热处理及纤维增强NAFION膜研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
质子交换膜燃料电池(PEMFC)是一种通过电化学反应将燃料(如氢气)的化学能转化为电能的装置。质子交换膜燃料电池有着起动快,高效,低污染的特点,这一特点使其成为未来移动电源及备用电源的重要候选电源。
     目前,制约质子交换膜燃料电池商业化的主要是燃料电池的寿命问题。质子交换膜是燃料电池的核心组件。质子交换膜的物理退化被认为是燃料电池失效的重要原因之一。而已有的研究表明,提高强度可以提高可以改善膜的耐久性。通过热处理和纤维增强是提高膜的机械性能有效途径。但是热处理提高机械性能的机理并不清楚,而且对膜的导电性影响也令人担心。纤维增强虽然已有大量实际工作,但是理论上纤维增强的潜力和局限还没有研究报道。本文研究了ePTFE/Nafion复合膜中ePTFE相含量对膜机械性能的影响并评价了不同热处理工艺对膜Nafion 211膜机械性能及传导性能的影响。本文通过研究得到以下主要结论:
     (1)对Nafion膜进行120℃-160℃之间的热处理时可以提高膜的结晶度,但热处理引起的无规则热运动会破坏膜的团簇结构,从而降低膜的电导率。也就是说直接将Nafion膜进行热处理是行不通的。
     (2)对Na离子修饰的Nafion膜进行220℃-240℃之间的热处理也可以改善膜的机械性能。同时,由于Na离子的引入,膜内形成强大的静电网络。在静电网络的作用下,高温热处理时膜中离子团簇发生有序化重构,使膜中侧链活动性增强。这一结构变化导致了膜电导率的提高。对Na型Nafion膜进行2h的热处理(如在240℃)可以较好的平衡膜的强度和电导率关系,同时可以使膜的溶胀应力降至膜的安全疲劳应力值附近。这为Nafion膜的热处理提供了一条有效的途径。
     (2) ePTFE/Nafion复合膜的强度与复合膜中各相含量有紧密关系。ePTFE的引入不一定能对复合膜起到增强的作用,只有当复合膜中的ePTFE相含量高于其增强阈值时,ePTFE才能对复合膜进行增强,在本研究中,该阈值为20.7vol%。在ePTFE相含量高于此阈值含量时,复合膜强度随ePTFE相含量的升高而增大。复合膜屈服强度随膜中ePTFE含量变化的规律与抗拉强度随ePTFE含量变化的规律类似。
Proton exchange membrane fuel cell (PEMFC) is a device converting the chemical energy of the fuel to electrical energy through electrochemical reaction. The characteristics of fast start-up, high efficiency and low emission make it the promising candidate for the mobile and stationary power.
     The major hurdle for the commercialization of fuel cell is the durability issue of the fuel cell. Proton exchange membrane is the key component of PEMFC. It is believed that the fast degradation of the proton exchange membrane would lead to the early failure of the PEMFC. Extensive researches have demonstrated the durability of the membrane could be enhanced by reinforcing the membrane with a base material or annealing. Although there are now many papers concerning to the fabrication and evaluation of the ePTFE reinforced composite PEM, no study has revealed the effect of ePTFE content on the mechanical behavior of the composite membrane. The durability of the membranes could be improved through annealing but the origin of the improvement in durability is still unknown. Besides, the annealed membranes may show a lower conductivity compared to the as-received membranes. In this thesis, we carefully investigated the effect of ePTFE content on the mechanical properties of the ePTFE/Nafion membrane and the annealing effect on Nafion 211 membrane. The conclusions have been drawn as followed:
     (1) Annealing Nafion 211 membrane between 120℃-160℃would help to increase the membrane crystallinity and the mechanical properties of the membrane could be enhanced as a result. But the annealing procedure may disturb the cluster structure in the membrane. Therefore, the conductivity of the membrane is lower after annealing. Annealing the Nafion 211 membrane in Na-form also improves the mechanical properties of the membrane. At the same time, the conductivity of the membrane is also improved because annealing with the introduction of Na +ion could reform the membrane to a structure with lower constrain to the side chain of the membrane. Annealing the Na-form membrane (i.e. at 240℃) could balance the mechanical properties and conductivity of the membrane. Besides, The durability of the membrane could be expected to be enhanced because the decrease of the humidity induced stress after annealing.
     (2) In the ePTFE/Nafion composite membrane, there is a PTFE phase content threshold value (ca. 22.7vol%, volume fraction) beyond which the composite membrane could be reinforced. The tensile strengthen of the composite membrane goes up with the growing phase content of the ePTFE when the ePTFE content is greater than the threshold value and the tensile strengthen of the composite membrane decreases with the growing ePTFE content when the ePTFE content does not reach the threshold value. The yield strengthens change of the composite membranes with the ePTFE content shows similar trend. The yield strengthens increase with the ePTFE content only when the relative ePTFE content is greater than the threshold value.
引文
[1]Devanathan R. Recent developments in proton exchange membranes for fuel cell. [J]. Energy & Environmental Science.2008;1:101-119.
    [2]M. Yoshitake AW. Perfluorinated Ionic Polymers for PEFCs (including Supported PFSA). [J]. Advanced Polymer Science.2008;215:127-155.
    [3]B.Smitha SS, A. A. Khan. Solid polymer electrolyte membranes for fuel cell application -a review. [J]. Journal of Membrane Science.2005;259:10-26.
    [4]Curtin DE, Lousenberg RD, Henry TJ, Tangeman PC, Tisack ME. Advanced materials for improved PEMFC performance and life. [J]. J Power Sources.2004 May;131(1-2):41-48.
    [5]Gierke. T. D MGE, Wilson. F. C. [J]. Journal of polymer science and polymer physics. 1981;19(1687-1704).
    [6]Hsu. W.Y. Gierke. TD. [J]. Iont-transport and clustering in Nafion perfluorinated membranes. Journal of Membrane Science.1983;13:307.
    [7]Fujimura. M HRJ. [J].1981. Journal of Polymer Science: Polymer Physics Edition.14: 1309.
    [8]Fujimura. M HRJ. [J].1982. Journal of Polymer Science: Polymer Physics Edition.20:107.
    [9]Dreyfus. B GG, Aldebert.P, P. Pineri.M. Small-angle neutron scattering of perfluorosulfonated ionomers in solution [J]. MJPhysics,1990;51:1341.
    [10]Haubold. H. G S. Nano structure of Nafion: a SAXS study [J]. Journal of Polymer Science: Polymer Physics Edition.2001,39:548.
    [11]Schmidt-Rohr K, Chen Q. Parallel cylindrical water nanochannels in Nafion fuel-cell membranes [J] J. Nature Materials.2007(7):75-83
    [12]Kenneth A M, Robert B. moore. [J]. Chemical Review.2004;104:4535-4585.
    [13]Van der Heijden PCR. [J]. Macromolecules.2004;37:5327-5336.
    [14]Hickner MA. Transport and structure in fuel cell proton exchange membrane [D]. Blacksburg, Virginia: Virginia Polytechnic Institute; 2003.
    [15]Mclean. R. S. MD, B.B. Sauer. [J]. Macromolecules.2000;33:6541-6550.
    [16]DOE US.2007.
    [17]Prasanna M, Cho EA, Lim TH, Oh IH. Effects of MEA fabrication method on durability of polymer electrolyte membrane fuel cells. [J]. Electrochimica Acta.2008 Jun;53(16):5434-5441.
    [18]Yan QG, Toghiani H, Lee YW, Liang KW, Causey H. Effect of sub-freezing temperatures on a PEM fuel cell performance, startup and fuel cell components. [J]. Journal of Power Sources.2006 Oct; 160(2):1242-1250.
    [19]Lai YH, Mittelsteadt CK, Gittleman CS, Dillard DA. Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling.2nd European Fuel Cell Technology and Applications Conference; 2007 Dec; Rome, ITALY; 2007.
    [20]Lai YH, Mittelsteadt CK, Gittleman CS, Dillard DA. Viscoelastic stress model and mechanical characterizaton of perfluorosulfonic acid (PFSA) polymer electrolyte membranes. In: Shah RK, Ubong EU, Samuelsen S, editors.3rd International Conference on Fuel Cell Science, Engineering and Technology; 2005 May 23-25; Ypsilanti, MI; 2005. p. 161-167.
    [21]Tang HL, Shen PK, Jiang SP, Fang W, Mu P. A degradation study of Nation proton exchange membrane of PEM fuel cells. [J]. Journal of Power Sources.2007 Jun;170(1):85-92.
    [22]Lai YH, Mittelsteadt, C.K., Gittleman, C.S.,& Dillard, D.A. Viscoelastic Stress Analysis of Constrained Proton Exchange Membranes Under Humidity Cycling. [J]. Journal of Fuel Cell Science and Technology 2009;6:021002.
    [23]Solasi R, Zou Y, Huang X, Reifsnider K, Condit D. On mechanical behavior and in-plane modeling of constrained PEM fuel cell membranes subjected to hydration and temperature cycles. [J]. Journal of Power Sources.2007 May;167(2):366-377.
    [24]Mittal VO, Kunz HR, Fenton JM. Is H2O2 involved in the membrane degradation mechanism in PEMFC? [J]. Electrochemical and Solid State Letters.2006;9(6):A299-A302.
    [25]Ohguri N, Nosaka AY, Nosaka Y. Detection of OH Radicals Formed at PEFC Electrodes by Means of a Fluorescence Probe. [J]. Electrochemical and Solid State Letters. 2009;12(6):B94-B96.
    [26]Panchenko A, Dilger H, Moller E, Sixt T, Roduner E. In situ EPR investigation of polymer electrolyte membrane degradation in fuel cell applications.8th Ulm Electro-Chemical Talks on Electrochemical Energy Conversion and Storage; 2002 Jun 20-21; Ulm, GERMANY; 2002. p.325-330.
    [27]Panchenko A, Dilger H, Kerres J, Hein M, Ullrich A, Kaz T, et al. In-situ spin trap electron paramagnetic resonance study of fuel cell processes. [J]. Physical Chemistry Chemical Physics.2004 Jun;6(11):2891-2894.
    [28]Vogel B, Aleksandrova E, Mitov S, Krafft M, Dreizler A, Kerres J, et al. Observation of fuel cell membrane degradation by ex situ and in situ electron paramagnetic resonance. [J]. Journal of the Electrochemical Society.2008;155(6):B570-B574.
    [29]Bosnjakovic A, Schlick S. Naflon perfluorinated membranes treated in Fenton media: radical species detected by ESR spectroscopy. [J]. Journal of Physical Chemistry B.2004 Apr;108(14):4332-4337.
    [30]Danilczuk M, Bosnjakovic A, Kadirov MK, Schlick S. Direct ESR and spin trapping methods for the detection and identification of radical fragments in Nafion membranes and model compounds exposed to oxygen radicals. Fall Annual Symposium on Fuel Cell Chemistry and Operation held at the 232nd National Meeting of the American-Chemical-Society; 2006 Sep 11-14; San Francisco, CA; 2006. p.78-82.
    [31]Kadirov MK, Bosnjakovic A, Schlick S. Membrane-derived fluorinated radicals detected by electron spin resonance in UV-irradiated nafion and dow ionomers:Effect of counterions and H2O2. [J]. Journal of Physical Chemistry B.2005 Apr;109(16):7664-7670.
    [32]Pozio A, Silva RF, De Francesco M, Giorgi L. Nafion degradation in PEFCs from end plate iron contamination. [J]. Electrochimica Acta.2003 May;48(11):1543-1549.
    [33]Kinumoto T, Inaba M, Nakayama Y, Ogata K, Umebayashi R, Tasaka A, et al. Durability of perfluorinated ionomer membrane against hydrogen peroxide. [J]. Journal of Power Sources. 2006 Aug;158(2):1222-1228.
    [34]Healy J, Hayden C, Xie T, Olson K, Waldo R, Brundage A, et al. Aspects of the chemical degradation of PFSA ionomers used in PEM fuel cells. [J]. Fuel Cells.2005 Apr;5(2):302-308.
    [35]Wang F, Tang HL, Pan M, Li DX. Ex situ investigation of the proton exchange membrane chemical decomposition. [J]. International Journal of Hydrogen Energy.2008 May;33(9):2283-2288.
    [36]Liu YH, Yi, B.L., Shao, Z.G., Xing, D.M.,& Zhang, H.M. Carbon nanotubes reinforced nafion composite membrane for fuel cell applications. [J]. Electrochemical and Solid State Letters 2006;9(7):A356-A359.
    [37]Pan M, Yang, X.S., Shen, C.H.,& Yuan, R.Z. Fiber reinforced sulfonated SBS proton exchange membranes. [J]. Composite Materials.2003;Iii (49):385-389.
    [38]Hommura S, Kawahara K, Shimohira T, Teraoka Y. Development of a method for clarifying the perfluorosulfonated membrane degradation mechanism in a fuel cell environment. [J]. Journal of the Electrochemical Society.2008;155(1):A29-A33.
    [39]Yamaguchi T, Ibe, M., Nair, B.N.,& Nakao, S. A pore-filling electrolyte membrane-electrode integrated system for a direct methanol fuel cell application. [J]. J Electrochem Soc.2002;149(111):A1448-A1453.
    [40]Yamaguchi T, Miyata, F.,& Nakao, S. Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. [J]. Journal of Membrane Science 2003;214(2):283-292.
    [41]Tang HL, Pan M, Wang F, Shen PK, Jiang SP. Highly durable proton exchange membranes for low temperature fuel cells. [J]. Journal of Physical Chemistry B.2007 Aug;111(30):8684-8690.
    [42]Yu.et.al. Degradation mechanism of polystyrene sulfonic acid membrane and application of its composite membranes in fuel cells. [J]. Physical Chemistry Chemical Physics 2003;5(3):611-615.
    [43]Wang L, Yi BL, Zhang HM, Xing DM. Pt/SiO2 as addition to multilayer SPSU/PTFE composite membrane for fuel cells. [J]. Polymers for Advanced Technologies.2008 Dec;19(12):1809-1815.
    [44]R. B. Moore CRM. Chemnical and Morphological Properties of Solution-Cast Perfluorosulfonate Ionomers. [J]. Macromolecules.1988;21:1334-1339.
    [45]I.D. Stefanithis KAM. [J]. Macromolecules.1990;23:2397.
    [46]de Almeida SH, Kawano Y. Thermal behavior of Nafion membranes. [J]. Journal of Thermal Analysis and Calorimetry.1999 Dec;58(3):569-577.
    [47]Page KA, Cable KM, Moore RB. Molecular origins of the thermal transitions and dynamic mechanical relaxations in perfluorosulfonate ionomers. [J]. Macromolecules.2005 Jul;38(15):6472-6484.
    [48]Horacio R. Corti FN-P, M. Pilar Buera. Low temperature thermal properties of Nafion 117 membranes in water and methanol-water mixtures. [J]. J Power Sources.2006;161:799-805.
    [49]Luan YH, Zhang YM, Zhang H, Li L, Li H, Liu YG. Annealina effect of perfluorosulfonated ionomer membranes on proton conductivity and methanol permeability. [J]. Journal of Applied Polymer Science.2008 Jan;107(1):396-402.
    [50]Hensley JE, Way JD, Dec SF, Abney KD. The effects of thermal annealing on commercial Nafion((R)) membranes. [J]. Journal of Membrane Science.2007 Jul;298(1-2):190-201.
    [51]K. Ramya KSD. Methanol crossover studies on heat-treated Nafion membranes. [J].2008.
    [52]Gerard Gebel PA, Michel Pineri. Structure and related properties of solution-cast perfluorosulfonated ionomer films. [J]. Macromolecules.1987;20:1425-1428.
    [53]Zhenxing Liang WC, Jianguo Liu, Suli Wang, Zhenhua Zhou, Wenzhen Li, Gongquan Sun, Qin Xin. FT-IR study of the microstructure of Nafion(?) membrane [J]. Journal of Membrane Science.2004;233(1-2):39-44.
    [54]Yuta Maeda YG, Masayuki Nagai, Yosuke Nakayama, Takuya Ichinose, Reiko Kuroda, Kazuo Umemura. Study of the nanoscopic deformation of an annealed Nafion film by using atomic force microscopy and a patterned substrate. [J]. Ultramiscroscopy. 2008;108:529-535.
    [55]中华人民共和国国家技术监督局.GB 13022-91塑料薄膜拉伸性能试验方法.北京:中国标准出版社,1994-11-01.
    [56]Tang HL, Wang XE, Pan M, Wang F. Fabrication and characterization of improved PFSA/ePTFE composite polymer electrolyte membranes. [J]. Journal of Membrane Science. 2007 Dec;306(1-2):298-306.
    [57]Silva RF DFA, Pozio A. Tangential and normal conductivities of Nafion((R)) membranes used in polymer electrolyte fuel cells. [J]. J Power Sources.2004; 134(1):18-26.
    [58]Chang Hyun Lee HBP, Young Moo Lee, Rae Duk Lee. Importance of proton conductivity measurement in polymer electrolyte membrane for fuel cell application. [J]. Ind Eng Chem Res.2005;44:7617-7626.
    [59]Perusich SA. Fourier Transform Infrared Spectroscopy of Perfluorocarboxylate Polymers. [J]. Macromolecules.2000;33(9):3431-3440.
    [60]Shunfua Su KAM. Dielectric Relaxation Studies of Annealed Short Side Chain Perfluorosulfonate Ionomers. [J]. Macromolecules.1994;27(8):2079-2086.
    [61]Roche EJP MD, R.; Levelut, A. M. he morphology in Nafion perfluorinated membrane products, as determined by wide- and small -angle x-ray studies. [J]. J Polym Sci, Polym Phys.1981;19:1687-1704.
    [62]van der Heijden PC, Rubatat L, Diat O. Orientation of drawn Nafion at molecular and mesoscopic scales. [J]. Macromolecules.2004 Jul;37(14):5327-5336.
    [63]汤心颐刘.高分子物理.[M]:高等教育出版社;1995.
    [64]Tang HL, Shen PK, Jiang SP, Fang W, Mu P. A degradation study of Nation proton exchange membrane of PEM fuel cells. [J]. J Power Sources.2007 Jun;170(1):85-92.
    [65]Tang HL, Pan M, Fang Wang, Pei Kang Shen, and San Ping Jiang. Highly durable proton exchange membranes for low temperature fuel cells [J]. Journal of Physcis Chemistry B. 2007;111(30):8684-8690.
    [66]Fuqiang Liu BY, Danmin Xing, Jingrong Yu, Huamin Zhang. Nafion/PTFE composite membranes for fuel cell applications. [J]. Journal of Membrane Science.2003;212:213-223.
    [67]Takeo Yamaguchi FMaS-iN. Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell. [J]. Journal of Membrane Science.2003;214(2):293-309.
    [68]et.al JS. Characteristics of the Nafion ionomer-impregnated composite membrane for polymer electrolyte fuel cells. [J]. J Power Sources.2002;109:412-417.
    [69]HL L. Nafion/PTFE composite membranes for direct methanol fuel cell applications. [J]. J Power Sources.2005;150:11-19.
    [70]Yu TL. Nafion/PTFE composite membranes for fuel cell applications. [J]. Journal of Polymer Research 2004; 11:217-224.
    [71]XB Z. An ultrathin self-humidifying membrane for PEM fuel cell application: Fabrication, characterization, and experimental analysis. [J]. Journal of Physcis Chemistry B. 2006;110:14240-14248.
    [72]HL L. Effect of Triton-X on the preparation of Nafion/PTFE composite membrane. [J]. Journal of Membrane Science.2004;237:1-7.
    [73]HL T. Fabrication and characterization of PFSI/ePTFE composite proton exchange membranes of polymer electrolyte fuel cells. [J]. Electrochimica Acta 2007;52:5304-5311.
    [74]K. Ramya GV, C.K. Subramaniama, N. Rajalakshmia and K.S. Dhathathreyan. Effect of solvents on the characteristics of Nafion/PTFE composite membranes for fuel cell applications. [J]. J Power Sources.2005;160(1):10-17.
    [75]曾庆敦.复合材料的习惯破坏机制与强度.[M].北京:科学出版社;2002.
    [76]肖长发.纤维复合材料--纤维、基体、力学性能.[M].北京:中国石化出版社;1995.
    [77]张双寅.复合材料结构的力学性能.[M].北京:北京理工大学出版社;1992.
    [78]王善元等.纤维增强复合材料.[M].上海:东华大学出版社;1008.
    [79]日本大金.http://www.daikinchem.com.cn/info/product43.html

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700