用于硅基含铜铁电电容器集成的Ti-Al阻挡层
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
磁控溅射法制备了Ti-Al(40 nm),超薄Ti-Al(4 nm)薄膜,分别采用X射线衍射仪(XRD)、原子力显微镜(AFM)、四探针检测仪(Four-Point Probe)、高分辨透射电子显微镜(HRTEM)对阻挡层性能进行了分析。研究了退火温度对Ti-Al薄膜阻挡性能的影响。研究发现温度从室温到750℃样品表面粗糙度和方块电阻没有急剧升高,并且XRD曲线中没有Cu-Si等杂相出现。600℃退火后超薄非晶Ti-Al阻挡层(4 nm)临界面之间仍然是非常清晰平整,并没有反应和互扩散的发生。以上研究数据说明Ti-Al(40 nm)和Ti-Al(4 nm)阻挡层在750℃仍保持良好的阻挡效果。
     通过磁控溅射法制备了超薄复合阻挡层Ta(5 nm)/Ti-Al(5 nm)。通过XRD、AFM、FFP对阻挡性能进了研究。样品在高达800℃退火温度下仍然没有硅铜化合物的出现,Ti-Al保持非晶状态,样品均方根粗糙度和方块电阻并没有明显升高。以上研究数据说明超薄复合阻挡层Ta(5 nm)/Ti-Al(5 nm)在高达800℃高温下表现出了良好的阻挡性能。
     应用Ti-Al作为抗氧化阻挡层,采用磁控溅射法和溶胶.凝胶法构架了Pt/LSCO/Pb(Zr, Ti)O3(PZT)/LSCO/Ti-Al/Cu/Ti-Al/Si铁电电容器异质结,实现了Cu薄膜与铁电电容器的集成。通过铁电测试仪(Precision LC United)对样品的铁电性能进行了研究。研究发现在驱动电压为10 V时,样品具有饱和趋势良好的电滞回线,剩余极化强度为18μC/cm2,矫顽电压为1.5 V。研究了Ti-Al薄膜的阻挡性能和抗氧化性能,为铜与铁电电容器集成提供了重要的数据。
Ti-Al film(40 nm)、ultra-thin Ti-Al film(4 nm) have been deposited on the Si(001) substrates by magnetron sputtering method. X-ray diffraction (XRD), atomic force microscopy (AFM), four-point probe measurement (FFP), high resolution transmission electron microscopy (HRTEM) have been employed to characterize the barrier performance. Impacts of annealing temperature on the barrier performance of Ti-Al film have been studied. No dramatic increases of surface roughness and sheet resistance have been observed, moreover, no impurity peaks, such as Cu-Si are found in the XRD curves of Cu/Ti-Al/Si heterostructures annealed at temperatures lower than 750℃.HRTEM results indicate that the interfaces of the samples, annealed at 600℃,are sharp and clean, and no obvious reaction or interdiffusion is observed, implying Ti-Al film(40 nm) and ultra-thin Ti-Al film(4 nm) have very good barrier performance up to 750℃.
     The ultra-thin bilayer Ta(5 nm)/Ti-Al(5 nm) have been deposited by magnetron sputtering, XRD,AFM, FFP techniques have been used to study the barrier performance. No copper silicide is found after 800℃annealing, moreover, Ti-Al film is still amorphous. Surface roughness and sheet resistance of the samples do not increase obviously, demonstrating that the bilayer Ta(5 nm)/Ti-Al(5 nm) can be used as a diffusion barrier layer at annealing temperature of 800℃.
     Pt/(La0.5Sr0.5)CoO3(LSCO)/Pb(Zr,Ti)O3(PZT)/LSCO/Ti-Al/Cu/Ti-Al/Si heterostructure has been fabricated via both Sol-Gel and magnetron sputtering methods using Ti-Al film as diffusion barrier layers. Ferroelectric tester (Precision LC Unit) has been used to measure the ferroelectric properties.It is found that the LSCO/PZT/LSCO capacitor has very good saturated ferroelectric loop, remnant polarization and coercive voltage of LSCO/PZT/LSCO capacitor, measured at 10 V, are~18.0μC/cm2 and~0.7 V, respectively. Ti-Al film is used as diffusion barrier layer between Cu and Si as well as oxygen barrier layer between Cu and oxide electrode, providing very important data for integrating Si based ferroelectric random access memory with Cu metallization.
引文
[1]Tian-Ling Ren, Hong-Jin Zhao, Li-Tian Liu, et al.Piezoelectric and ferroelectric films for microelectronic applications[J].Materials Science and Engineering. 2003,B99:159-163.
    [2]Kyoung-Tae Kim, Chang-Il Kim, Sung-Gap Lee. Ferroelectric properties of Pb(Zr,Ti)O3heterolayered thin films for FRAM applications[J].Microelectronic Engineering.2003,66:662-669.
    [3]Malti Goel.Recent developments in electroceramics[J]. MEMS applications for energy and environment. Ceramics International.2004,30:1147-1154.
    [4]T. Delage, C.Champeaux, A. Catherinot et al.Epitaxial bilayers and trilayers of superconducting and high K materials grown by PLD for microwave applications[J]. Thin Solid Films.2004,453-454:273-278.
    [5]N. M.Murari, A. Kumar, R. Thomas, and R. S.Katiyar. Reduced leakage current in chemical solution deposited multiferroic BiFeO3/Ba0.25Sr0.75TiO3 heterostructured thin films on platinized silicon substrates[J].Appl.Phys.Lett.,2008,92:132904.
    [6]Muller Ch, Menou N, Barrett R,et al.Nondestructive microstructural diagnostic of integrated ferroelectric capacitor arrays:Correlation with electrical characteristics[J].J. Appl.Phys.,2006,99:054504.
    [7]Shim S I, Kim S I, Kim Y T,et al.Operation of single transistor type ferroelectric random access memory[J].Electron. Lett.,2004,40(22):1397-1398.
    [8]B.T. Liu, X. B.Yan,X. Zhang, et al.Barrier performance of ultrathin Ni-Ti film for integrating ferroelectric [J].Appl.Phys.Lett.,2007,91:142908.
    [9]Kojima Takashi,Sakai Tomohiro,Watanabe Takayuki.Large remanent polarization of (Bi,Nd)4Ti3O12 epitaxial thin films grown by metalorganic chemical vapor deposition[J]. Appl.Phys.Lett.,2002,80(15):2746-2748.
    [10]Yoon J.Song, H. H. Kim, Sung Y Lee, D.J.Jung, B.J. Koo, J.K. Lee, Y. S.Park, H.J. Cho, S.O.Park and Kinam Kim. Integration and electrical properties of diffusion barrier for high density ferroelectric memory. Appl.Phys.Lett.,2000,76(4):451-453.
    [11]B.T. Liu, K. Maki,S.Aggarwal, B.Nagaraj,V. Nagarajan, L. Salamanca-Riba, R. Ramesh, A. M. Dhote and O. Auciello. Low-temperature integration of lead-based ferroelectric capacitors on Si with diffusion barrier layer. Appl.Phys.Lett.,2002,80(19):3599-3561.
    [12]Korczynski.E.Interconnect:the new frontier[J].Solid State Technology.1998,41(9):83.
    [13]Jacksonrl,Broadbent,Cacoutist. Processing and integration of copper interconnects [J]. SST,1998,41(3):49253.
    [14]Internet news.Copper Chip Technology (www.ibm.com).
    [15]Korczynski.E. Interconnect:the new frontier[J].Solid State Technology.1998,41(9):83.
    [16]S.Rawal, D.P.Norton, Hiral Ajmera,et al.Properties of Ta-Ge-(O)N as a diffusion barrier for Cu on Si. Appl. Phys.Lett.90(5):051913-051915.
    [17]Joshua Pelleg, G.Sade. Diffusion barrier properties of amorphous TiB2 for application in Cu metallization. J.Appl. Phys.2002,91(9):6099-6105.
    [18]H. Jiang, T. J.Klemmer. J.A. Barnard. Epitaxial growth of Cu on Si by magnetron sputtering. J. Vac.Sci.Technol.1998:3376-3383.
    [19]Shi-Qing Wang, Sailesh Suthar, Christine Hoeflich. Diffusion barrier properties of TiW between Si and Cu. J. Appl.Phys.1993,73(5):0021-8979.
    [20]A.Gupta, H.Wang, A.Kvit. Effect of microstructure on diffusion of copper in TiN films.J.Appl.Phys.2003,93(9):0021-8979.
    [21]K.Holloway, P.M.Fryer. Tantalum as a diffusion barrier between copper and silicon:Failure mechanism and effect of nitrogen additions. J.Appl.Phys.1992,71(11):5433.
    [22]Ling Liu, Yue Wang, Hao Gong. Annealing effects of tantalum films on Si and SiO2/Si substrates in various vacuums. J.Appl.Phys.2001,90(1):416.
    [23]H. Wang, Ashutosh Tiwari,X. Zhang. Copper diffusion characteristics in single-crystal and polycrystalline TaN. Appl. Phys.Lett.2002,81(8):1453.
    [24]Dong Joon Kim,Yong Tae Kim. Nanostructured Ta-Si-N diffusion barriers for Cu metallization. J.Appl.Phys.1997,82(10):4847.
    [25]L. W. Lai,J. S.Chen. Influence of Ta Si atomic ratio on the interdiffusion between Ta-Si-N and Cu at elevated temperature.J.Appl.Phys.2003,94(8):5396.
    [26]Ting-Yi Lin,Huai-Yu Cheng.5-nm-thick TaSiC amorphous films stable up to 750℃ as a diffusion barrier for copper metallization. Appl.Phys.Lett.2007,91(15):152908.
    [27]S.Rawal,D.P. Norton. Properties of W-Ge-N as a diffusion barrier material for Cu. Appl.Phys.Lett.2005,87(11):111902.
    [28]Ming-Hung Tsai,Chun-Wen Wang. Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization.Appl.Phys.Lett.2008,92(5):052109.
    [29]S. Rawal,D.P. Norton. Ge/HfNx diffusion barrier for Cu metallization on Si.Appl.Phys. Lett.2006,89(23):231914.
    [30]Xin-Ping Qu, Jing-Jing Tan, Mi Zhou. Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization. Appl.Phys. Lett.2006,88(15):151912.
    [31]Soo-Hyun Kim, Ki Tae Nam, Arindom Datta. Failure mechanism of a multilayer TiN/Al/TiN diffusion barrier between copper and silicon.J. Appl.Phys.2002,92(9):5512.
    [32]W. Fan, S.Saha, J.A. Carlisle,O. Auciello.Materials science and integration bases for fabrication of (BaxSr1-x)TiO3 thin film capacitors with layered Cu-based electrodes. J. Appl.Phys.2003,94(9):6192-6200.
    [33]O.Auciello, W. Fan, S.Saha. Hybrid titanium-aluminum oxide layer as alternative high-k gate dielectric for the next generation of complementary metal-oxide-semiconductor devices.[J] Appl.Phys.Lett.2005,86:042904.
    [34]W. Fan, S.Saha, J.A. Carlisle,O.Auciello.Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices[J].Appl. Phys.Lett. 2003,82(9):1452-1454.
    [35]Angus.Kingon, Sudarsan. Srinivasan. Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications[J].nature materials.2005,4:233-237.
    [36]Taeyun Kim, Jacqueline N.Hanson. Ferroelectric behavior in nominally relaxor lead lanthanum zirconate titanate thin films prepared by chemical solution deposition on copper foil.Appl.Phys.Lett.2006,88(26):262907.
    [37]B.T. Liu, K. Maki, S.Aggarwal, B.Nagaraj.Low-temperature integration of lead-based ferroelectric capacitorson Si with diffusion barrier layer,Appl.Phys.Lett,2002,80(19): 3599.
    [38]H.Kim C.Detavenier,O.Van der Straten.Robust TaNx diffusion barrier for Cu-interconnect technology with subnanometer thickness by metal-organic plasma-enhanced atomic layer deposition. J.Appl.Phys.2005,98(1):014308.
    [39]B.Panda, A. Roy, A. Dhar and S.K. Ray. Thickness and temperature dependent electrical characteristics of crystalline BaxSr1-xTiO3 thin films.J. Appl.Phys.,2007, 101:064116.
    [40]Hung-Yao Chen, Jenn-Ming Wu, Hsin-Erh Huang and Hui-Yun Bor. Characteristics of (Pb,Sr)TiO3/ZrO2 structures on Si and SiON/Si substrates.Appl. Phys.Lett.,2007, 90:112907.
    [41]J.G. Wu, D.Q.Xiao, J. G.Zhu, J.L. Zhu, J. Z. Tan and Q.L.Zhang. Enhanced dielectric and ferroelectric properties of Pb(Zr0.8Ti0.2)03/Pb(Zr0.2Ti0.8)O3 multilayered thin films prepared by rf magnetron sputtering. Appl.Phys.Lett.,2007,90:082902.
    [42]Yi Wang, Baoting Liu, Feng Wei, Zhimin Yang, and Jun Du. Fabrication and electrical properties of(111)textured (Ba0.6Sr0.4)TiO3 film on platinized Si substrate. Appl.Phys. Lett.,2007,90:042905.
    [43]W. J. Leng, C.R. Yang, H. Ji,J. H. Zhang, J.L. Tang and H. W. Chen. Large third-order optical nonlinearity in (Pb,La)(Zr,Ti)O3 ferroelectric thin film.J. Appl.Phys.,2006, 100:126101.
    [44]W. J. Leng, C.R. Yang, H.Ji, J.H.Zhang, J.L. Tang and H.W. Chen. Electrical and optical properties of lanthanum-modified lead zirconate titanate thin films by radio-frequency magnetron sputtering. J. Appl.Phys.,2006,100:106102.
    [45]Sheng-Xiang Wang, Ming-Sen Guo,Xiao-Hua Sun, Tao Liu, Mei-Ya Li and Xing-Zhong Zhao.Tunable, low loss Bi1.5Zn10Nb1.5O7/Ba0.6Sr0.4TiO3/Bi1.5Zn1.0Nb1.5O7 sandwich films. Appl.Phys. Lett.,2006,89:212907.
    [46]M. Detalle, D.Remiens, L. Lebrun and D.Guyomar. Electrical property evaluation of manganese-fluorine codoping of lead zirconate titanate thin films:Compatibility between hard material and piezoelectric activity. J.Appl.Phys.,2006,100:094102.
    [47]M. Alexe, D.Hesse, V.Schmidt, S.Senz, H. J. Fan, M. Zacharias and U. Gosele. Ferroelectric nanotubes fabricated using nanowires as positive templates. Appl. Phys. Lett.,2006,89:172907.
    [48]W.J. Leng, C.R. Yang, H.Ji, J.H.Zhang, H. W. Chen and J.L. Tang. Structure-related optical properties of (Pb,La)(Zr,Ti)O3 thin films on indium tin oxide/quartz substrates. J. Appl.Phys.,2006,100:083505.
    [49]黄剑锋.溶胶-凝胶原理与技术[M].北京.化学工业出版社.2005.
    [50]祁景玉.X射线结构分析[M].上海.同济大学出版社.2003.
    [51]刘岁林.原子力显微镜原理与应用技术.现代仪器,2006,6.
    [52]S.Aggarwal,B.Nafaraj.Correlation between oxidation resistance and crystallinity of Ti-Al as barrier layer for high-density memories,Acta mater,2000,48:3387-3394
    [53]B.T. Liu, K. Maki,S.Aggarwal, B.Nagaraj.Low-temperature integration of lead-based ferroelectric capacitorson Si with diffusion barrier layer,Appl.Phys.Lett,2002,80(19): 3599
    [54]H.Ono,T.Nakano,T.Ohta. Diffusion barrier effects of transition metals for Cu/M/Si multilayers(M=Cr, Ti,Nb, MO, Ta, W).Appl.Phys.Lett.1994,64(12):1511.
    [55]Joon Seop Kwak,Hong Koo Baik. Improvement of Ta diffusion barrier performance in Cu metallizationby insertion of a thin Zr layer into Ta film.1998,72(22):2832.
    [56]W. Fan, S.Saha, J.A.Carlisle. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices, Appl.Phys.Lett,2003,82(9):1452
    [57]Shun-Tang Lin,Chiapyng Lee.Characteristics of sputtered Ta-B-N thin films as diffusion barriers between copper and silicon. Appl.Surf.sci.2006.253:1215-1221.
    [58]L.C.Leu,D.P.Nbrton. Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects.Appl.Phys.Lett,2008,92(11):111917.
    [59]J.S.Fang,T.P.Hsu.Evaluation of properties of Ta-Ni amorphous thin film for copper metallization in integrated circuits.J.Phys.Chem.Solids,2007,07:046.
    [60]Ji-Cheng Zhou,You-zhen Li.Fabrication and diffusion barrier properties of nanoscale Ta/TaN bi-layer. Journal of Materials Processing Technology.2008,209:774-778.
    [61]Prodyut Majumder. Investigation on the diffusion barrier properties of sputtered Mo/W-N thin films in Cu interconnects.Appl.Phys.Lett.2007,91(16):162108.
    [62]姜雷.集成电路Cu互连工艺中的Ta基扩散阻挡层研究.博士学位论文,2002.
    [63]Joon Seop Kwak,Hong Koo Baik.Effict of thin V insertion layer into Ta film on the performance of Ta diffusion barrier in Cu metallization. J. Appl. Phys.1999,85(9):6898.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700