面向视觉监控的视频压缩研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
视觉监控通过分析来自一个或多个摄像机的信息,可以监视和控制大而复杂的空间上分布的区域。人们目前的研究主要集中在如何实现或代替人的视觉功能或实现尽可能的自动监控系统,针对监控视频的压缩研究相对较少。但事实上,人们仍然需要对数据量巨大的监控视频实现高效压缩,而且对于监控视频编码提出了新的特殊要求,此外监控系统内的视频压缩不是一个孤立的问题,而是一个需要进行预处理的系统问题。所以,针对监控视频的压缩研究很有意义。本文研究内容包括三条线索:第一、为了给监控员提供远程报警信号,同时启动本地视频压缩程序而进行的运动检测研究;第二、为了得到监控对象而进行的运动分割、以及其后对监控视频进行基于对象的视频编码研究;第三、针对一类特殊监控场合而进行的ROI视频编码研究。本文的研究内容梗概如下。
     一、旨在提供报警信号和启动压缩程序的运动检测研究
     因为相邻两帧存在运动会引起相同位置上DCT系数大小和符号的改变,所以通过比较DCT系数的符号就可以确定是否有运动对象出现。而M-JPEG的码流特点表明在压缩码流中可以获得每帧的DCT系数的符号。为了消除随机噪声带来的影响,将其引起DCT系数块符号变化数目模型化为高斯分布,以此确定运动块阈值。场景照度突然变化带来的大量虚假运动块数用中值滤波加以消除。最后以校准帧最大的运动块数作为确定当前帧是否存在运动的阈值。实验结果表明,在不同的量化矩阵、不同的运动块阈值下,均能实现正确的检测。
     二、以运动物体作为监控对象的分割研究
     将噪声分布近似为Gauss分布或Laplace分布,再设定误判概率进而确定一个阈值就可以利用假设检验的思想,构成统计量对不同对象判断其运动与否。以当前位置灰度差值d、模板内、以及分块内所有d的不同组合作为检验统计量,对当前位置像素、模板中心像素、分块进行判决。针对不同统计量和判决对象的实验结果表明,基于这两种分布的检验方法都能不同程度地对测试视频分割出较好的结果,但基于Laplace的检验方法的综合性能较优。实验结果还表明本文提出的“像素判决一中值滤波一宏块掩模”策略具有较好的健壮性。
     三、基于增强区域的监控视频压缩研究
     在本文提出的面向监控应用的基于对象的视频编码框架中,不含监控信息的背景只编码一次发送到接收端(融合在线更新机制)。对于监控对象区域,首先对其进行增强以达到所需的视觉效果。监控对象的形状信息表示为宏块坐标;监控对象之间的时间冗余通过运动估计来消除,但搜索范围限制在前一帧监控对象区域之内;由于增强处理使得监控区域的灰度级减少了,所以对运动估计的残差进行无损熵编码。实验结果表明,本文方案得到的重建视频帧能提供对比度增强的监控对象区域,同时又能达到可观的压缩效率。
     为了适应本文的基于对象的监控视频编码,本文还提出了一种综合多种优点的自适应快速运动估计算法。包括搜索起点的预测、不同的搜索模式、中途停止技术、以及优先搜索机制。实验结果显示,本文的运动估计算法既能提供与其他算法可比的性能,又有很低的计算复杂度。
     四、基于感兴趣区域(ROI:Region OfInterest)编码思想的监控视频压缩研究
     针对摄像机固定监控区域固定的一类监控视频,本文以监控对象区域为ROI。首先将视频分为固定大小的帧组(GOF:Group OfFrames),然后对GOF进行3D小波变换。每一帧内ROI设为矩形而且位置相同,由左上角和右下角坐标描述,在这两个角之间所有的样值都属于ROI掩模。3D ROI内的小波系数先被上移,然后使用3D SPIHT算法进行编码,使ROI得到比特资源的优先分配。实验表明,在不同的比特率下,监控区域总能得到优先的重建,获得较好的重建质量。
By analyzing information from one or several cameras, a visual surveillance system can supervise and control fields distributed in large and complex areas. The present main research concentrate on how to realize or substitute human vision, or achieve a surveillance system with automation as much as possible, while study on compression of surveillance video is fewer relatively. In fact, the efficient compression of surveillance video with huge data volume is needed yet. Furthermore, new requirement is proposed on surveillance video coding. In addition, video compression inside a surveillance system is not a single problem; instead, it is a system problem with video pre-processing. Therefore, it is important to study compression of surveillance video. This paper includes three cues: one, motion detection in order to provide an remote alarm signal for supervisors or an indication for the start of local compression procedure; the other, motion segmentation for acquisition of surveillance objects and thereafter object-based video coding; the third, ROI video coding in view of some special surveillance cases. The main ideas of this paper are outlined as follows.
     1. Study of motion detection to provide an alarm signal and a start indication of video compression
     Because motion between adjacent frames can cause change in terms of DCT coefficient amplitudes and signs, the appearance of motion objects can be determined by the change of signs of DCT coefficients. It is showed that signs of DCT coefficients can be acquired from the M-JPEG code stream. In order to eliminate the impact imposed by random noise, the number of DCT coefficient sign changes caused by the noise is modeled as Gauss distribution, which can determine a threshold of motion blocks. The large number of false motion blocks brought by abrupt change of scene luminance is removed by median filtering. At last, the biggest number of motion blocks of a frame in the calibration stage is used as a threshold of motion frames. Experiments show accurate motion detection can be achieved under different quantization matrixes and/or different motion blocks thresholds.
     2. Study of segmentation of surveillance objects with motion
     The camera noise statistical characteristic is approximated as Gauss or Laplace distribution, then an error probability is set and a threshold is determined. According to the hypothesis test theory, a constructed statistic can judge whether an object is moved or not. A statistic can be a difference d at the current location, a combination of all d inside a block or a template, then a determination on the current pixel, the central pixel, or a block is made. Experiments on different statistics and judging objects show that the test methods based on the two statistical distributions can make good results on test videos to different extent; but the test based on Laplace distribution is better in terms of overall performance. Experiments also show the proposed "determination on pixels—median filtering—macro-blocks mask" strategy is more robust.
     3. Study of object-based video compression for enhanced surveillance region
     In the proposed object-based coding framework for surveillance application, the background without surveillance information is coded once then sent to the receiver (with update online). Surveillance regions are enhanced at first to achieve the required visual effect. The shape information of surveillance objects is represented as macro-block coordinates. The temporal redundancy is eliminated by motion estimation within the surveillance region in the reference frame. Since the number of luminance levels is reduced due to enhancement process, the residual error of motion estimation is compressed with lossless entropy coding. Experimental results show that the proposed scheme can produce surveillance region with better contrast and significant compression efficiency at the same time.
     In order to adapt to the proposed object-based coding for surveillance video, an adaptive and fast motion estimation algorithm integrated with multiple advantages is proposed. These advantages include the prediction for search start points, different search patterns, half-way stop technology, and a search rule with priority. Experiments show that the proposed algorithm presents a competitive performance with low computation cost.
     4. Study of region of interest (ROI) based surveillance video compression
     For a kind of surveillance video produced by fixed camera and fixed surveillance region, the surveillance region is defined as ROI. The video is divided into group of frames (GOF). 3D wavelet transform is performed on each GOR The ROI of every frame is defined as a rectangular with fixed location specified by the coordinates of left top and right bottom corners. The samples between the two corners belong to ROI mask. Wavelet coefficients inside 3D ROI is scaled up. Then the GOF is coded by 3D SPIHT algorithm and thus ROI is assigned bit overhead with priority. Experiments show that surveillance regions can be reconstructed with priority and achieve better visual quality.
引文
[1]Anthony R. Dick, Michael J. Brooks. Issues in Automated Visual Surveillance. in: Sun C., Talbot H., Ourselin S., et al. Proc. Ⅶth Digital Image Computing: Techniques and Applications. Sydney, 2003.195~204
    [2]齐芳.我科学家研制成功智能视频监控系统.光明日报,2007-10-04
    [3]Pons J., Prades-Nebot J., Albiol A., et al. Fast motion detection in compressed domain for video surveillance. Electronics letters, 2002, 38 (9): 409~411
    [4]Zeljkovic V., Pokrajac D.. Motion Detection Based Mutimedia Supported Intelligent Video Surveillance System. in: proceedings of 48th International Symposium ELMAR-2006, Zadar, Croatia. 2006. 49~52
    [5]Zeljkovic V., Dorado A., Izquierdo E.. Combining a Fuzzy Rule-Based Classifier and Illumination Invariance for Improved Building Detection. IEEE Trans. On Circuits and Systems for Video Tech., 2004, 14:1277~1280
    [6]Pokrajac D., Latecki, L. J. Spatiotemporal Blocks-Based Moving Objects Identification and Tracking, in: Proc. IEEE Int. Workshop Visual Surv. and Performance Evaluation of Tracking and Surveillance (VS-PETS), Nice, France, 2003.70~77
    [7]Fettke M., Sammut K., Naylor M., et al. Evaluation of motion detection techniques for video surveillance, in: Proceedings of Information, Decision and Control, 2002. 247~252
    [8]Cina Motamed. Motion detection and .tracking using belief indicators for an automatic visual-surveillance system. Image and Vision Computing. 2006, 24: 1192~1201
    [9]Foresti G. L., Micheloni C., Snidaro L., et al. Face detection for visual surveillance. in: Proceedings of the 12th International conference on image analysis and processing, 2003.115~120
    [10]Vasconcelos N., Lippman A.. Empirical Bayesian Motion Segmentation. IEEE Trans. Pattern Anal. and Machine Intell., 2001, 23 (2): 217~221
    [11]-Yu T., Zhang Y.. Retrieval of video clips using global information. Electronics Letters, 2001, 37 (14): 893~895
    [12]Falah E. Alsaqre, Yuan Baozong. Moving Object Segmentation for Video Surveillance and Conferencing Applications. in: Proceedings of ICCT 2003, 2003. 1856~1859
    [13]Li Juan, Zhang Xian-Min. Video object plane extraction for surveillance applications. in: Proceedings of the third international conference on machine learning and cybernetics, Shanghai, 2004. 3298-3231
    [14] Mohammad Reza Javan, Seyed Mahdi Bouzari, Ahmad Salahi. An Efficient Object Segmentation Algorithm for Surveillance Systems. in Proceedings of International Symposium on Signals, Circuits and Systems, 2007, 2: 1-4
    [15] Jiang M., Crookes D.. Video Object Motion Segmentation for Intelligent Visual Surveillance. in: International Machine Vision and Image Processing Conference 2007 proceedings. 2007. 202-202
    [16] Sun Hongzan, Feng Tao, Tan Tieniu. Spatio-temporal Segmentation for Video Surveillance. Electronics letters, 2001, 37 (1): 20-21
    [17] Wilfried Osberger, Ann Marie Rohaly. Automatic detection of regions of interest in complex video sequences. in: Proceedings of SPIE. 2001. 361-372
    [18] NikolaosD. Doulamis, Anastasios D. Doulamis, Stefanos D.kollias. Object based coding of sequences at low bit rates using adaptively trained neural networks. in:Proceedings of the 6th IEEE International Conference on Electronics, Circuits and Systems, 1999.969-972
    [19] ISO/IEC 14496-2, Information technology—Coding of audio-visual objects, Final draft international standard, Atlantic City, NJ. Oct. 1998.
    [20] Koga T., Iinuma K., Hirano A., et al. Motion compensated interframe coding for video conferencing. in: Proc. NTC81. New Orleans, LA. 1981. G5.3.1-G5.3.5
    [21] Jain K. R., Jain A. K.. Displacement measurement and its application in interframe image coding. IEEE Trans. Commun., vol. COM-29,1981,12 (12): 1799-1808.
    [22] Li Renxiang, Zeng Bing, Liou Ming L.. A New Three-Step Search Algorithm for Block Motion Estimation. IEEE Transactions on Circuits and Systems for Video Technology, 1994, 4 (4): 438-442
    [23] Po L. M., Ma W. C. A Novel four-step search algorithm for fast block motion estimation. IEEE Trans. Circuits Syst. Video Technol., 1996, 6 (6): 313-317
    [24] Tham J. Y., Ranganath S., Ranganath M., et al. A novel unrestricted center-biased diamond search algorithm for block motion estimation. IEEE Trans. Circuits Syst.Video Technol., 1998, 8 (4): 369-377
    [25] Liu L. K., Feig E..-A block-based gradient descent search algorithm for block-based motion estimation in video coding. IEEE Trans. Circuits Syst. Video Technol., 1996,8 (4): 419-422
    [26] Kim Seong-Ju, Ahm Jong-Hak, Yin Changhoon. Adaptive motion estimation algorithm for MPEG-4 video coding. in: Proceedings of Seventh International Symposium on Signal Processing and Its Applications 2003. 141-144
    [27] Yang Weijian. An efficient motion estimation method for MPEG-4 video encoder.IEEE Transaction on Consumer Electronics, 2003,49 (2): 441-446
    [28] Cho Dae-Sung, Park Rae-Hong. Object-Based Very Low Bit-Rate Coding Using Motion Parameter Estimation Based on Multiple Frame Prediction. Journal of Visual Communication and Image Representation, 1999,10: 291-305
    [29] Hui Ko-Cheung, Siu Wan-Chi, Chan Yui-Lam. Fast motion estimation of arbitrarily shaped video objects in MPEG-4. Signal processing: image communication 2003,18(1): 33-50
    [30] Brady N, Bossen F. Shape compression of moving objects using context-based arithmetic encoding. Signal Processing: Image communication, 2000, 15(7-8):601-617
    [31] Zhou Lele, Zahir Saif. A novel shape coding scheme for MPEG-4 visual standard.in: proceedings of the first conference on Innovative Computing, information and control 2006 (ICICIC'06), 3 (30-01). 585-588
    [32] Karsten Schroder, Roland Mech. Combined description of shape and motion in an object based coding scheme using curve triangles. in: Proceedings of International Conference on Image Processing, 1995, 2. 390-393
    [33] SikoraT, Bauer S, Makai B. Efficiency of shape-adaptive transforms for coding of arbitrarily shaped image segments. IEEE Trans. On circuits and systems for video technology, 1995,5(3): 254-258
    [34] Andre Kaup. Object-based texture coding of moving video in MPEG-4. IEEE transactions on circuits and systems for video technology, 1999,9(1): 5-15
    [35] Babu R. Venkatesh, Makur Anamitra. Object-based surveillance video compression using foreground motion compensation. in: proceedings of 9th International Conference on Control, Automation, Robotics and Vision, 2006.1-6
    [36] Lee Hung-Ju, Chiang Tihao, Zhang Ya-Qin. Scalable rate control for MPEG-4 video.IEEE transaction on circuit and system for video technology, 2000,10 (6):878-894
    [37] Paul Schumacher, Kristof Denolf, Adrian Chirila-Rus, et.al. A scalable,multi-stream MPEG-4 video decoder for conferencing and surveillance applications.in: Proceedings of IEEE International Conference on Image Processing, 2005 (2).886-889
    [38] Yang Yu, David Doerman. Model of object-based coding for surveillance video. in:proceedings of 2005 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP '05. 693-696
    [39] Joel Askelof, Mathias Larsson Carlander, Charilaos Chrisstopoulos. Region of interest coding in JPEG2000. Signal processing: Image communication, 2002, 17: 105-111
    [40] Charilaos Christopoulos, Joel Askelof, Mathias Larsson. Efficient methods for encoding regions of interest in the upcoming JPEG2000 still image coding standard.IEEE Signal Processing Letters, 2000, 7(9): 247-249
    [41] Andre P. Bradley, Fred W.M. Stentiford. Visual attention for region of interest coding in JPEG2000. J. Vis. Commun. Image R. 2003,14: 232-250
    [42] Peter Schelkens, Adrian Munteanu, Jan Cornelis. Wavelet-based compression of medical images: protocols to improve resolution and quality scalability and region-of-interest coding. Future generation computer system, 1999, 15: 171-184
    [43] David Nister, Charilaos Christopoulos. Lossless region of interest coding. Signal processing, 1999, 78: 1-17
    [44] David Gibson, Michael Spann, Sandra I. Woolley. A Wavelet-Based Region of Interest Encoder for the Compression of Angiogram Video Sequences. IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE,2004, 8 (2): 103-113
    [45] Cheng Hui, Wus John. Adaptive Region of Interest Estimation for Aerial surveillance video. in: proceedings of IEEE International Conference on Image Processing, 2005. ICIP 2005. 3:? - 860-3
    [46] Sun Xindian, Foote Jonathan, Kimber Don, et al. Region of interest extraction and virtual camera control based on panoramic video capturing. IEEE transactions on multimedia, 2005, 7(5): 981-990
    [47] Grzegorz Szwoch, Piotr Dalka. Identificaiton of regions of interest in video for a traffic monitoring system. in: proceedings of the 2008 1st international conference on information technology, IT 2008. 1-4
    [48] Nikolaos Doulamis, Athanasios Tsiodras, Anastasios Doulamis, et al. Low bit rate coding of image sequences using regions of interest and neural networks. in:proceedings of IWISP'96, 1996. 561-570
    [49] Chi Ming-Chieh, Chen Mei-Juan, Yeh Chia-Hung, et al. Region-of-interest video coding based on rate and distortion variations for H.263+. Signal Processing: Image Communication 2008, 23: 127-142
    [50] Sivanantharasa P., Fernando W.A.C., Arachchi H.Kodikara. Region of Interest Video coding with flexible macroblock ordering. in: proceedings of The first international conference on industrial and information systems, ?C?S 2006.596-599
    [51] Nicolas Tsapatsoulis, Cristos Loizou, Constantinos Pattichis. Region of interest video coding for low bit-rate transmission of carotid ultrasound videos over 3G wireless Networks. in: proceedings of the 29th annual international conference of the IEEE EMBS, 2007. 3717-3720
    [52] Kim Shih-Chieh, Fan Chih-Peng, Yang Jar-Ferr, et al. Block delta modulation for compression of surveillance video signals. IEEE transactions on Consumer Electronics, 1994,40(3): 458-463
    [53] Kim Shih-Chieh, Fan Chih-Peng, Yang Jar-Ferr, et al. Hierachical delta modulation for compression of surveillance systems. In: proceedings of IEEE 1994 International Conference on Consumer Electronics, 1994. 148-149
    [54] Schiller Ilya, Chuang Chiu-Kuang, King Steve M., et al. Selective resolution for surveillance video compression. in: Proceedings of Data Compression Conference,DCC '97,1997. 468-468
    [55] Fu Xianping, Liang Dequn. A new video compression method for surveillance network. In: proceedings of 2007 IFIP international conference on network and parallel computing - workshops, 2007. 869-872
    [56] Zhao Shu-hong, You Zhi-sheng, Lan Shi-yong, et al. an improved video compression algorithm for lane surveillance. in: proceedings of fourth international conference on image and graphics, 2007. 224-229
    [57] Liu Tieyan, Zhang Xudong, Peng Yingning. A novel coding algorithm for video surveillance. in: proceedings of International conference on signal processing 2002.660-663
    [58] Francesco Ziliani, Julien Reichel. Efficient integration of object tracking in a video coding scheme for multisensor surveillance system.in: proceedings of 2002 International Conference on Image Processing. 2002.I-521-I-524
    [59] IWAHASHI Masahiro, UDOMSIRI Sakol. Functionality layered video coding for river surveillance. in: Proceedings of 16th International Conference on Computer Communications and Networks, ICCCN 2007. 1127-1130
    [60] Paula Carrill, Hari Kalva, and Spyros Magliveras. Compression independent object encryption for ensuring privacy in video surveillance. in: proceedings of 2008 IEEE International Conference on Multimedia and Expo, 2008. 273-276
    [61] REGAZZONI, C, RAMESH, V, and FORESTI, et al. Special issue on third generation surveillance systems. In: Proc. IEEE, 2001, 89 (10):1-1
    [62] Information technology - Digital Compression and Coding of Continuous-Tone Still Images: Requirements and guidelines, ISO/IEC JTC1 10918-1 and ITU-T Recommendation T.84, 1994
    [63] Huffman, D.A. A method for the construction of minimum redundancy codes. in:Proceedings IRE, 1962,40. 1098-1101
    [64]Pennebaker, W.B., Mitchell, et. al. Arithmetic coding articles. IBM J. Res. Dev., 1988, 32(6) : 717~774
    [65]Digital Compression and Coding of Continuous tone Still Images, Part 1, Requirements and Guidelines. ISO/IEC JTC1 Draft International Standard 109181, Nov. 1991.
    [66]JAIN, R., KASTURI, R., SCHUNCK, B.G.: Machine vision. McGraw-Hill Inc., 1995.
    [67]Pons, J., Prades-Nebot, J., Albiol A., et al. Motion video sensor in the compressed domain. in: proceedings of Sixth annual scientific conference on WEB technology, new media (EUROMEDIA 2001), Valencia, Spain, 2001. 205~208
    [68]Fulvio Moschettl, Giuseppe Covitto, Francesco Zilianni, et al. Automatic object extraction and dynamic bitrate allocation for second generation video coding. in: IEEE Proceedings of International Conference on Multimedia and Expo, 2002. 493~496
    [69]于寅.高等工程数学(第二版).武汉:华中理工大学出版社,1995:469~472
    [70]盛骤,谢式千,潘承毅,概率论与数理统计(第二版),北京:高等教育出版社,1997.189~194
    [71]Cortelazzo G., Mian G. A., Parolari R.. Statistical Characteristics of Granular Camera Noise. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 1994, 4( 6): 536~543
    [72]Til Aach, Andr(?) Kaup, Rudolf Mester. Statistical Model- based change detection in moving video. Signal Processing, 1993, 31 (2) : 165~180
    [73]Robert A. Boie, Ingemar J. Cox. AnAnalysis of Camera Noise. TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1992, 14 (6): 1991~1994
    [74]Alessandro Bevilucquu, Luigi Di Stefuno, Alessandra Lanzu. AN EFFICIENT CHANGE DETECTION ALGORITHM BASED ON A STATISTICAL NON-PARAMETRIC CAMERA NOISE MODEL. in: proceedings of International Conference on Image Processing, 2004. 2347~2350
    [75]Robert M. Norton. The Double Exponential Distribution: Using Calculus to Find a Maximum Likelihood Estimator. The American Statistician, 1984, 38( 2): 135~136
    [76]Taki Y, Hatori M, Tannaka S. Interframe coding that follows the motion. in: proceedings of IECEJ (Institute of electronics and communication engineers of Japan) Annual Convention, 1974. 1263~1263
    [77]Brofferio S, Cafforio C, Del Pe P, et al. Redundancy of video signals using movement compensation. Alta Freuenza, 1974:836~843
    [78]Giorda F, Racciu A. Bandwidth Reduction of video signals via shift vector transmission. IEEE Trans. On Comm., 1975:1002~1004
    [79]Ahmad Ishfaq, Zheng Weiguo, Luo Jiancong, et al. A Fast Adaptive Motion Estimation Algorithm. IEEE Transactions on Circuits and Systems for Video technology, 2006, 3 (16): 420~438
    [80]Xu Jie-Bin, Po Lai-Man, Chok-Kwan Cheung. Adaptive Motion Tracking Block Matching Algorithm for Video Coding. IEEE Transactions on Circuits and Systems for Video Technology, 1999, 9 (7): 1025~1029
    [81]姚庆栋;毕厚杰;王兆华等.图像编码基础(第3版).北京:清华大学出版社.2006.108~110
    [82]Jung Junghoon, Joung Shichang, Jang Younhui, et al. Enhancement of region-of-interest coded images by using adaptive regularization. in: proceedings of International Conference on Consumer Electronics, 2000. ICCE. 2000. 62~63
    [83]Luo Jiebo, Chen Chang Wen, Parker Kevin J.. Image enhancement for low bit rate wavlet-based compression. in: proceedings of IEEE international symposium on circuits and systems, 1997. 1081~1084
    [84]Wang Lung-Jen, Huang Ya-Chun. An improved non-linear image enhancement method for video coding. in: proceedings of International conference on complex, intelligent and sottware intensive systems 2008:79~84
    [85]Adiono Trio, Isshiki Tsuyoshi, Li Dongju, et al. Efficient method for face region quality enhancement in low bit rate video coding. in: proceedings of Asia-Pacific conference on circuits and system, 2002. 549~553
    [86]Ngain King N., Lin David W, Liou Ming L.. Enhancement of Image Quality for low bit rate video coding. IEEE TRANSACTIONS ON ClRCUlTS AND SYSTEMS, 38 (10): 1221~1225
    [87][美]冈萨雷斯等;阮秋琦等译.数字图像处理(第二版).北京:电子工业出版社,2007年.72~73
    [88]Wu S. F, Kittler J.. A differential method for simultaneously estimation of rotation, change of scale and translation. Signal Process.: Image Commun., 1990, 2(1): 69~80
    [89]Adolph D., Buschmann R.. 1.15 Mbit/s coding of video signals including global motion compensation. Signal Process.: Image Commun., 1990, (3) 2-3:259~274
    [90]Tse Y. T., Baker R. L.. Global zoom/pan estimation and compensation for video compression. in: IEEE Proc. ICASSP'91, Toronto, Ont., Canada, 1991. 2725~2728.
    [91]Moscheni F., Dufaux F., Kunt M.. A new two-stage global/local motion estimation based on a background/foreground segmentation. in: Proc. IEEE ICASSP'95, Detroit, MI, 1995.2261~2264.
    [92]Jozawa H., Kamikura K., Sagata A., et al. Two stage motion compensation using adaptive global MC and local affine MC. IEEE Trans. Circuits Syst. Video Technol., 1997, 7:75~85
    [93]Etoh M., Ankei T.. Parametrized block correlation—2D parametric motion estimation for global motion compensation and video mosaicing. in: IEICE TR PRMU97, July 1997.
    [94]Dufaux Frederic, Konrad Janusz. Efficient, robust, and fast global motion estimation for video coding. IEEE transactions on image processing, 2000, 9(3): 497~ 501
    [95]Wolberg G.. Digital Image Warping. IEEE Computer Society Press, Los Alamitos, CA, 1990. 47~49
    [96]Puri A., Chen T. (Eds.). Multimedia system, standards, and networks. - Marcel Dekker March 2000:21~23
    [97]Lu Yan, Gao Wen, Wu Feng. Efficient background video coding with static sprite generation and arbitrary-shape spatial prediction techniques. IEEE transactions on circuits and systems for video technology, 2003, 13(5): 394~405
    [98]张春田,苏育挺,张静.数字图像压缩编码.清华大学出版社,2006:65~67
    [99]高文.多媒体数据压缩技术.北京:电子工业出版社,2000:127~129
    [100]Meier T., Ngan K. N.. Segmentation and tracking of moving objects for content-based coding. in: IEE Proc.-Vis. Image Signal Process, 1999, 146 (3). 144~150
    [101]Vetro Anthony, Haga Tetsuji, Sun Huifang, et.al. Object-based coding for long-term Archive of surveillance video. TR-2003-98 July 2003.Ⅱ - 417-20
    [102]Said A, Pearlman W A. A new fast and efficient image codec based on set partitioning in hierarchical trees. IEEE Transactions on circuit and system for video technology, 1996, 6(3): 243~250
    [103][美]崔锦泰.小波分析导论.西安:西安交通大学出版社.1995.1~2
    [104]Mallat S. A theory for signal decomposition: The wavelet representation, IEEE Transaction on Pattern and Machine Intelligence, 1989, 11(7): 67~93
    [105]Mallat S. Multiresolution approximation and wavelet orthonormal bases of L~2(R). Transactions on Mathematics Society, 1989:6~7
    [106]沈兰菘,卓力.小波编码与网络视频传输.北京:科学出版社,68~69
    [107]Daubechies I, Sweldens W. Factoring wavelet transforms into lifting steps. Technical report, Bell Laboratory, Lucent Technologies, 1996.
    [108]Calderbank A R, Daubechies I, Sweldens W, et al. Wavelet transforms that map integer to integers. Technical report, Department of Mathematics, Preceton University, 1996.
    [109]张宗平,刘贵中.基于小波的视频图像压缩研究进展.电子学报,2002,30(6): 883~889
    [110]Shapiro J M. Embedded image coding using zero trees of wavelet coefficients, IEEE transaction on signal processing, 1993, 41 (12): 3445~3462
    [111]Antonini M., Barlaud M., Mathieu P., et al. Image coding using wavelet transform. IEEE transactions on image processing, 1992, 1: 205~220
    [112]Choi S. J.. Three-demensional subband/wavelet coding of video with motion compensation: [Ph.D. thesis]. Rensslaer Polytechnic Institute, 1996
    [113]Nister D, Christopoulos C. Lossless region of interest with embedded wavelet image coding. Signal Processing, 1999, 78 (1): 1 ~ 17
    [114]Park Keun-hyeong, Park HyunWook. Region-of-Interest Coding Based on Set Partitioning in Hierarchical Trees. IEEE transaction on circuits and system for video technology, 2002, 12(2): 106~113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700