热泵热水器储能换热器传热特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着经济的迅速发展和人民生活水平的提高,能源和环境问题日益突出,不断利用新的节能技术来提高能源的利用效率是节约能源并实现可持续发展的必由之路。储能技术能够解决能量供求在时间和空间上不匹配的矛盾,因而是提高能源利用效率的有效手段。热泵技术以其节能和环保的优势在很多领域得到了广泛的应用,其在制取生活热水上的应用也越来越受到重视。把相变储能技术和热泵技术结合起来,研制相变储能式热泵热水器,实现优势互补,将有更大的节能空间和应用前景。
     本课题以相变储能式热泵热水器储能换热器为研究对象,采用理论分析、实验测试和数值模拟相结合的研究方法对其传热特性进行了深入系统的研究。主要研究工作包括以下几个方面:
     1、根据相变储能式热泵热水器的工作原理及相变储能材料(phase change material, PCM)的遴选原则,选取了合适的PCM。在对热泵热水器进行总体热量衡算的基础上设计了一种管翅式储能换热器,给出了储能换热器的具体结构参数。对储能换热器的传热特性进行了理论分析,采用了复合材料的理论模型对PCM侧的导热系数进行了分析,经分析指出PCM侧导热性能的改善是提高储能换热器传热性能的主要途径。
     2、对强化PCM相变传热特性进行了研究,通过在石蜡PCM中添加纳米铜制备纳米复合相变储能材料(nanocomposite phase change material, NC-PCM)来实现强化传热的目的。采用差示扫描量热法(DSC)测量了NC-PCM的相变潜热、相变温度。研究表明在纯石蜡中添加纳米铜颗粒,NC-PCM的相变潜热比纯石蜡略低,且随粒子浓度的增大逐渐减小,但相变温度变化不大;采用瞬态热线法测试了NC-PCM的固态和液态导热系数,结果表明导热系数随着随纳米颗粒含量的增大而增大,呈非线性关系。NC-PCM循环加热、冷却100次后,其热物性参数均改变不大,说明NC-PCM具有较好的热稳定性。对NC-PCM的相变传热进行了实验研究,采用温度-时间曲线法研究了不同纳米铜质量分数的NC-PCM的储、放热性能,采用红外摄像仪对其熔化和凝固过程的温度场分布进行了实时观察,结果表明在石蜡中加入纳米Cu粒子后,PCM的储、放热速率得到很大的提高。
     3、搭建了热泵热水器储能换热器性能测试实验台,模拟储能式热泵热水器的工作工况对储能换热器内部的温度场分布和出口水温进行了实验测试。在整个储能阶段和放热阶段,储能换热器处于非稳态条件下工作,其内部的换热过程是一个复杂的非稳态换热过程。对储能装置的出口水温进行了测量,结果发现储能装置进口水流量越大,PCM凝固速度越快,放热持续时间越短,由于相变材料绝大部分热量以潜热的形式释放,这使得出水温度大部分时间维持在一个恒定的温度范围,这是利用相变储热的优势所在。对制取的热水所含热量进行了计算,结果表明储能装置中的热量大部分已经释放出来,残余热量较小,用相变储能的热量利用效率要高于水的显热储能。
     4、根据设计的储能换热器建立了相应的物理模型和数学模型,利用Fluent6.2软件对储能换热器放热情况进行了二维、非稳态模拟,分析了各种结构参数对放热过程的影响。结果表明,采用翅片结构大大强化了相变过程的热量传递,各种结构参数储能换热器放热速率均有重要影响。这为储能换热器进一步优化设计提供了参考。
With the rapid development of economy and the improvement of people’s living standard, the problem of energy and environment become more and more serious. One of the important ways to realize energy conservation and sustainable development is to develop new energy-saving technology. Energy storage technique can solve the contradiction that the energy supply and demand don’t match in time and space, so it’s a good way to improve energy efficiency. Heat pump technique is widely applied in many fields with its advantage of energy saving and environment-friendly. Its research on the hot water for domestic is becoming more and more important. Developing heat pump water heater with enerage storage system to combine the phase change thermal storage technology and heat pump technology will have a better future.
     The thesis focuses on the energy storage heat exchanger in heat pump heater. The heat transfer characteristics of the energy storage heat exchanger have been deeply researched by using the methods combined with theoretical analysis, experimental testing and numerical simulation in this paper. The main research work and conclusions include the following:
     1、On the grounds of the operation principle of the heat pump water heater with energy storage system and the selection principle of the phase change materials (PCMs), suitable PCM is chosen. A fin-tube energy storage heat exchanger is designed based on the total heat balance of the heat pump water heater and its concrete structure parameters are determined. The theoretical analysis on the heat transfer characteristics of the energy storage heat exchanger was presented and a theoretical model of composites was used to analyze the thermal conductivity of PCM. It is found that the thermal performance improvement of PCM is the main way to improve the heat transfer performance of energy storage heat exchanger.
     2、The enhanced heat transfer of PCM was studied by adding nano-copper to paraffin PCM to product nanocomposite phase change material(NC-PCM). Phase change temperature and latent heat of NC-PCM were measured with Differential Scanning Calorimetry (DSC). The DSC results reveal that the melting and solidification latent heats of NC-PCM shift to lower values compared with those of pure paraffin, however, the melting and freezing temperatures were almost the same as pure paraffin. The thermal conductivity of NC-PCMs was measured by a Hotdisk Thermal Constants Analyzer. The thermal conductivity of liquid and solid NC-PCM is enhanced approximately nonlinearly with the mass fraction of the copper nanoparticle. After 100 thermal cycles, The result indicates that the NC-PCMs have a good energy storage characteristic.The experimental study on the phase change of NC-PCM was carried. The temperature-time tests were conducted in order to verify the improvement of heat transfer rate in the presence of Cu particles. The Infrared Heat Camera was used to observe the temperature distribution in melting and solidification process. The results show that the heating and cooling rates of PCMs were significantly improved upon the addition of Cu nanoparticles.
     3、The performance of the energy storage heat exchanger of the heat pump water is tested. The internal temperature field and outlet water temperature of energy storage exchanger were measured by simulating the heat pump water heater working conditions. In the total heat charging and discharging stage, the heat transfer is a complex non-steady state process. The temperature of the outlet water is tested. The result shows the water discharge is higher, the heat release time is shorter. The heat releasing of PCM is mostly in form of latent heat, so the temperature of the outlet water maintained at a constant temperature range in most time. This is the advantage of utilizing PCM to store energy. The calculation results show that most of energy stored in the energy storage exchanger has been released. The heat utilization efficiency of latent thermal energy storage is higher than sensible heat of water.
     4、Based on the designed heat storage exchanger, physical model and mathematical model are built, and Fluent 6.2 is used to simulate the heat storage situation of the heat storage system. Different structural parameters influencing the releasing process were analyzed. The results show that the fin structure enhanced the process of phase change heat transfer, and various structural parameters of heat storage exchanger have an important effect on the heat releasing rate. The result can be direction and basis for the design optimization of the heat storage system.
引文
[1]钱伯章.节能减排[M].北京:科学出版社. 2008: 1-104
    [2]梁荣光,简弃非,翁仪壁等.能源的开发利用与节能[J].内燃机, 2001(6):32-36
    [3]李文彦. 21世纪前期我国能源战略的若干问题[J].经济地理, 2000, 20(1):7-12
    [4]徐国想,许兴友,邓先和等.我国能源利用及能源战略的思考[J].化工生产与技术. 2006, 13(3):62-64
    [5]刘世锦.中国2020年能源面临的挑战和发展目标.中国发展高层论坛. 2003
    [6]董慧芹,蒋栋,孟亚君等.我国节能减排与清洁发展机制研究[J].节能技术. 2009, 27(6):546-549
    [7]崔海亭,袁修干,候欣宾.蓄热技术研究及应用[J].化工进展, 2002, 23(1): 23-25
    [8] Zalba B., Marin J.M., Cabeza L.F., et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications, Applied Thermal Engineering, 2003, 23: 251-283
    [9] Dincer, S.Dost and Xiangguo Li. Thermal energy storage application from an energy saving perspective, International Journal of Global Energy Issues, 1997,9:351-364
    [10] Son C.H., Morehouse J.H. An experimental investigation of solid-solid phase change materials for solar thermal storage, Journal of Solar Energy Materials, 1991,133: 244-249
    [11]剧霏,刘超,程军等.蓄热材料在热泵及其它方面的应用[J].制冷, 2006, 1(25): 40-43
    [12]崔海亭,杨锋.蓄热技术及其应用[M],北京:化学工业出版社, 2004: 1-73
    [13] Salaün F., Devaux E., Bourbigot S., et al. Influence of the solvent on the microencapsulation of an hydrated salt. Carbohydrate Polymers [J], 2010, 79(4): 964-974
    [14] Kaizawa A., Maruoka N., Kawai A., et al. Thermophysical and heat transfer properties of phase change material candidate for waste heat transportation system. Heat and Mass Transfer [J], 2008, 44(7): 763-769
    [15]张正国,文磊,方晓明等.复合相变储能材料的研究与发展[J],化工进展, 2003, 22(4): 462-465
    [16]李军,朱冬生,张立志,吴会军,赵朝晖.纳米技术在蓄热材料中的应用[J].材料导报, 2003, 9: 135-137
    [17]林怡辉,张正国,王世平.一种新型相变蓄热材料的实验研究[J].江汉石油学院学报, 2001, 12: 81-86
    [18] Shamsundar N. Srinivasan. Analysis of Energy Storage by Phase Change with an Array of Cylindrical Tubes. Proc. ASME Winter annual meet. San Francisco.CA.USA. 1987: 35-40
    [19] Banaszek J. Domanski R. Rebow M and EI-Sagier F. Exerimental Study of Solid-liquid Phase Change in a Spiral Thermal Energy Storage Unit. Applied Thermal Engineering[J]. 1999.(19): 1253-1277
    [20] Ismail K A R. Henriquez J R. Nunerical and Experimental Study of Spherical Capsules Packed Bed Latent Heat Storage System. Appled Thermal Engineering[J]. 2002. 22: 1705-1716
    [21] Rabin Y. Bar-Niv I. Korin E and Mikie B. Intedrated Solar Collector Storage System Based on A Salt-Hydrate Phase-Change Material. Solar Energy[J]. 1995. 559(6)
    [22] S.D.Sharma. Kazunobu Sagara. Latent Heat Storage Materials and Systems: A Review. International Journal of Green Energy. 2005. 2:1-56
    [23]谢望平.高效热泵热水器储能系统的实验研究和数值模拟[D].广州:华南理工大学, 2008
    [24]李明溪,何宝鹏.伯努利方程在燃气热水器中的应用[J].大学物理,1995, 14(12):36-37
    [25]黄长山,吴晋英,赵严初等.新型高效燃气热水器除垢剂应用的研究[J].煤气与热力,1998,18(5): 49-52
    [26]赵劲松,周伟航.浅谈家用燃气快速热水器的发展趋势[J].应用能源技术,2000(5):17-18
    [27]徐士毅,杨溪.家用电动电热器具原理与维修技术(修订本)[M].北京:人民邮电出版社
    [28] Vince C. M., Ronald E., Wayne H. M., et al. Experimental study of an R-407C heat pump water heater. Ashrae Transactions [J], 2001, 107(1): 25-28
    [29] P. G. Rousseau. Enhanceing the impact of heat pump water heaters in the South African commercial sector[J]. Energy, 2000, 25: 51-70
    [30] Smith F. J., Meiyer J. P.. Investigation of the potential effect of zero tropic refrigerant mixture on performance of a hot water heat pump. ASH RAE Transactions, 1998, 104(1):387-394
    [31] Spatz M. W., Zheng J.. R-22 Alternative refrigerant: Performance in unitary equipment. A SHRAE Transactions 1993, 99(2): 779-785
    [32] Meyer J. P., Greyvenstein G. P.. Hot water for homes in South Africa with heat pump. Energy, 1991, 16(7): 1039-1044
    [33] B. J. Huang, C. P. Lee. Performance evaluation method of solar-assisted heat pump water heater[J]. Applied Thermal Engineering. 2007 ( 27) : 568-575
    [34] J. Zhang, R. Z. Wang, J. Y. Wu. System optimization and experimental research on air source heat pump water heater[J]. Applied Thermal Engineering. 2007.(27): 1029-1035
    [35]陆蕾颖,张华,赵巍. CO2热泵热水器的应用和发展[J].家电科技. 2006,(7):43-45
    [36] Saikawa M,Hashimoto kobayakawa Tetal.Development of prototype of CO2 heat pumpwater heater for residential use.In 4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 51-58
    [37] Mukaiyama H,Kuwabara.Experimental results and evaluation of residential CO2 heat pump water heater.In:4th IIR Gustav Lorentzen conference on natural working fluids, Purdue University, USA. 2000: 67-74
    [38]马一太,安青松,王洪利. CO2跨临界双级压缩循环性能研究及理论分析[J].天津大学学报. 2009, 42(11): 992-996
    [39]黄冬平,丁国良,张春路.不同跨临界二氧化碳制冷循环的性能比较[J].上海交通大学学报[J].2003, 37(7):1094-1097
    [40]汪南.热泵热水器整体性能提升实验研究与模拟[D].广州:华南理工大学, 2005
    [41] Ismail K.A.R., Alves C.L.F., Modesto M.S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering [J], 2001, 21(1): 53-77
    [42] Shatikian V., Ziskind G., Letan R. Numerical investigation of a PCM-based heat sink with internal fins: Constant heat flux. International Journal of Heat and Mass Transfer [J], 2008, 51(5-6): 1488-1493
    [43] Sparrow E M, Larsen E D, Ramsey T W. Freezing on a finned tube for conduction-controlled or natural-controlled heat transfer. Heat Mass Transfer[J], 1981, 24:173-284
    [44] Smith R N, Koch J D, Numerical solution for freezing adjacent to a finned surface[C]. In proceedings of the Seventh International Heat Transfer Conference, Muchen. Germany, 1982, 69-74
    [45] Choi J C, Kim S D. Heat-Transfer Characteristics of a Latent Heat Storage System Using MgCl12?6H2O. Energy[J],1992, 17(8): 1153-1164
    [46] Costa. M, Buddhi. D, Oliva. A. Numerical Simulation of a Latent Heat Thermal Energy Storage System with Enhanced Heat Conduction. Energy Conversion and Management. 1998, 39(3/4):319-330
    [47] Liu Z. L., Sun X., Ma C. F. Experimental investigations on the characteristics of melting processes of stearic acid in an annulus and its thermal conductivity enhancement by fins. Energy Conversion and Management [J], 2005, 46: 959-969
    [48] Zhang Y. W., Faghri A. Heat transfer enhancement in latent heat thermal energy storage system by using the internally finned tube. International Journal of Heat Mass Transfer [J], 1996, 39: 3165-3173
    [49] Ismail K. A. R., Alves C. L. F., Modesto M. S. Numerical and experimental study on the solidification of PCM around a vertical axially finned isothermal cylinder. Applied Thermal Engineering [J], 2001, 21: 53-77
    [50]孙旋.中常温相变蓄热的理论与实验研究[D].北京:北京工业大学, 2003
    [51]姬长发.肋片的几何参数对原形内肋片管蓄冰特性影响[J].辽宁工程技术大学学报, 2005, 24(2)
    [52] Yu W., Xie H. Q., Bao D. Enhanced thermal conductivities of nanofluids containing graphene oxide nanosheets. Nanotechnology [J], 2010, 21: 055705
    [53] Py X., Olives R., Mauran S. Paraffin/porous-graphite-matrix composite as a high and constant power thermal storage material. International Journal of Heat and Mass Transfer [J], 2001, 44(14): 2727-2737
    [54] Karaipekli A., Sari A. Capric-myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage. Renewable Energy [J], 2008, 33(12): 2599-2605
    [55] Sari A., Karaipekli A. Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material.Applied Thermal Engineering [J], 2007, 27(8-9): 1271-1277
    [56] Karaipekli A., Sari A., Kaygusuz K. Thermal Characteristics of Paraffin/Expanded Perlite Composite for Latent Heat Thermal Energy Storage. Energy Sources Part a-Recovery Utilization and Environmental Effects [J], 2009, 31(10): 814-823
    [57]张正国,邵刚,方晓明.石蜡/膨胀石墨复合相变储能材料的研究[J].太阳能学报,2005,26(5):698-702
    [58] Son C. H., Morehouse J. H. Thermal conductivity enhancement of solid-solid phase-change materials for thermal storage Journal of Thermophysics and Heat Transfer [J], 1991, 5: 122-124
    [59] Mesalhy O., Lafdi K., Elgafy A., et al. Numerical study for enhancing the thermal conductivity of phase change material (PCM) storage using high thermal conductivity porous matrix. Energy Conversion and Management [J], 2005, 46(6): 847-867
    [60] Khan M A, Rohatgi P K. Numerical solution to a moving boundary problem in a composite medium. Numerical Heat Transfer [J], 1994, 25:209-221
    [61] Mettawee E.B.S., Assassa G.M.R. Thermal conductivity enhancement in a latent heat storage system. Solar Energy [J], 2007, 81(7): 839-845
    [62] Jun Fukai,Makoto Kauou, et al.Thermal conductivity enhancement of energy storage media using carbon fibers[J].Energy Conversion£Management, 2000, 41(14): 1543-1556.
    [63] Jun Fukai, Makoto Kauou, et al. Thermal conductivity enhancement of energy storage media using carbon fibers [J].Energy Conversion Management, 2000, 41(14):1543-1556.
    [64] Khodadadi, S. F. Hosseinizadeh. Nanoparticle-enhanced phase change materials (NEPCM) with great potential for improved thermal energy storage[J].International Communications in Heat and Mass Transfer, 2007, 34(5):534-543.
    [65] Ahmed Elgafy,Khalid Lafdi..Effect of carbon nanofiber additives on thermal behavior of phase change materials [J].Carbon,2005,43(15):3067-3074.
    [66] Wang J.F., Xie H.Q., Xin Z. Thermal properties of paraffin based composites containing multi-walled carbon nanotubes. Thermochimica Acta [J], 2009, 488(1-2): 39-42
    [67] Choi S.U.S., Zhang Z.G., Yu W., et al. Anomalous thermal conductivity enhancement in nanotube suspensions. Applied Physics Letters [J], 2001, 79(14): 2252-2254
    [68]刘玉东.纳米复合低温相变蓄冷材料的制备及热物性研究[D].重庆:重庆大学, 2005
    [69]何钦波.纳米流体相变蓄冷材料的热物性及小型蓄冷系统特性研究[D].重庆:重庆大学, 2006
    [70]王永川.相变储热热泵热水器及其关键技术研究[D],杭州:浙江大学, 2006
    [71] Schlager L M, Pate M B, et al. Performance Predictions of refrigerant-oil mixtures in smooth and internally fumed tubes-part1 air-temperatre review. A SHRAE Transactions [J] ,1990, 96(1): 160-169
    [72] Agari Y, Uno T. Estimation on thermal conductivities of filled polymer. Journal of applied polymer science. 1986, 32(7): 5705-5712
    [73] Sparrow E M, Larsen E D, Ramsey T W. Freezing on a finned tube for conduction-controlled or natural-controlled heat transfer. Heat Mass Transfer, 1981, 24:173-284
    [74]章熙民,任泽需等.传热学[M].北京:中国建筑工业出版社,1993
    [75]毛宁波.太阳能吸收与热输运纳米黑液材料的制备与性能研究[D],广州:广东工业大学, 2008
    [76] Yinping Z., Xingang L. Numerical analysis of effective thermal conductivity of mixed solid materials. Materials and Design [J], 1995@, 16(2): 91-96
    [77] He B., Martin V., Setterwall F. Phase transition temperature ranges and storage density of paraffin wax phase change materials. Energy [J], 2004, 29(11): 1785-1804
    [78]Amrollahi A., Hamidi A.A., Rashidi A.M. The effects of temperature, volume fraction and vibration time on the thermo-physical properties of a carbon nanotube suspension (carbon nanofluid)[J]. Nanotechnology, 2008, 19(31): 315701-315708
    [79]Wu S. Y., Zhu D. S., Li X. F., et al. Thermal energy storage behavior of Al2O3-H2O nanofluids[J]. Thermochimica Acta, 2009, 483(1-2): 73-77

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700