranes, J. Chem.Eng.
     Jap., 1995, 28(4): 372.
    [172] 王晓琳,纳滤膜分离机理及其应用研究进展,化学通报,2001,64(2):
     86-90.
    [173] Xiao-Lin Wang, Tsuru Toshinori, Nakao Shin-ichi, Kimura Shoji,Electrolyte
     transport through nanofiltration membranes by the space-charge model and
     the comparison with Teorell-Meyer-Sievers model,J. Membr. Sci., 1995,
     103(1-2):117-133.
    [174] Wang, Xiao-Lin; Tsuru, Toshinori; Nakao, Shin-ichi; Kimura, Shoji The
     electrostatic and steric-hindrance model for the transport of charged solutes
     through nanofiltration membranes, J. Membr. Sci., 1997, 135(1): 19-32.
    [175] Wang, Xiao-Lin, Wang, Wei-Ning, Wang, Da-Xin, Experimental
     investigation on separation performance of nanofiltaration membranes for
     inorganic electrolyte solution, Desalination 2002, 145(1-3): 115-122.
    [176] Bowen, W. Richard; Mukhtar, Hilmi, Characterisation and prediction of
     separation performance of nanofiltration membranes, J. Membr. Sci., 1996,
     112(2): 263-274.
    [177] Mohammad, A. Wahab, Ali, Nora'aini Understanding the steric and charge
     contributions in Nfmembranes using increasing MWCO polyamide
     membranes, Desalination 2002, 147(1-3): 205-212.
    [178] Schaep J, Vandecasteele C, Wahab M A, Bowen, W R, Modeling the
     retention of ionic components for different nanofiltration membranes, Sep.
     185
    
    
    参考文献
     Sci. Technol., 2001, 22-23: 169-179.
    [179] Labbez C, Fievet P, Szymczyk A, Thomas F, Simon C, Vidonne A, Pagetti J,
     Foissy A, A comparison of membrane charge of a low nanofiltration ceramic
     membrane determined from ionic retention and tangential streaming
     potential messurements, Desalination 2002, 127(1-3): 223-229.
    [180] Van der Bruggen B, Vandecasteele C. Modeling the retintion of uncharged
     moleculars with nanofiltration, Water Res. 2002, 36: 1360-1368.
    [181] Bowen W R, Welfoot J S, Modelling of membrane nanofiltration—pore size
     distribution effects, Chem. Eng. Sci., 2002, 57(8): 1393-1407.
    [182] Andrij E Yaroshchuk, Rejection mechanisms of NF membranes, Membr.
     Technol., 1998, (100): 9-12.
    [183] Xu Y, Lebrun R E, Comparison of nanofiltration properties of two
     membranes using electrolyte and non-electrolyte solutes, Desalination, 1999,
     122(1): 95-106.
    [184] Vezzani D, Bandini S, Donnan equilibrium and dielectric exclusion for
     characterization of nanofiltration membranes, Desalination, 2002, 149(1-3):
     477-483.
    [185] Bowen W R, Welfoot J S, Predictive modelling of nanofiltration: membrane
     specification and process optimization, Desalination, 2002, 147(1-3):
     197-203.
    [186] Bowen, W. Richard; Welfoot, Julian S. Modelling the performance of
     membrane nanofiltration—critical assessment and model development,
     Chem. Eng. Sci., 2002, 57(7): 1121-1137.
    [187] J. Smatsma, et. al, Can nanofiltration be fully predicted by a model? J.
     Membr. Sci., 2002, 198: 273~284.
    [188] 海德能公司产品技术手册,2002 版,p47.
    [189] 吴永乐,克林霉素的药理特点与临床应用,国外医药:抗生素分册,1995,
     16(2):104-108.
    [190] 王晓峰,周学章,郭艳清,完善春,盐酸克林霉素(clindamycin)的应
     用研究进展,黑龙江八一农垦大学学报,2002,14(2):82-86.
    [191] 陈树红,克林霉素磷酸酯的合成工艺研究,山西医科大学学报,2002,
     33(2):116-117.
    [192] Matier William L; Woo chi, Clindamycin-2-phosphoryl benzylate,
     US4849515.
     186
    
    
    参考文献
    [193] 季雪明,陆利强,克林霉素磷酸酯的合成,苏州医学院学报,2000,20(5):
     432-432.
    [194] Tobkes Martin; Diax simon; Clindamycin phosphate synthesis, US5182374,
     1993-01-26.
    [195] The United Stated Pharmacopeial Convention, Inc. The United Stated
     Pharmacopoeia, USP24,2000:432-443.
    [196] 英国药典标准参考资料,1998,1:355-356.
    [197] 夏振华,毛彩娟,韩新丰,周志明,HPLC 法测定克林霉素磷酸酯及其
     有关物质的方法学研究,药物分析杂志,2002,22(4):292-295.
    [198] 漏德宝,段更利,高敏杰洁,孙国荣,反相高效液相色谱法测定克林霉
     素磷酸酯注射液的稳定性,中国新药与临床杂志,2001,20(4):285-288.
    [199] 徐月玲,王小敏,旋光法快速测定克林霉素磷酸酯注射液的含量,上海
     医药,1996,(9):29-29.
    [200] Pliton C, Mahn F P, Hawrylyshyn M, et. al., colorimetric determination of
     biotin, J.Pharmaceutical Sci., 1969, 58(7): 875-876.
    [201] Fawzy A E-Y, Salah M B, Spectrophotometric and titrimetric determination
     of clindamycin hydrochloride in pharmaceutical preparations, Analysis,
     1993, 118(5): 577-579.
    [202] 刘梅,李祚宏,贺建荣,周谨,程建峰,克林霉素磷酸酯注射液的分光
     光度法测定,中国医院药学杂志,2001,21(5):273-274.
    [203] 曹吉林,白鹏,25℃和 100℃时 H3BO3—Na2SO4—NaCl—H2O 体系的
     相平衡,高校化学工程学报,1999,13(1):1-4.
    [204] 陆杰,王静康,普鲁卡因青霉素的溶液微粒结晶:Ⅰ. 溶解和超溶解度
     的测定,中国抗生素杂志,1999,24(5):337-338,367.
    [205] Jorgen Wagner, Membrane filtration handbook Practical tips and hints, GE
     Osmonics Inc, 2001.
    [206] X. J. Yang; A. G. Livingston; L. Freitas dos Santos, Experimental
     observations of nanofiltration with organic solvents, J. Membr. Sci. 2001,
     190: 45.
    [207] B. Van der Bruggen; J. Geens; C. Vandecasteele, Fluxes and rejections for
     nanofiltration with solvent stable polymeric membranes in water, ethanol
     and n-hexane, Chem. Eng. Sci., 2002, 57: 2511.
    [208] D. R. Machado; D. Hasson, R. Semiat, Effect of solvent properties on
     permeate flow through nanofiltration membranes. Part 1: investigation of
     187
    
    
    参考文献
     parameters affecting solvent flux, J. Membr. Sci. 1999, 163: 93.
    [209] Mehardad Bi-P, Stephen W. T, Douglas R. L and Dickson J. M, The effect of
     solute-membrane affinity on cyclic hydrocarbon-water transport in
     pressure-driven membrane separation processes, J. Membr. Sci. 1984, 21:
     21-33.
    [210] R. J. Petersen, Composite reverse osmosis and nanofiltration membrane, J.
     Membr. Sci. 1993, 83: 81-150.
    [211] E. M. V. Hoek, A. S. Kim, M. Elimelech, Influence of crossflow membrane
     filter geometry and shear rate on colloidal fouling in reverse osmosis and
     nanofiltration separation, Environ. Eng. Sci., 2002, 19(6): 357-372.
    [212] J. P. Sheth, Y. Qin, K. K. Sirkar, B. C. Baltzis, Nanofiltration-based
     diafiltration process for solvent exchange in pharmaceutical manufacturing,
     J. Membr. Sci. 2003, 211: 251.
    [213] K. Goulas, P. G. Kapasakalidis, H. R. Sinclair, R. A. Rastall, Purification of
     oligosaccharides by nanofiltration, J. Membr. Sci. 2002, 209: 321.
    [214] M. M?ntt?ri, A. Pihlajam?ki, E. Kaipainen, M. Nystr?m, Effect of
     temperature and membrane pre-treatment by pressure on the filtration
     properties of nanofiltration membranes, Desalination, 2002, 145: 81.
    [215] 马沛生,化工数据,北京:中国石化出版社,2003 年,366.
    [216] B. E. Poling, J. M. Prausnitz, J. P. O'Connell, The properties of gases and
     liquids (5th ed.), New York: McGraw-Hill, 2001.
    [217] 姚允斌,解涛,高英敏编,物理化学手册,上海:上海科学技术出版社,
     1985.
    [218] Wu Yanxia; Ma Peisheng; Liu Yunqi; Li Shufen, Diffusion coefficients of
     l-proline, l-threonine and l-arginine in aqueous solutions at 25°C, Fluid
     Phase Equilibria, 2001, 186(1-2): 27-38.
    [219] 陶氏化学公司液体分离事业部,陶氏膜产品与技术手册 FILMTECTM
     反渗透与纳滤元件,10-42.
    [220] Setti Duilio, Balbo Peter M Spiral membrane module with controlled
     by-pass seal, US4301013, 1981, 11-17.
    [221] Johnson Jon E, Spiral wound element with improved feed spacer,
     WO03092872, 2003-11-13.
    [222] 王绍亭,陈涛,动量、热量与质量传递,天津:天津科学技术出版社,
     1986.
     188
    
    
    参考文献
    [223] Shin-ichi Nakao and Shoji Kimura, Analysis of solutes rejection in
     untrafiltration, J. Chem. Eng. Jap., 1981, 14(1): 32-37.
    [224] 王小平,曹立明,遗传算法-理论、应用与软件实现,西安交通大学出
     版社,西安,2002.
    [225] 王晓琳,中尾真一,低分子量中性溶质体系的纳滤膜的透过特性,南京
     化工大学学报,1998,20(4):36-40.
    [226] 屠鹏飞,徐国钧,徐珞珊,沙参类的研究:Ⅲ. 多糖的含量测定,中草
     药,1992,23(7):355-356.
    [227] 王强,陈绥清,张志华,俞祥生,龚孙莲,吴家坤,枸杞子中多糖的含
     量测定,中草药,1991,22(2):67-68.
    [228] E. L. Cussler 著,王宇新,姜忠义译,扩散 流体系统中的传质(Diffusion
     Mass transfer in fluid System)第二版,北京:化学工业出版社,2002 年,
     73.
    [229] 王典芬,X 射线光电子能谱在非金属材料研究中的应用,武汉:武汉工
     业大学出版社,1994.
    [230] 吴刚,材料结构表征及应用,北京:化学工业出版社,2001,380.
    [231] 王建祺,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,北京:
     国防工业出版社,1992.
    [232] Perkin-Elimer Corporation Physical Electronics Division, Handbook of
     X-ray Photoelectron Spectroscopy, Standard XPS spectra of the elements.
    [233] J. Gilron, D. Hasson, Calcium sulfate fouling of reverse osmosis membranes:
     flux decline mechanism, Chem. Eng. Sci, 1987, 42: 2351–2360.
    [234] M?ntt?ri, M., Nuortila-Jokinen, J., Nystr?m, M., Influence of filtration
     conditions on the performance of NF membranes in the filtration of paper
     mill total effluent, J. Membr. Sci., 1997, 137(1-2): 187-199.
    [235] M?ntt?ri, M., Nystr?m, M., Critical flux in NF of high molar mass
     polysaccharides and effluents from the paper industry, J. Membr. Sci. 2000,
     170(2): 257-273.
    [236] 宋航,付超,化工技术经济,北京:化学工业出版社,2002 年.
    [237] 袁铁象,项目投资策划与评估,北京:中国社会出版社,1997 年.
    [238] 国家计划委员会、建设部发布,建设项目经济评价方法与参数,北京:
     中国计划出版社,1993 年.
    [239] 天津市化工设计院,天津市海水淡化产业化示范工程(10000 吨/天淡水)
     可行性研究报告,2001 年.
     189
    
    
    参考文献
    [240] 和宏明,投资项目可行性研究与经济评价手册,北京:地震出版社,2000
     年 5 月.
    [241] 周广平,技术改造经济学,北京:经济管理出版社,1992 年.
    [242] 杨华峰,贾增然,投资项目经济评价,北京:中国经济出版社,1997
     年.
    [243] 李楠,最新投资项目可行性分析与项目管理实务全书,北京:世图电子
     音像出版社,2003 年 11 月.
    [244] 元英进,刘明言,董岸杰,中药现代化生产关键技术,北京:化学工业
     出版社现代生物技术与医药科技出版中心,2002,42-43.
    [245] 郭立玮,关于“中药制备高新技术”思考与实践,南京中医药大学学报,.
     2002,18(3):129-132.
    [246] 徐莲英,陶建生,中药制剂发展的回顾,中成药,2000,22(1):6-21.
    [247] 杜启云,乔向莉,超滤技术在中药制剂生产中应用的现状与展望,天津
     纺织工学院学报,1996,15(4):94-99.
    [248] 刘振丽,张秋海,超滤及醇沉对金银花中绿原酸的影响,中成药,1996,
     18(2):4-6.
    [249] 曹光明,中药工程学,1994 年 6 月.
    [250] 陈芬儿主编,有机药物合成法.北京:中国医药科技出版社,1999,1-1045.
    [251] 计志忠,化学制药工艺学,北京:中国医药科技出版社,1998.
    [252] 陈建茹,化学制药工艺学,北京:中国医药科技出版社,1995,51-54.
    [253] C. 赖卡特编著,唐培堃等译,有机化学中的溶剂效应,北京:化学工
     业出版社,1987.
    [254] 陈文华,郭丽梅,制药技术,北京:化学工业出版社,2003.
    [255] 顾觉奋,抗生素,上海:上海科学技术出版社,2001.
    [256] 吴剑波,微生物制药,北京:化学工业出版社现代生物技术与医药科技
     出版中心,2002.
    [257] 陈来同,唐运,生物化学产品制备技术,北京:科学技术文献出版社,
     2003.
    [258] 李津,俞霆,董德祥,生物制药设备和分离纯化技术,北京:化学工业
     出版社现代生物技术与医药科技出版中心,2003.
    [259] http: //www. gewater. com/equipment/membranehousing.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700