大兴安岭中北部热液铜矿床的成矿机制与资源预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中国东北部的大兴安岭地区是我国重要的铜、钼和铅锌等多金属热液矿床发育区,至今已发现大中型铜矿13座,超大型钼矿床1座,大中型钼矿22座,大中型铅锌银矿11座,现已成为我国重要内生金属矿产勘查战略选区。鉴于此,为了揭示制约大兴安岭内生金属成矿、找矿的基础地质问题、成矿规律和找矿方向,本文在前人研究的基础上,以区域成矿背景为前提,针对区内发育的内生热液铜矿床开展了系统的矿床地质、流体演化、地球化学以及成矿年代学等方面研究,取得了如下重要进展。
     1.在区域成矿地质背景研究的基础上,通过各类铜矿床的矿床地质研究,确立研究区热液铜矿床主要有三种成因类型,分别为斑岩型铜矿床(如:乌奴格吐山、多宝山和铜山铜(钼)矿床等)、浅成热液高硫化型铜矿床(如:莲花山、闹牛山铜(银)矿床等)和接触交代型铜多金属矿床(如:小多宝山、三矿沟铜铁矿床等)。(1)斑岩型:矿体多呈不规则状、扁豆状和透镜状,产于多宝山组与花岗闪长(斑)岩或二长花岗岩与黑云母花岗岩的断裂体系内,围岩蚀变主要是钾化、硅化、绢英岩化、青磐岩化、泥化及碳酸盐化等,矿化阶段可划分为(Ⅰ)黄铁矿-石英阶段,(Ⅱ)磁黄铁矿-黄铁矿-石英阶段,(Ⅲ)石英-辉钼矿阶段,(Ⅳ)石英-黄铜矿阶段,(Ⅴ)石英-碳酸盐阶段。(2)浅成热液高硫化型:矿体以脉状、网脉状为主,其次为透镜状,产于火山断裂体系中,围岩蚀变主要是硅化、电气石化、阳起石化、绿泥石化、高岭土化和碳酸盐化等,矿化阶段可划分为(Ⅰ)黄铁矿-石英阶段,(Ⅱ)石英-磁铁矿-黄铁矿-黄铜矿阶段,(Ⅲ)纯硫化物脉阶段,(Ⅳ)石英-多金属硫化物阶段和(Ⅴ)石英-碳酸盐阶段。(3)接触交代型:矿体呈扁豆状、透镜状和脉状,产于花岗岩岩体与古生代地层接触带上,围岩蚀变以矽卡岩化为主,发育硅化、绿泥石化、绿帘石化、碳酸盐化等;可划分(Ⅰ)干矽卡岩阶段、(Ⅱ)湿矽卡岩阶段、(Ⅲ)氧化阶段,(Ⅳ)早期硫化物阶段,(Ⅴ)晚期硫化物阶段及(Ⅵ)石英-碳酸盐阶段。
     2.各类主要矿床的矿物流体包裹体研究揭示:斑岩型铜矿床的均一温度分别为>500~470℃、470~420℃、420~330℃、330~220℃、220~110℃,盐度为>11.8~7.44%NaCleq、7.2~4.0%NaCleq、52.0~3.2%NaCleq、39.6~2.89%NaCleq和3.4~12.4%NaCleq。浅成热液高硫化型铜矿床的均一温度和盐度分别为>420~310℃、310~270℃、270~200℃、200~160℃、160~80℃,48.9~1.39%NaCleq、6.14~1.39%NaCleq、8.81~1.22%NaCleq、8.54~2.23%NaCleq和5.55~4.17%NaCleq。接触交代型铜矿床的硫化物阶段的均一温度和盐度依次为470~230℃、230~110℃,50.1~8.8%NaCleq、5.59~1.22%NaCleq。
     3.拉曼分析和子晶矿物表明:斑岩型铜矿床的初始成矿流体为富CO_2的高氧逸度的岩浆流体,成矿阶段CO_2逃逸,氧逸度降低,流体具有贫CO_2的还原性质,晚期逐渐转为弱酸性(CO_3~(2-))。浅成热液高硫化型铜矿床初始流体为含CO_2的高氧化性、酸性流体,成矿期演化为还原流体,晚期具有弱酸性(CO_3~(2-))的特征。接触交代型铜矿床初始流体为贫CO_2的岩浆流体,演化为弱酸性的还原流体。
     4.成岩成矿年代学研究表明,斑岩型铜矿床有两个成矿期,分别是480±13Ma(锆石U-Pb谐和定年)或482~486Ma(辉钼矿Re-Os等时线),成矿与早古生代花岗闪长岩岩浆作用密切相关(多宝山铜(钼)矿床);188Ma(单颗粒锆石U-Pb定年)或178±10Ma(辉钼矿Re-Os等时线),以乌奴格吐山铜(钼)矿床为代表,成矿与早侏罗世二长花岗斑岩岩浆活动密切相关。浅成热液高硫化型铜矿床形成于242.9±2.7Ma或222±5Ma(锆石U-Pb谐和定年),以莲花山、闹牛山铜(银)矿床为代表,成矿与三叠纪的花岗闪长斑岩和英安岩密切相关。接触交代型铜矿床形成于171.9±1.7Ma(锆石U-Pb谐和定年),以小多宝山和三矿沟铜铁矿为代表,成矿与早侏罗世花岗闪长岩岩浆作用密切。
     5.与成矿密切相关的岩浆热事件的岩石成因研究揭示,奥陶纪、早侏罗世斑岩型铜矿床的成矿岩石组合分别为高钾钙碱性的花岗闪长(斑)岩和多宝山组地层、二长花岗斑岩和黑云母花岗岩,三叠纪浅成热液高硫化型铜矿床的成矿岩石组合为钠质钙碱性的花岗闪长斑岩、英安岩、闪长玢岩和安山岩,早侏罗世接触交代型铜矿床的岩石组合为高钾钙碱性的花岗闪长岩和多宝山组的碳酸岩及碎屑岩等。成矿相关的侵入岩体均为高硅、高铝、富碱的I型花岗岩,富集大离子亲石元素和轻稀土元素,亏损高场强元素,轻重分馏较明显,无Eu异常或具有轻微的负Eu异常。Sr-Nd同位素显示:它们均具有低初始锶、正钕和年轻的两阶段模式年龄的特征,结合它们的成岩年龄,多宝山、莲花山和闹牛山的源区应为与古亚洲洋板块俯冲有关的被交代的地幔楔,而乌奴格吐山与小多宝山为新生的亚洲洋壳与下地壳减压部分熔融所致。
     6.成矿机制:多宝山斑岩型铜矿床中初始成矿流体的温度和压力下降至360℃与38.6MPa时,流体沸腾,并冲破围岩,导致围岩中富含金属元素的低温流体进入斑岩流体系统,发生流体混合,随后金属硫化物以浸染状或细脉浸染状充填于岩石或裂隙中。莲花山浅成热液高硫化型铜矿床成矿流体的温度降低到420℃,压力下降为38.8Mpa时,发生沸腾,但并没有导致金属元素大量卸载,当温度和压力继续下降至300℃与25.7MPa时,大气降水开始混入,金属络合物或卤化物的溶解度急剧降低,形成角砾状、脉状或细脉浸染状硫化物矿石。接触交代型小多宝山铜(铁)矿床的初始成矿流体在410℃、80MPa时与低温低盐度的地层流体发生混合,与此同时间歇性剪切挤压引起的片理化活动直接破坏了混合流体的平衡体系,流体发生强烈的沸腾,金属大量卸载,形成块状与浸染状矿体。
     7.热液铜矿床的成岩成矿作用与古亚洲洋、鄂霍次克洋及古太平洋的演化密切相关。早中奥陶世—晚泥盆-早石炭世佳木斯-松嫩微板块与额尔古纳-兴安微板块拼合,导致兴安地块上产生了早古生代岛弧火山岩和加里东期闪长岩—花岗闪长岩组合,形成了以多宝山、铜山铜(钼)矿床为代表的塔木察格-牙克石-黑河铜钼成矿带。二叠纪末—早三叠世,华北板块与黑龙江板块沿西拉木伦-长春-延吉-线呈自西向东的“剪刀式”碰撞对接,同时在缝合线的西侧产生大量与俯冲或碰撞造山相关的岩浆活动,伴生大量的金属矿化作用,形成了以莲花山、闹牛山浅成热液高硫化型铜矿床为主的一系列铜多金属矿床。另一方面自晚二叠世—晚侏罗-早白垩世,鄂霍次克洋向北侧俯冲,产生了大量与俯冲造山或造山后相关的花岗岩与火山岩,形成了以乌奴格吐山、八八一和八大关铜(钼)为代表的一系列铜钼矿床。此后,在太平洋板块斜向俯冲的影响下,早期因洋盆消失而造成的加厚下地壳的部分熔融物质沿断裂上涌,最终在适当的条件下形成一系列中小型金属矿床,如小多宝山和三矿沟铜矿床。
     在综合研究的基础上,对研究区的成矿规律进行了分析,嫩江-多宝山成矿区与得尔布干成矿区遭受了强烈的剥蚀,一般剥蚀大于2km,导致这两个区内的浅成低温高硫化矿床遭受了巨大的破坏,因此不发育该类型的矿床;而乌兰浩特成矿区因剥蚀较浅,使得包括低温热液型在内的三类矿床均得以保存,因此该区具有继续寻找大型的斑岩型或接触交代型等深成矿床的潜力。
The Great Xing’an Range of NE China hosts many hydrothermal Cu and other base andprecious metal mineral deposits and mineralization, is an important part of the giant CentralAsian endogenous metallogenic belt, and has been the focus of many recent studies. Mineralexploration in this area has discovered numerous large-, middle-, and small-sized Pb–Zn, Cu,and Mo deposits, including the Errentaolegai and Jiawula Pb–Zn deposits, the Duobaoshan andWunugetushan Cu–Mo deposits, the Lianhuashan and Naoniushan Cu–Ag deposits, and theMaodeng and Aonaodaba Cu–Sn deposits. The genetic types, timing of mineralization, anddynamic setting of mineral deposits in the Great Xing’an Range remain largely unknown. Thisstudy focuses on the geological characteristics, mineral deposit classification, fluid inclusion,geochemistry, and geochronology of hydrothermal Copper deposits in the Great Xing’an Range,and discusses the fluid evolution, the timing of ore formation and the source of magmas thatformed mineralization-associated plutons in this area. In addition, we seek to identify importantmetallogenic events and processes that affected the Great Xing’an Range.
     Here, we classify the Cu deposits in the region into three types: porphyry Cu–Mo,high-sulfidation epithermal Cu–Ag, and skarn Cu–Fe. The porphyry Cu-Mo deposits isexemplified by the Wunugetushan, Duobaoshan and Tongshan, these orebodies are hosted byDuobaoshan Formation and granodiorite (porphyry) or biobite granite, controlled byNW–SE-trending compressive shear faults or volcanic ring fracture and are tubular, lenticularand irregular forms in shape. Mineralization-related alteration is dominated by quartz–potassic,quartz–sericite, argillic, carbonate alteration, and propylitization. Ore minerals within the depositare dominantly pyrite, chalcopyrite, molybdenite, and bornite, with minor galena, sphalerite,pyrrhotite, tetrahedrite, and arsenopyrite.The formation of this deposit involved the followingfive mineralization stages, as deduced from mineral paragenetic relationships:(I) pyrite–quartz,(II) pyrrhotite–pyrite-quartz,(III) quartz–molybdenite,(IV) quartz–chalcopyrite, and (V)quartz–carbonate. The high-sulfidation epithermal Cu–Ag deposits are hosted by volcanic ringfracture, and orebodies have vein and lenticular forms. Alteration in the deposit is associated with vuggy/residual quartz, kaolin, chlorite, epidote, carbonate, and minor tourmaline, and apartially developed potassic alteration zone. The main ore minerals are pyrite, chalcopyrite, andpyrrhotite, with minor galena, sphalerite, arsenopyrite, molybdenite, and magnetite. Five stagesof ore formation have been identified based on paragenetic relationships:(I) pyrite–quartz,(II)quartz–magnetite–pyrite–chalcopyrite,(III) sulfide veins,(IV) quartz–polymetallic sulfides, and(V) quartz–carbonate. The skarn Cu–Fe deposits is associated with skarns and an EarlyYanshanian granodiorite, and the locations of individual vertical lenticular orebody locations arecontrolled by the intersections between skarns and bedding planes. Alteration is dominated byskarnification, with minor silicification, and chlorite, epidote, and carbonate development. Oreminerals within the deposit consist of magnetite and chalcopyrite with minor pyrite andmolybdenite. Six mineralization stages during deposit formation have been identified based onparagenetic relationships:(I) a dry skarn stage,(II) a wet skarn stage,(III) an oxidized stage,(IV)an early sulfide stage,(V) a late sulfide stage, and (VI) a quartz–carbonate stage.
     Fluid inclusions studies of mineralization-associated quartz within these deposits revealsthat homogenization temperatures for porphyry Cu deposits are>500-470℃,470-420℃,420-330℃,330-220℃, and220-110℃; and salinity are>11.8-7.44%NaCleq,7.2-4.0%NaCleq,52.0-3.2%NaCleq,39.6-2.89%NaCleq, and3.4-12.4%NaCleq, respectively.Homogenization temperatures for high-sulfidation epithermal Cu–Ag deposits are>420-310℃,310-270℃,270-200℃,200-160℃, and160-80℃; and salinity are48.9-1.39%NaCleq,6.14-1.39%NaCleq,8.81-1.22%NaCleq,8.54-2.23%NaCleq, and5.55-4.17%NaCleq,respectively. Homogenization temperatures of sulfide stage for skarn Cu–Fe deposits are470-230℃230-110℃; and salinity are50.1-8.8%NaCleq,5.59-1.22%NaCleq.
     Daughter minerals hosted by fluid inclusions and raman anysis results indicated that initialore-forming fluid for porphyry Cu-Mo deposits is derived from magma, characterized by rich inCO_2and high oxygen fugacity; then CO_2escaped, oxygen fugacity reduced in mineralizationstage, fluid tranfered to reduction performance with poor in CO_2, and weak acid (CO_3~(2-)) inadvanced stage. The initial ore-forming fluid for high-sulfidation epithermal Cu–Ag deposits isderived from magma, characterized by contain CO_2, high oxidative and acid; then fluid tranferedto reduction performance, and weak acid (CO_3~(2-)) in advanced stage. The initial ore-formingfluid for skarn Cu–Fe deposits is derived from magma with little of CO_2, and tranfered to weakacid and reduction performance.
     Porphyry Cu-Mo deposits have two mineralization, the one is located in the east of theregion, around the Nengjiang and Heihe area, as exemplified by the Duobaoshan and Tongshan (480±13Ma or482~486Ma and), and the mineralization is related to paleozoic granodiorite;another is generally located along the Deerbugan Fault in the northeastern Great Xing’an Range,represented by Wunugetushan, associated with Early Jurassic porphyritic monzogranite (188Maor178±10Ma). High-sulfidation epithermal Cu–Ag deposits are located in the middle of theGreat Xing’an Range, as exemplified by the Lianhuashan and Naoniushan, and the oldest zirconU–Pb concordia ages from mineralization-related granodiorite and dacite in the study area are242.9±2.7Ma and222±5Ma, suggesting that significant Cu mineralization occurred duringthe Triassic. Skarn Cu–Fe deposits are located in the southeast of the region, as exemplified bythe Xiaoduobaoshan, and mineralization is largely related to Early Jurassic granodiorite(171.9±1.7Ma).
     Mineralization-associated intrusions all are I type granites with high SiO_2, Al2O3, and totalalkali (K2O+Na2O) contents, and generally enriched in the light rare earth elements (LREE),incompatible trace element (LILE: Rb, Ba, K, Th, and U), depleted in the heavy rare earthelements (HREE). They have weak or negligible Eu anomalies [Eu=2EuN/(SmN+GdN)] thatrange between0.77and1.05, and chondrite-normalized REE patterns that decrease from left toright. Most intrusions are characterized by low initial Sr values ((87Sr/86Sr)i=0.7011–0.7079),positive Nd values (Nd(t)=0.3–6.7), and old two-stage model ages (TDM2=486–945Ma),together with their diagenetic age, suggest that magmas from Duobaoshan, Lianhuashan andNaoniushan that were generated during partial melting of the lower crust after subduction ofPaleo-Asian ocean and a region of Neoproterozoic depleted mantle, the magmas ofWunugetushan and Xiaoduobaoshan originated during partial melting of both juvenilePaleo-Asian oceanic crust and lower crustal material after collision between the NCC and theSiberian Craton.
     Based the studies of fluid inclusion and origin of magma, the fluid evolution andore-forming process are summarized as following. When the temperature and pressure dropdown to360℃and38.6MPa in Duobaoshan, initial ore-forming fluid boiled and break throughthe wall rocks, which directly resulted in metal-rich cryogenic fluid went into porphyry fliudsysterm, mixing with high-temperature magma hydrothermal, and sunsequently metal sulphidestarted to unloading and filled in rocks and fractures as disseminated or veinlet. Wheras, whentemperature and pressure drop down to420℃and38.8MPa in Lianhuashan, the initial fluid tookplace boiling, however the boiling did’t cause large-scale minerlization, as temperature andpressure continued to fell down at300℃and25.7MPa, and subquently mixing with meteoricwater, which caused solubility of metal complexes or halide drastically reduce, huge metal When temperature and pressure drop down to410℃and80MPa in Xiaoduobaoshan, mixingoccurred between initial ore-forming fluid and low-temperature and low-salinity formation fluid,at the same time balance of mixed fluid broke by intermittent activity of schistose, andsubquently took place strongly boiling, numerous metal unloading, and formed massive anddisseminated orebodies.
     Hydrothermal Cu deposits in this area are closely related to subduction of the Paleo-AsianOcean, subduction of the Paleo-Pacific Plate, and closure of the Mongolia–Okhotsk Ocean. TheJiamusi–Songnen and Erguna–Xing’an microplates began to amalgamate after the MiddleOrdovician, with final collision occurring between the Late Devonian and the EarlyCarboniferous along the Hegenshan–Heihe suture zone, forming the Heilongjiang Plate. SeveralEarly Paleozoic island arc assemblages have been identified in the Xing’an Terrane, includingthe paleozoic arc and caledonian granites, and is associated with the Duobaoshan and TongshanCu deposits. Subsequent suturing of the NCC and the Heilongjiang Plate took place along theSolonker–Xar Moron–Changchun Fault, with final closure of the Paleo-Asian Ocean betweenthe Late Permian and Early Triassic. Contemporaneous subduction-or collision-relatedmagmatism occurred in the southern Xing’an Terrane, associated with the formation ofnumerous mineral deposits, including the Lianhuashan and Naoniushan Cu–Ag deposits.Subduction of the Mongolia–Okhotsk Ocean started in the Late Permian, and the ocean wasclosed between the Late Jurassic and the Early Cretaceous associated with suturing of the NCCand the Siberian Craton. Many subduction-or orogenic-related granites were intruded during thisperiod, leading to the formation of many Cu deposits, including the Wunugetushan, Babayi, andBadaguan Cu–Mo deposits. Afterward, under influence of subduction of Paciffic plate, thickenedlower crust that caused by the early disappeared ocean basin occured partial melting, andupwelling along the faults, and finally formed a series of metal deposits, such as theXiaoduobaoshan and Sankunggou Cu-Fe deposits.
     As discussed above, the Great Xian’an Range can be divided into three metallogenicprovince: Nenjiang-Duobaoshan, Deerbugan and Wulanhaote. The first two province had beensuffered intense erosion, and generally erosion depth is grearer than2km, which causedhigh-sulfidation epithermal deposits almost destroyed; whereas, because of shallow erosion,three types of deposits are all preserved in the latter province.
引文
[1] Agrjcola G. De Re Metalhca[M].1556. trans by Hoover H C, Hoover L R. New York,1950:63.
    [2] Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O solutions: a PVTX summary from300to500℃[J]. American Journal of Science,1991,309-338.
    [3] Bodnar RJ. A method of calculating fluid inclusion volumes based on vapor bubble diameters andP-V-T-X properties of inclusion fluids[J]. Economic Geology,1983,78:535-542.
    [4] Boynton, WV. Cosmochemistry of the rare earth elements: meteorite studies[M]. In: Henderson, P.(eds.),Rare Earth Element Geochemistry. Amsterdam: Elsevier,1984,63-114.
    [5] Camus F, Silltioe R. H and Petersen R. Andean copper deposits: new discoveries, mineralization styleand metallogeny[J]. Society of economic geologists special publication5,1996:1-198.
    [6] Chappell B.W and White A.J.R., I-and S-type granites in the Lachlan fold belt[J]. Transactions of theRoyal Society of Edinburgh (Earth Sciences),1992,83:1-26.
    [7] Chen B, Jahn BM, Wilde S, Xu B. Two constrasting Paleozoic magmatic belts in northern InnerMongolia, China: petrogenesis and tectonic implications[J]. Tectonophysics,2000,328:157-182.
    [8] Chen YJ, Pirajno F, Qi JP, Li J, Wang HH. Ore geology, fluid geochemistry and genesis of theShanggong gold deposit, eastern Qinling orogen, China[J]. Resource Geology,2006,56(2):99-116.
    [9] Chen ZG, Zhang LC,Wan B, Wu HY, Cleven N., Geochronology and geochemistry of the Wunugetushanporphyry Cu-Mo deposit in NE China, and their geological significance[J]. Ore Geology Review,2011,43:92-105.
    [10] Clayton R N, O Neil J R, Mayeda T K. Oxygen Isotope Exchange between Quartz andWater[J]. Journal of Geophysical Research,1972,77:3057-3067.
    [11] Corbett G. Epithermal gold for explorationists[J]. AIG Journal-Applied Geoscientific Practice andResearch in Australia,2002, April:1-26.
    [12] Dobretsov N L, Berzin N A, Buslov M M. Opening and tectonic evolution of the Paleo-Asian ocean[J].internation Geol Rev,1995,37:335-360.
    [13] Evans A M. Ore geology and industrial minerals: A introduction[M]. London: Blackwell ScientificPublications,1993,52-83.
    [14] Guilbert J. M. Geology, alteration, mineralization and genesis of the Bajode la Alumbrera porphyrycopper-gold deposit, Catamarca province, Argentina[M].∥Pierce FW, Bolm JG. Porphyry copperdeposits of the American Cordillera. Arizona: Arizona Geological Society Digest,1995,20:646-656.
    [15] Hall D L, Sterner S M and Bodnar R J. Freezing point depression of NaCl-KCl-H2O solution[J].Economic Geology,1988,83:197-202.
    [16] Heald P, Foleyn K, Hayba DO. Comparative anatomy of volcanic hosted epithermal deposits acidsulphate and adularia-sericite types[J]. Economic Geology,1987,80:1-26.
    [17] Hedenquist JW and Lowenstern JB. The role of magmas in the formation of hydrothermal ore depositsfreezing point depression of NaCl-KCl-H2O solution[J]. Nature,1994,370(6490):519-527.
    [18] Heinrich C A, Driesner T, Stefansson A. Magmatic vapor contraction and the transport of gold fromporphyry to epithermal ore deposits[J]. Geology,2004,32(9):761-764.
    [19] Hong DW., Huang HZ., Xiao YJ., Xu HM., Jin MY. Permian alkaline granites in central Inner Mongoliaand their geodynamic significance. Acta Geologica Sinica,1995,8:27-39.
    [20] Hou ZQ, Ma HW and Zaw K et al. The Himalayan Yu long porphyry copper belt: Product of large-scalestrike-slip faulting in Eastern Tibet[J]. Economic Geology,2003,98:125-145.
    [21] Hou ZQ, Qu XM and Rui ZY et al. The Gangdese Miocene porphyry copper belt generated duringpost-collisional extension in the Tibetan orogen[J]. Economic Geology,2007(in review).
    [22] Jahn BM, Wu FY, Capdevila R., Martineau F., Wang YX, Zhao ZH. Highly evolved juvenile graniteswith tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’ an Mountain in NEChina[J]. Lithos,2001,59,171-198.
    [23] Lindgren W. The relation of ore deposition to Physical conditions[J]. Econ. Geol.,1907,2:105-127.
    [24] Liu J, Wu G, Li Y, Zhu MT, Zhong W. Re-Os sulfide (chalcopyrite, pyrite and molybdenite) systematicsand fluid inclusion study of the Duobaoshan porphyry Cu (Mo) deposit, Heilongjiang Province, China[J].Journal of Asian Earth Sciences,2012,49:300-312.
    [25] Lowell J D, Guilbert J M. Lateral and vertical alteration–mineralization zoning in porphyry oredeposit[J]. Economic Geology,1970,65:373-408.
    [26] MacDonald G D and Amold L C. Geological and geochemical zoning of the Grasbergigneous complex,Irian, Jaya, Indonesia[J]. Journal of Geochemical Exploration,1994,50:143-178.
    [27] Mitchell A.H.G. and Garson M.S. Mineral deposits and global tectonic settings[M]. Academic Press,1981,1-457.
    [28] Muller, J.F., Rogers, J.J.W., Jin, Y.G., Wang, H.Y., Li, W.G., Chronic, J., Muller, J.F. Late Carboniferousto Permian sedimentation in Inner Mongolia, China, and tectonic relationships between North China andSiberia[J]. Journal of Geology,1991,99:251-263.
    [29] Nash J T. Fliuid inclusion petrology data from porphyry copper deposits and application to exploration.US Geol Survey Prof Paper,1976,907-D:1-16.
    [30] Niggli P. Ore deposits of magmatic origin[M].1929. Trans. by Boydell H C. Thomas Murby, London.Noble, JA, The Classification of Ore Deposits.1955.
    [31] Potter R W. The volumetric properties of aqueous sodium chloride solutions from0℃to500℃atpressures up to2000based on a regression of available data in the literature. U. S. Geol[J]. Survey Bull,1978,1421-C,36.
    [32] Richards J. P. Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting ofsubduction-modified lithosphere[J]. Geology,2009,37:247-250.
    [33] Richards J. P. Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation[J]. EconomicGeology,2003,98:1515-1533.
    [34] Richards J. P., Boyce, A.J., and Pringle, M. S. Geologic evolution of the Escondida area, northern Chile:A model for spatial and temporal localization of porphyry Cu mineralization[J]. Economic Geology,2001,96:271-305.
    [35] Robinson PT., Zhou MF., Hu XF., Reynolds P., Bai WJ., Yang JS. Geochemical constraints on the originof the Hegenshan ophiolite, Inner Mongolia, China[J]. Journal of Asian Earth Sciences,1999,17:423-442.
    [36] Rush P M and Seegers H J. Ok Tedi copper-gold deposits[M].∥Hughes F E. Geology of the mineraldeposits of Australia and Papua New Guinea. Australian: Australian Institute of Mining and Metallurgy,1990,14:1747-1754.
    [37] Salnikova E.B., Kozakov I.K., Kotov A.B., Kroner A., Todt W., Bibikova E.V., Nutman A., YakovlevaS.Z., Kovach V.P. Age of Palaeozoic granites and metamorphism in the Tuvino-Mongolian Massif of theCentral Asian mobile belt: loss of a Precambrian microcontinent[J]. Precambrian Research,2001,110:143-164.
    [38] Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal golddeposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences,1997,44(3):373-388.
    [39] Sillitoe R. H. Porphyry copper systerms[J]. Economic Geology,2010,105:3-41.
    [40] Sillitoe R.H. A plate tectonic model for the origin of porphyry copper deposits[J]. Economic Geology,1972,67:184-197.
    [41] Sun DY, Wu FY, Li HM. Emplacement age of the post-orogenic A-type granites in northwestern LesserXing’an Ranges, and its relationship to the eastward extension of Suolunshan-Hegenshan-Zhalaitecollisional suture zone[J]. Chinese Science Bulletin,2001,46:427-432.
    [42] Sun SS and McDonough WF. Chemical and isotopic systematic of oceanic basalts: Implications formantle composition and process[J]. In: Sanders AD and Norry MJ(eds). Magmatism in the ocean basins.Geological Society Special Publication,1989,42:313-345.
    [43] Sun, G.R., Li, Y.C., Zhang, Y. The basement tectonics of Ergun Massif[J]. Geology and Resources,2002,11(3):129–139.
    [44] Titley S.R., and Beane R.E. Porphyry copper deposits: Part I. Geologic settings, petrology, andtectogenesis, in Skinner, B.J., ed., Economic geology, Seventy-fifth anniversary volume: El Paso, Texas,Economic Geology Publishing Company,1981,235-269.
    [45] Tosdal, R.M., and Richards, J.P. Magmatic and structural controls on the development of porphyry Cu±Mo±Au deposits[J]. Economic Geology,2001,14:157181.
    [46] Wang F, Zhou XH, Zhang LC, Ying JF, Zhang YT, Wu FY, Zhu RX. Late Mesozoic volcanism in theGreat Xing’an Range (NE China): Timing and implications for the dynamic setting of NE Asia[J]. Earthand Planetary Science Letters,2006,251:179-198.
    [47] Wang JB, Wang YW, Wang LJ, Uemoto T. Tin-polymetallic mineralization in the southern part of the DaHinggan Mountains, China[J]. Resource Geology,2001,51(4):283-291.
    [48] Wilde S, Zhang XZ, Wu FY. Extension of a newly identified500M a metamorphic terrane in North EastChina further U-Pb SHRIMP dating of Manshan Complex, Heilongjiang Province, China[J].Tectonophysics,2000,328:115-130.
    [49] Wu F.Y., Jahn B.M., Wilde S., Sun D.Y. Phanerozoic continental crustal growth: Sr-Nd isotopic evidencefrom the granites in northeastern China[J]. Tectonophysics,2000,328,89–113.
    [50] Wu FY, Sun DY, Ge WC, Zhang YB, Matthew L., Simon A., Jahn. Geochronology of the Phanerozoicgranitoids in northeastern China[J]. Journal of Asian Earth Sciences,2011,41:1-30.
    [51] Wu FY, Yang JH, Simon Wilde. Geochronology, petrogenesis and tectonic implications of Jurassicgranites in the Liaodong Peninsula, NE China[J]. Chemical Geology,2005a,221(1/2):127-156.
    [52] Wu FY., Jahn B.M., Wilde S.A., Lo C.H., Yui TF., Lin Q., Ge WC., Sun DY. Highly fractionated I-typegranites in NE China (I): geochronology and petrogenesis[J]. Lithos,2003a,66:241-273.
    [53] Wu FY., Sun DY., Li HM., Jahn BM., Wilde S.A. A-type granites in northeastern China: age andgeochemical constraints on their petrogenesis[J]. Chemical Geology,2002,187:143-173.
    [54] Wu, F.Y., Jahn, B.M., Wilde, S.A., Lo, C.H., Yui, T.F., Lin, Q., Ge, W.C., Sun, D.Y. Highly fractionatedI-type granites in NE China (II): isotopic geochemistry and implications for crustal growth in thePhanerozoic[J]. Lithos,2003b,67:191–204.
    [55] Wu, F.Y., Lin, J.Q., Wilde, S.A., Sun, D.Y., Yang, J.H. Nature and significance of the early Cretaceousgiant igneous event in eastern China[J]. Earth and Planetary Science Letters,2005b,233:103-119.
    [56] Wu, F.Y., Sun, D.Y., Li, H.M., Wang, X.L. The nature of basement beneath the Songliao Basin in NEChina: geochemical and isotopic constraints[J]. Physics and Chemistry of the Earth (Part A),2001,26:793-803.
    [57] Zeng QD, Liu JM, Yu CM, Ye J. and Liu HT.2011. Metal deposits in the Da Hinggan Mountains, NEChina: Styles, Characteristics, and Exploration Potential. International Geology Review,53:846-878
    [58] Zhang SH, Zhao Y, Song B, Hu JM, Liu SW, Yang YH, Chen FK, Liu XM, Liu J. Contrasting LateCarboniferous and Late Permian–Middle Triassic intrusive suites from the northern margin of the NorthChina Craton: geochronology, petrogenesis and tectonic implications[J]. Geological Society of AmericaBulletin,2009,121:181-200.
    [59] Zhang YP., Tang KD. Pre-Jurassic tectonic evolution of intercontinental region and the suture zonebetween the North China and Siberian platforms[J]. Journal of Southeast Asian Earth Sciences,1989,3:47-55.
    [60] Zhao XX, Ceo RS, Zhou YX, Wu HR, Wang J. New paleomagnetic results from north China: Collisionand Suturing with Siberia and Kazakstan[J]. Tectinophysics,1990,181:43-81.
    [61] Zorin, Yu. A. Geodynamics of the western part of the Mongolia-Okhotsk collisional belt, Trans-Baikalregion (Russia) and Mongolia[J]. Tectonophysics,1999,306:33-56.
    [62]鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生.内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J].吉林大学学报(地球科学版),2007,37(1):15-23.
    [63]表尚虎,李仰春,何晓华,周兴福,马丽玲.黑龙江省塔河绿林林场一带兴华渡口群岩石地球化学特征[J].中国区域地质,1999,18(1):28-33.
    [64]褚少雄,刘建明,徐九华,魏浩,柴辉,佟匡胤.黑龙江三矿沟铁铜矿床花岗闪长岩锆石U-Pb定年、岩石成因及构造意义[J].岩石学报,2012,28(2):433-450.
    [65]崔根,王金益,张景仙,崔革.黑龙江代表的花岗闪长岩的锆石SHRIMP U-Pb年龄及其地质意义[J].世界地质,2008,27(4):387-394.
    [66]丁文江.中国官办矿业史略[M].上海:商务印书馆,1927.
    [67]董树文,张岳桥,龙长兴,杨振宇,季强,王涛,胡建民,陈宣化.中国侏罗纪构造变革与燕山运动新诠释[J].地质学报,2007,81(11):1449-1461.
    [68]杜琦.多宝山斑岩铜矿床[M].北京:地质出版社,1988,1-335.
    [69]段国正,李鹤年.莲花山铜(银)矿床地质特征及成矿作用[A].见:张德全,赵一鸣.大兴安岭及邻区铜多金属矿床论文集[M].北京:地震出版社,1993,1-161.
    [70]葛文春,吴福元,周长勇, A. A. Abdel Rahman.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约[J].科学通报,2005a,50(12):1239-1247.
    [71]葛文春,隋振民,吴福元,张吉衡,徐学纯,程瑞玉.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义[J].岩石学报,2007a,23(2):423-440.
    [72]葛文春,吴福元,周长勇,张吉衡.大兴安岭中部乌兰浩特地区中生代花岗岩的锆石U-Pb年龄及地质意义[J].岩石学报,2005b,21(3):749-762.
    [73]葛文春,吴福元,周长勇,张吉衡.兴蒙造山带东段斑岩型Cu,Mo矿床成矿时代及其地球动力学意义[J].科学通报,2007b,52(20):2407-2417.
    [74]苟军,孙德有,赵忠华,任云生,张学元,付长亮,王晰,魏红艳.满洲里南部白音高老组流纹岩锆石U-Pb定年及岩石成因[J].岩石学报,2010,26(1):333-344.
    [75]郭峰,范蔚茗,李超文,苗来成,赵亮.早古生代古亚洲洋俯冲作用:来自内蒙古大石寨玄武岩的年代学与地球化学证据[J].中国科学(D辑),2009,39(5):569-579.
    [76]郭文魁,付同泰.我国铜矿工业类型及分布规律[J].中国地质,1959,1:39-42.
    [77]韩国卿,刘永江,金巍,温泉波,李伟,梁琛岳,梁道俊.西拉木伦河断裂在松辽盆地下部的延伸[J].中国地质,2009,36(5):1010-1020.
    [78]韩振新、徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].哈尔滨:黑龙江人民出版社,2004,61-95.
    [79]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [80]侯增谦,曲晓明,杨竹森等.青藏高原碰撞造山带:III后碰撞伸展成矿作用[J].矿床地质,2006,25(6):629-651.
    [81]侯增谦,潘小菲,杨志明,曲晓明.初论大陆环境斑岩铜矿[J].现代地质,2007,21(2):332-351.
    [82]黄崇柯,白冶,朱裕生,王慧章,尚修志.中国铜矿床(上册)[M].北京:地质出版社,2001,1-371.
    [83]贾盼盼,魏俊浩,巩庆伟,赵万莉.大兴安岭地区铜钼矿床成矿区带背景及找矿前景分析.地质与勘探,2011,47(2):151-162.
    [84]江思宏,梁清玲,刘冀飞,刘妍.内蒙古大井矿区及外围岩浆岩锆石U-Pb年龄及其多成矿时间的约束[J].岩石学报,2012,28(2):495-513.
    [85]江思宏,聂风军,白大明,刘冀飞,刘妍.内蒙古白音诺尔铅锌矿床印支期成矿的年代学证据[J].矿床地质,2011a,30(5):787-798.
    [86]江思宏,聂风军,刘冀飞,侯万荣,白大明,刘妍,梁清玲.内蒙古孟恩陶勒盖银多金属矿床及其附近侵入岩的年代学[J].吉林大学学报(地球科学版),2011b,41(6):1755-1769.
    [87]李朝阳,徐贵忠,胡瑞忠等.中国铜矿主要类型特征及其成矿远景[M].北京:地质出版社,2000:1-10.
    [88]李春昱,王荃,张之孟.中国板块构造的轮廓[J].地球学报,1980,00(1):1-15.
    [89]李德荣,吕福林,刘素颖,吕军.黑龙江省嫩江县三矿沟矿区地质特征及找矿方向[J].2011,38(2):415-426.
    [90]李锦轶,高立明,孙桂华,李亚萍,王彦斌.内蒙古东部双井子中三叠世同碰撞壳源花岗岩的确定机器对西伯利亚与中朝古板块碰撞时限的约束[J].岩石学报,2007,23(3):565-582.
    [91]李锦轶,和政军,莫申国, Andrey A. S.大兴安岭北部绣峰组下部砾岩的形成时代及其大地构造意义[J].地质通报,2004,23(2):120-129.
    [92]李锦轶.中国东北及邻区若干地质构造问题的新认识[J].地质论评,1998,44(4):339-347.
    [93]李克生.多宝山铜(钼)矿床气液包裹体研究[J].地质与勘探,1979,3:22-23
    [94]李诺,陈衍景,赖勇,李文博.内蒙古乌奴格吐山斑岩铜钼矿床流体包裹体研究[J].岩石学报,2007a,23(9):2177-2188.
    [95]李诺,孙亚莉,李晶,李文博.内蒙古乌奴格吐山斑岩铜钼矿床辉钼矿铼锇等时线年龄及其成矿地球动力学背景[J].岩石学报,2007b,23(11):2881-2888.
    [96]李瑞山.新林蛇绿岩[J].黑龙江地质,1991,2(1):19-32.
    [97]李双林,欧阳自远.兴蒙造山带及邻区的构造格局与构造演化[J].海洋地质与第四纪地质,1998,18(3):45-54.
    [98]李伟实.满洲里-新巴尔虎右旗中生代活化带有色金属矿床.见:芮宗瑶,施林道,方如恒等.华北陆块北缘及邻区有色金属矿床地质[M].北京:地质出版社,270-295.
    [99]李延兴,张静华,李智,郭良迁,张中伏.太平洋板块俯冲对中国大陆的影响[J].测绘学报,2006,35(2):99-105.
    [100]李之彤,王希今,王宏博,武广.黑龙江省嫩江县三矿沟含金铁铜矿床地质特征[J].地质与资源,2008,17(3):170-174.
    [101]李忠军.闹牛山铜(银)矿床次火山岩及与成矿的关系[J].矿产与地质,1995,3(9):153-159.
    [102]刘驰,穆治国,刘如曦,黄宝玲.多宝山斑岩铜矿区水热蚀变矿物的激光显微探针40Ar-39Ar定年[J].地质科学,1995,30(4):329-337.
    [103]刘翠,邓晋福,徐立权,张昱,赵寒冬,孔维琼,李宁,罗照华,白立兵,赵国春,苏尚国.大兴安岭-小兴安岭地区中生代岩浆-构造-钼成矿地质事件序列的初步框架[J].地学前缘,2011,18(3):166-178.
    [104]刘光海,白大明.莲花山铜银矿床综合找矿模式[J].矿床地质,1994,13(2):163-171.
    [105]刘军,武广,钟伟,朱明田.黑龙江省多宝山斑岩型铜(钼)矿床成矿流体特征及演化[J].岩石学报,2010,26(5):1450-1464.
    [106]刘军,武广,钟伟,朱明田.黑龙江省三矿沟矽卡岩型铁铜矿床流体包裹体研究[J].岩石学报,2009,25(10):2631-2641.
    [107]刘永江,张兴洲,金巍,迟效国,王成文,马志红,韩国卿,温泉波,赵英利,王文弟,赵喜峰.东北地区晚古生代区域构造演化[J].中国地质,2010,37(4):943-951.
    [108]刘玉强.毛登锡铜矿床成矿分带及其成因讨论[J].矿床地质,1996,15(4):318-329.
    [109]吕鹏瑞,顾雪祥,李德荣,彭涛涛,张明洋.黑龙江嫩江地区三矿沟矽卡岩型铜-铁-钼多金属矿床的成矿流体特征与成矿机制[J].地质通报,2011,30(10):1563-1574.
    [110]吕鹏瑞,李德荣,彭义伟,张明洋.黑龙江三矿沟矽卡岩型Cu-Fe-Mo矿床矿石硫化物硫、铅同位素特征及锆石U-Pb定年[J].中国地质,2012,39(3):717-728.
    [111]罗铭玖,张辅民,董群英,许永仁,黎世美,李昆华.中国钼矿床[M].郑州:河南科学技术出版社,1991,329-350.
    [112]罗照华,卢欣祥,郭少丰,孙静,陈必河,黄凡,杨宗锋.透岩浆流体成矿体系[J].岩石学报,2008,24(2):2669-2678.
    [113]毛景文,谢桂青,张作衡,李晓峰,王义天,张长青,李永峰.中国北方中生代大规模成矿作用的期次及其地球动力学背景[J].岩石学报,2005,21(1):169-188.
    [114]孟恩,许文良,杨德彬,邱昆峰,李长华,祝洪涛.满洲里地区灵泉盆地中生代火山岩的锆石U_Pb年代学-地球化学及其地质意义[J].岩石学报,2011,27(4):1209-1226.
    [115]苗来成,范蔚茗,张福勤,刘敦一,简平,施光海,陶华,石玉若.小兴安岭西北部新开岭-科洛杂岩锆石年代学研究及其意义[J].科学通报,2003,49:2315-2323.
    [116]苗来成,刘敦一,张福勤,范蔚茗,石玉若,颉颃强.大兴安岭韩家园子和新林地区兴华渡口群和扎兰屯群锆石SHRIMPU_Pb年龄[J].科学通报,2007,52(5):591-601.
    [117]内蒙古自治区地质矿产局.内蒙古自治区区域地质志[M].北京:地质出版社,1991:7-498.
    [118]聂风军,江思宏,张义,刘妍,胡朋.中蒙边境及邻区斑岩型铜矿床地质特征及成因[J].矿床地质,2004,23(2):176-189.
    [119]聂风军,孙振江,李超,刘冀飞,吕克鹏,张可,刘勇.黑龙江岔路口钼多金属矿床铼-锇同位素年龄及地质意义[J].矿床地质,2011,30(5):828-836.
    [120]聂风军,张万益,杜安道,江思宏,刘妍.内蒙古朝不楞矽卡岩型铁多金属矿床辉钼矿铼-锇同位素年龄及地质意义[J].地球科学,2007,28(4):315-323.
    [121]祁近平,陈衍景,李强之.华北克拉通北缘浅成低温高硫化矿床:时空分布和构造环境[J].矿物岩石,2005,24(3):82-92.
    [122]秦克章,李惠民,李伟实.内蒙古乌奴格吐山斑岩铜钼矿床的成岩、成矿时代[J].地质评论,1999,45(2):180-185.
    [123]秦克章,王之田.内蒙古乌奴格吐山铜-钼矿床稀土元素的行为及意义[J].地质学报,1993,67(4):323-335.
    [124]秦秀峰,尹志刚,汪岩,郭原生,刘旭光,周世强.大兴安岭北端漠河地区早古生代埃达克质岩特征及地质意义[J].岩石学报,2007,23(6):1501-1511.
    [125]曲晖,李成禄,赵忠海,王卓,张俭峰.大兴安岭东北部多宝山地区花岗岩锆石U-Pb年龄及岩石地球化学特征[J].中国地质,2011,38(2):292-300.
    [126]曲晓明,侯增谦,莫宣学等.冈底斯斑岩铜矿与青藏高原隆升之关系-来自含矿斑岩众多阶段锆石的证据[J].矿床地质,2006,25(4):388-400.
    [127]任纪舜,牛宝贵,刘志刚.软碰撞叠覆造山和多旋回缝合作用[J].地学前缘,1999,6(3):85-93.
    [128]任收麦,黄宝春.晚古生代以来古亚洲洋构造域主要块体运动学特征初探[J].地球物理学进展,2002,17(1):113-120.
    [129]芮宗瑶,黄宗柯,齐国明,徐珏,张洪涛.中国斑岩铜(钼)矿床[M].北京:地质出版社,1984,1-350.
    [130]芮宗瑶,张洪涛,陈仁义,王志良,王龙生,王义天.斑岩铜矿研究中若干问题探讨[J].矿床地质,2006,25(4):491-500.
    [131]谭钢.内蒙古乌奴格吐山斑岩铜钼矿床成矿作用研究[D].中国地质科学院,2011,1-81.
    [132]盛继福,傅先政.大兴安岭中段成矿环境与铜多金属矿床地质特征[M].北京:地震出版社,1999,1-216.
    [133]施光海,苗来成,张福勤,简平,范蔚茗,刘敦一.内蒙古锡林浩特A型花岗岩的时代及区域构造意义[J].科学通报,2004,49(4):384-389.
    [134]水谷伸治郎,邵济安,张庆龙.那丹哈达地体与东亚大陆边缘中生代构造的关系[J].地质学报,1989,63(3):204-216.
    [135]苏养正.兴安地层区的古生代地层[J].吉林地质,1996,15(3-4):23-34.
    [136]隋振民,葛文春,吴福元,徐学纯,王清海.大兴安岭东北部哈拉巴奇花岗岩体锆石U-Pb年龄及其成因[J].世界地质,2006,25(3):229-236.
    [137]隋振民,葛文春,吴福元,张吉衡,徐学纯,程瑞玉.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因[J].岩石学报,2007,23(2):461-480.
    [138]隋振民,葛文春,徐学纯,张吉衡.大兴安岭十二站晚古生代后造山花岗岩的特征及其地质意义[J].岩石学报,2009,25(10):2679-2686.
    [139]孙德有,苟军,任云生,付长亮,王晰,柳小明.满洲里南部玛尼吐组火山岩锆石U-Pb年龄与地球化学研究[J].岩石学报,2011,27(10):3083-3094.
    [140]孙德有,吴福元,李惠民,林强.小兴安岭西北部造山后A型花岗岩的时代及与索伦山-贺根山-扎赉特碰撞拼合带东延的关系[J].科学通报,2000,45(20):2217-2222.
    [141]孙德有,吴福元,张艳斌,高山.西拉木伦河-长春-延吉板块缝合线的最后闭合时间—来自吉林大玉山花岗岩体的证据[J].吉林大学学报(地球科学版),2004,34(2):174-181.
    [142]孙广瑞,李仰春,张昱.额尔古纳地块基底地质构造[J].地质与资源,2001,11(3):129-139.
    [143]王洪瑜,马丽玲,王卓.黑龙江省嫩江县三矿沟铜(铁)矿床地质特征及成因探讨[J].吉林大学学报(地球科学版),2008,38(增刊):214-218.
    [144]王京彬,王玉往,王莉娟.大兴安岭中南段铜矿成矿背景及找矿潜力[J].地质与勘探,2000,36(5):1-4.
    [145]王喜臣,王训练,王琳,刘金英,夏斌,邓军,徐秀梅.黑龙江多宝山超大型斑岩铜矿的成矿作用和后期改造[J].地质科学,2007,42(1):124-133.
    [146]王之田,秦克章.乌奴格吐山下壳源斑岩铜钼矿床地质地球化学特征与成矿物质来源[J].矿床地质,1988,7(4):3-14.
    [147]魏浩,徐九华,曾庆栋,王燕海,刘建明,褚少雄.黑龙江省多宝山斑岩铜(钼)矿床蚀变-矿化阶段及其流体演化[J].岩石学报,2011,27(5):1361-1374.
    [148]吴福元,孙德有,林强.东北地区显生宙花岗岩的成因与地壳增生[J].岩石学报,1999,15(2):181-189.
    [149]肖丙建,王伟德,张强,李宪栋,王真亮,刘同,胡来龙.内蒙古突泉县莲花山银铜矿床成矿地质背景探讨[J].地质与勘探,2008,44(1):26-30.
    [150]谢家荣.中国铜矿的分类、分布及今后普查勘探的方向[J].地质论评,1957,17(1):2-21.
    [151]谢俊山,路跃军,于广程.内蒙古自治区扎赉特旗神山矽卡岩型铁铜矿床地质特征探讨[J].内蒙古科技与经济,2011,250(24):52.
    [152]徐公愉.大兴安岭的大陆火山岩及其矿化作用[J].中国区域地质,1983,5:39-51.
    [153]徐公愉.东北亚地区古亚洲洋的构造演化特点[J].吉林地质,1993,12(3):1-8.
    [154]徐立权,陈志勇,陈郑辉,张彤,张玉清.内蒙古东乌旗朝不楞铁矿区中粗粒花岗岩SHRIMP定年及其意义[J].矿床地质,2010,29(2):317-322.
    [155]杨惠心,董学斌,李朋武.满洲里—绥芬河地学断面域及其邻域主要地体的古地磁特征和演化;中国满洲里—绥芬河地学断面地球物理场及深部构造特征研究[M].北京:地震出版社,1994,167-185.
    [156]姚金炎,耿文辉,莫江平.大兴安岭东坡中-南段铜多金属矿床找矿研究中的几个问题[J].有色金属矿产与勘探,1996,5(1):10-15.
    [157]叶慧文,张兴洲,周裕文.从蓝片岩及蛇绿岩特点看满洲里-绥芬河断面岩石圈结构与演化. M-SGT地质课题组,中国满洲里-绥芬河地学断面域内岩石圈结构及其演化的地质研究[M].北京:地震出版社,1994.
    [158]叶欣,王莉娟.乌奴格吐山斑岩铜钼矿床流体包裹体与成矿作用研究[J].地质与勘探,1989,6:14-22.
    [159]尹冰川,冉清昌.多宝山超大型铜矿床的成矿构造环境[J].矿物学报,1997,17(2):220-224.
    [160]张德会.流体的沸腾和混合在热液成矿中的意义[J].地球科学进展,1997,12(6):546-552.
    [161]张连昌,吴华英,相鹏,张晓静,陈志广,万博.中生代复杂构造体系的成矿过程与成矿作用—以华北大陆北缘西拉木伦钼铜多金属成矿带为例[J].岩石学报,2010,26(5):1351-1362.
    [162]张梅生,彭向东,孙晓猛.中国东北区古生代构造古地理格局[J].辽宁地质,1998,2:91-96.
    [163]张旗,王焰,李承东,王元龙,金惟俊,贾秀勤.花岗岩的Sr-Yb分类及其地质意义[J].岩石学报,2006,22(9):2249-2269.
    [164]张万益,聂风军,刘妍,江思宏,许冬青,郭灵俊.内蒙古奥尤特铜-锌矿床绢云母40Ar-39Ar同位素年龄及地质意义[J].地球学报,2008,29(5):592-598.
    [165]张兴洲,杨宝俊,吴福元.中国兴蒙-吉黑地区岩石圈结构基本特征[J].中国地质,2006,33(4):816-823.
    [166]张兴洲.黑龙江岩系-古佳木斯地块加里东缝合带的证据[J].长春地质学院学报,1992,22:94-101.
    [167]张彦龙,葛文春,高妍,陈井胜,赵磊.龙镇地区花岗岩锆石U-Pb年龄和Hf同位素及地质意义[J].岩石学报,2010,26(4):1059-1073.
    [168]张彦龙,葛文春,柳小明,张吉衡.大兴安岭新林镇岩体的同位素特征及其地质意义[J].吉林大学学报(地球科学版),2008,38(2):177-186.
    [169]张贻侠,孙运生,张兴洲,杨宝俊.中国满洲里-绥芬河地学断面1:1000000说明书[M].北京:地质出版社,1998,1-53.
    [170]赵一鸣,毕承思,邹晓秋,孙亚莉,杜安道,赵玉明.黑龙江多宝山、铜山大型斑岩铜(钼)矿床中辉钼矿的铼-锇同位素年龄[J].地球科学,1997a,18(1):61-67.
    [171]赵一鸣,王大畏,张德全.内蒙古东南部铜多金属成矿地质条件及找矿模式[M].北京:地震出版社,1994,55-85.
    [172]赵一鸣,张德全.大兴安岭及其邻区铜多金属矿床成矿规律与远景评价[M].北京:地震出版社,1997b,48-82.
    [173]赵玉明.黑龙江省嫩江县小多宝山铜矿点地质普查报告[M].黑龙江省地质第四队五分队,1979,1-41.
    [174]赵元艺,赵广江.黑龙江多宝山铜矿田稀土元素地球化学特征及多宝山铜(钼)矿床成因模式[J].吉林地质,1995,14(2):71-78.
    [175]赵忠华,孙德有,苟军,任云生,付长亮,张学元,王晰,柳小明.满洲里南部塔木兰沟组火山岩年代学与地球化学[J].吉林大学学报(地球科学版),2011,41(6):1865-1880.
    [176]周长勇,吴福元,葛文春,孙德有,Abdel Rahman A A,张吉衡,程瑞玉.大兴安岭北部塔河堆晶辉长岩体的形成时代、地球化学特征及其成因[J].岩石学报,2005,21(3):763-775.
    [177]朱熙人. The genesis of some copper deposits in western Szechuan[J].地质学报,1935(2):255-278.
    [178]祝洪臣,张炯飞,权衡.大兴安岭中生代两期成岩成矿作用的元素、同位素特征及其形成环境[J].吉林大学学报(地球科学版),2005,35(4):436-442.
    [179]张海心.内蒙古乌奴格吐山铜(钼)矿床地质特征及成矿模式[D].吉林大学,2006,1-69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700