松辽盆地南部营城组火山岩成因
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过对松辽盆地南部营城组火山岩岩石学、年代学、地球化学及锆石Hf同位素研究,确定了火山岩形成的时代,探讨了火山岩的成因类型及成因机制,进而阐明了松辽盆地南部营城组火山岩的形成背景和动力学机制及其对松辽盆地形成的制约。
     锆石LA-ICPMS U-Pb定年结果显示,松辽盆地南部营城组火山岩形成于早白垩世,锆石Hf同位素显示本区火山岩具有较高的176Hf/177Hf比值及正的εHf(t)值,说明它们的岩浆源区是从亏损地幔中增生的新生地壳,在中生代发生熔融而形成的岩石。
     根据地球化学特征及产出的空间位置,松辽盆地南部营城组火山岩可分为三种类型:属于A2亚型花岗岩的1-类流纹岩、属于I型花岗岩的2-类流纹岩及埃达克质的英安岩。按照Sr、Yb的特点分类,高Sr低Yb的英安岩形成深度至少大于40 km;低Sr高Yb的2-类流纹岩在正常地壳深度下大约30km形成;非常低Sr高Yb的1-类流纹岩形成深度小于30km。地球化学特征显示该地区火山岩形成的构造背景为伸展拉张环境,结合年代学和地球物理上的证据表明这种构造背景与古太平洋板块的斜向俯冲有关。
In recent years, with the discovering and exploiting of the natural gas in the volcanic rocks from Songliao Basin, the volcanic rocks in Songliao Basin have arose large attention of the geologist for the extensive prospect of oil gas exploration although they are in deep horizon and not too many driven well. The predecessors' research in volcanic rocks in southern Songliao Basin concentrate on lithologic characters、structure、volcano organization、the volcanic face division、the controlling action of volcanic rock to oil gas、being good reservoir and cap rock,but study degree is quite low at the aspects of chronology and geochemistry and there is difference regarding at basin's origin question.
     The thesis,through the studies of zircon U-Pb chronology、geochemistry and Hf isotope,disclosures the timing、the nature of source、the genesis and the dynamics background of volcanic rocks of Yingcheng group in southern Songliao Basin,and provides certain restriction on the formation of the Songliao Basin.
     1、The timing of volcanic rocks of Yingcheng group in southern Songliao Basin
     zircon U-Pb isotopic chronology is tested for the two rhyolite samples(ds7-1 and n47-1) from Yingcheng group in southern Songliao Basin using the method of LA-ICPMS. The core sample ds7-1 is picked from Deshen7 well at the depth of 3501 meters,the weighted average age of 206Pb/238U is 118±2.5Ma,MSDW=2.3.The core sample n47-1 is got from Nong47 well at the depth of 2211 meters, the weighted average age of 206Pb/238U is 113±2Ma,MSDW=0.90.So the timing of volcanic rocks of Yingcheng group in southern Songliao Basin is 113-118 Ma(late of the Lower Cretaceous)
     2、Hf isotope of the volcanic rocks of Yingcheng group in southern Songliao Basin
     The zircon 176Hf/177Hf ratios of the two samples of Yingcheng group in southern Songliao Basin are comparatively high, the weighted average are 0.282909±0.000016(2σ,n=20)and 0.282970±0.000025(2σ,n=20.The weighted average ofεH(ft)are 7.32±0.55 and 9.31±0.87. The ranges of Hf two stage model ages (TDM2) are 556-876Ma and 374-869Ma.
     The zircons of the volcanic rocks of Yingcheng group in southern Songliao Basin have plusεHf(t)results ,the two stage model age are from Neoproteozoic to Phanerozoic.This indicates that the source of the rocks is the new crust which growth from the depleted mantle in Neoproteozoic and Phanerozoic ,they melted in Mesozoic and formed the volcanic rocks of Yingcheng group.
     3、Petrology、geochemistry and genesis of the volcanic rocks of Yingcheng group in southern Songliao Basin
     The volcanic rocks of Yingcheng group in southern Songliao Basin are divided into three types because of the characters of geochemistry,1-type rhyolite、2-type rhyolite and dacite. 1-type rhyolite: SiO2 contents range from 71.62% to 75.76%, Al2O3 contents range from 10.88% to 12.92%, entire iron contents range from 2.24% to 4.44%, MgO contents range from 0.03% to 0.29%, CaO contents has a large change scope range from 0.08% to 0.92%, Na2O、K2O content respectively 0.54%-4.63%、4.3%-9.34%, TiO2、MnO、P2O5 have low content 0.22%-0.32%、0.06%-0.18%、0.01%-0.04%. 1-type rhyolite belongs to sub-alkaline on the TAS diagram and high K calkaline on the SiO2- K2O diagram.The variable range of NK/A and Na2O+K2O are 0.85-1.08 and 7.8%-9.8% ,so 1-type rhyolite is similar with A-type granite.The rare earth elements are higher than ordinary granite, has obviously negative Eu anomaly. The chondrite-normalized REE distribution pattern is slightly right V-type incline. HFSEs for example Zr、Hf、Nb content is generally high, Sr、Ba content is low.1-type rhyolite has obviously negative anomaly of Ba、Sr、P、Ti on the primitive mantle standard spider diagram.The 10000Ga/Al ratios are 3.46-5.59 (bigger than 2.6), Zr+Nb+Ce+Y average content is 1319.456 ppm (bigger than 350 ppm ),all these characters demonstrate 1-type rhyolite is A-type granite. SiO2 content is 71.62-75.76%,Al2O3 content is 10.88-12.92%,low Nb/Ta ratios(average 13.78) and slightly negetive Nb and Ta anomaly, light– heavy rare earth fractionation,not obvious LaN/YbN (mean value =9.78) <10,extreme obviously negetive Eu anomaly(Eu/Eu*=0.27),all these characters indicate 1-type rhyolite is A2-type granite.
     2-type rhyolite: SiO2 contents range from 72.9% to 73.6%, Al2O3 contents range from 13.96% to 15.63%, entire iron contents range from 0.6% to 1.32%, MgO contents range from 0.06% to 0.31%, CaO contents has a large change scope range from 0.22% to 1.09%, Na2O、K2O content respectively 3.14%-4.27%、4.2%-5.05%, TiO2、MnO、P2O5 have low content 0.18%-0.3%、0.04%-0.07%、0.03%-0.06%. 2-type rhyolite belongs to sub-alkaline on the TAS diagram and high K calkaline on the SiO2- K2O diagram.The variable range of NK/A and ACNK are 0.72-0.83 and 0.98-1.28,the rare earth elements concent 151.065-236.982ppm,LREE is higher than HREE and the average LREE/HREE is 10.95. (La/Yb)N range from 10.76 to 14.29(average 12.01), has obviously negative Eu anomaly(δEuN= 0.41-0.47) . The chondrite-normalized REE distribution pattern is slightly right V-type incline. LILEs, Rb、Th、U for example,are rich; K、Zr and Hf are lightly rich; Ba,Nb、Ta、Sr、P and Ti are comparatively low. All these characters indicate 2-type rhyolite is I-type granite.
     Dacite: SiO2 contents range from 61.99% to 65.08%, Al2O3 contents range from 15.68% to 16.45%, entire iron contents range from 3.23% to 4.53%, MgO contents range from 0.82% to 2.36%, CaO contents range from 2.83% to 3.94%, Na2O、K2O content respectively 3.55%-4.38%、1.34%-3.34%, TiO2、MnO、P2O5 have low content 0.56%-0.61%、0.05%-0.15%、0.18%-0.20%. Dacite belongs to sub-alkaline on the TAS diagram and high-middle K calkaline on the SiO2- K2O diagram.The variable range of NK/A and ACNK are 0.52-0.69 and 0.80-0.86.The total quantity of rare earth elements is 98.669-122.082ppm, the light rare earth content is higher than the heavy rare earth content, the LREE/HREE mean value is 12.57, (La/Yb)N is 15.15-18.78.Dacite has these characters that slightly negative Eu anomaly(δEuN=0.71-0.81),high Ba、Sr content, low Y、Yb content,high Sr/Y、Sr/Yb ratios.Dacite has positive Ba、Sr anomaly,slightly negative P、Ti and HFSEs(Nb、Ta for example) on the primitive mantle standard spider diagram. All these characters indicate dacite is I-type granite.
     4、Genesis mechanism of the volcanic rocks of Yingcheng group in southern Songliao Basin
     Dacite is like adakite because of these characters SiO2≥56%,Al2O3≥15%,low MgO content(<3%), slightly negative Eu anomaly, low Y(≤18μg/g)、Yb(≤1.9μg/g)content,high Sr content(>400μg/g)and Sr/Y ratio(>40),low HFSEs(Nb、Ta for example), high(La/Yb)N ,light and heavy rare earth element strong differentiation,obvious positive Sr anomaly.The low Mg# (14.77-36.46) indicate local adakite is formed by the partial melting of the underplating lower crust.
     According to the contents of Sr、Y,dacite belongs to high-Sr and low-Yb type and its melting residual source is dominant by amphibole + garnet + pyroxene and maybe a small amount of plagioclase,it is formed in the high pressure environment at least at the depth of 40km.2-type rhyolite belongs to low-Sr and high-Yb type and it is formed in a lower pressure environment at the depth of normal crus(tabout 30Km).1-type rhyolite belongs to very low-Sr and high-Yb type is A2-type granite and plagioclase is the residual face in the source which indicate the depth of the source is shallower(<30Km)
     The major element of these three kinds of volcanic does not change correspondingly as the SiO2 changing,trace element ratios are inconsistent as well as these volcanic rocks output in three different places which indicate three kinds of volcanic rocks of Yingcheng group are not the result from the same origin magmatic differentiation,but the different depthes of the source of volcanic rocks. So the genesis mechanism of the volcanic rocks of Yingcheng group is rocks in different depths of the crust occured partial melting in the same time and formed different kinds of magma in the Lower Cretaceous.
     High-Sr and low-Yb type dacite is formed in the high pressure lower crust at least at the depth of 40Km. Low-Sr and high-Yb type 1-type rhyolite and very low-Sr and high-Yb type 2-type rhyolite are formed in the low pressure middle-upper crust, the former's depth is 30Km,the latter's is smaller than 30Km. These different depthes' magma erupt from different cauldron in different places and form dacite and two kinds of rhyolite which have different geochemistry characters.
     5、The tectonic setting of the volcanic rocks of Yingcheng group and the confinement to Songliao Basin.
     The characters of the Rittman index、Gedi Nepal index and the rare earth elements indicate local volcanic rocks output in oroganic zone and islang arc.Local volcanic rocks have the characters of enriching light rare earth element and LILEs,dificiting HFSEs and Nb、Ti、P which like the post-collision granites.The large occurrence of post-collision middle-acid igneous rocks indicates the turning from convergent to extension.
     The occurrence of bimodal volcanic rocks、A-type granite、metamorphic core complex and A2-type granite in this study indicate it is intensive extension setting in northeastern China in the Low Cretaceous.Three kinds of volcanic in this paper are the results of this extension setting which indicate the Songliao Basin is in the post-collision extension setting of organic zone,and the tectonic system turns from convergent to extension. Under the tectonic setting of extension,the rocks in different depths occur partial melting by the magma underplating and form three different kinds of volcanic rocks of Yingcheng group.
引文
[1] Ajaji T M,Weis D M N Q, Giret A D,et al.1998. Coeval potassic and sodic calc-alkaline series in the post-collisional Hercynian Tanncherfi intrusive complex,northeastern Morocco:geochemical,isotopic and geochronological evidence. Lithos, 45: 371-393.
    [2] Amelin Y,Lee D C,Halliday A N,Pidgeon R T.Nature of the Earth’s earliest crust from hafnium isotopes in single detrital zircons.Nature,1999,399:252-255
    [3] Amelin Y,Lee D C,Halliday A N.Early-middle Archean crustal evolution deduced from Lu-Hf and U-Pb isotope studies of single zircon grains.Geochim.Cosmochim.Acta,2000,64:4205-4225
    [4] Andersen T.Correction of common lead in U-Pb analyses that do not report 204Pb.Chem.Geol.,2002,192:59-79
    [5] Ballard J R,Palin J M,Williams I S,Campbell I H,Faunes A.Two ages of porphyry intrusion resolved for the super-giant Chuquicamata copper deposit if northern Chile by ELA-ICP-MS and SHRIMP.Geology,2001,29:383-386
    [6] Barbarin B.A review of the relationships between granitoid types,their origins and their geodynamic environments.Lithos,1999 ,46:605-626
    [7] Belousova E A,Griffin W L,O,Reilly S Y,Fisher N I.Igneous Zircon:Trace element composition as an indicator of source rock type.Contrib.Mineral.Petrol., 2002,143:602-622
    [8] Blichert-Toft J,Albarede F.The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system.Earth and Planet.Sci.Lett.,1997,148:243-258
    [9] Chappell BW,White AJR.I-and S-type granites in the Lachlan Fold Belt.Transaction of the Royal Society of Edinburgh Earth Sciences,1992,83:1-26
    [10] Chung S L,Liu D Y,Ji J Q,et al.Adakites from continental collision zones:melting of thickened lower crust beneath southern Tibet[J] .Geology,2003,31:1021-1024
    [11] Cottin J Y,Lorand J P,Agrinier P,et al.Isotopic (O,Sr,Nd ) and trace element geochemistry ofthe Laouni layered intrusions (Pan-african belt,Hoggar,Algeria):evidence for post-collisional continental tholeiitic magmas variably contaminated by continental crust.Lithos,1998,45:197-222
    [12] Davis G A,Zheng Y D,Wang C,Darby B J,Zhang C H,Gehrels G.Mesozoic tectonic evolution of the Yanshan fold and thrust belt,with emphasis on Hebei and Liaoning Provinces,northern China.In:Hendrix M S and Davis G A.Paleozoic and Mesozoic tectonic evolution of central Asia:From continental assembly to intracontinental deformation:Boulder,Colorado,Geological Society of America Memoir,2001,194:171-198
    [13] Defant M J,Drummond M S.Derivation of some modern magmas by melting of young subduction lithosphere.Nature,1990,347:662-665
    [14] Defant M J,Xu J F,Kepezhinskas P,Wang Q,Zhang Q,Xiao L .Adakites:some variations on a theme. Acta PetrologicaSinica,2002,18:129-142
    [15] Dick A P.Radiogenic Isotope Geology.The first edition.Cambridge University,1986,452
    [16] Eby G N. Chemical subdivision of the A-type granitoids: petrogenetic and tectonic implications. Genlogy,1992,20:641-644
    [17] Eklund O,Konopolko D,Rutanen H,et al.8Ga Svecofennian post-collisional shoshonitic magmatism in the Fennoscandian shield.Lithos,1998,45:87-108.
    [18] Engebretson D C,Cox A ,Gordon R G.Relative motions between oceanic and continental plates in thePacific basin.Geol Soc Am Spec Paper , 1985 , 1-59.
    [19] Faure G P.Principles of Isotope Geology.The second edition.John Wiley and Sons,1986,589
    [20] Gao S,Rudnick RL,Yuan HL,Liu XM,Liu YS,Xu WL,Ling WL,Ayers J,Wang XC,Wang QH.Recycling lower continental crust in the North China craton.Nature,2004,432:892-897
    [21] Griffin W L,Pearson N J,Belousova E,Jackson S E,van Achterbergh E,O,Reilly S Y and Shee SR.The Hf isotope composition of cratonic mantle:LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites.Geochim.Cosmochim.Acta.2000,64:133-147
    [22] Griffin W L,Wang X,Jackson S E,Pearson S E,O,Reilly S Y,Xu X S and Zhou X M.Zircon Chemistry and Magma Genesis,SE China:In-situ analysis of Hf isotopes,Tonglu and Pingtan Igneous Complexes.Lithos,2002,61:237-269
    [23] Griffin W L,Belousova E A,Shee S R,et al..Archean crustal evolution in the northern Yilgarn Craton; U-Pb and Hf-isotope evidence from detrital zircons.Precambrian Research,2004,131(3-4):231-282.
    [24] Griffin W L,Pearson N J,Belousova E A and Saeed A.Comment:Hf-isotope heterogeneity in zircon 91500.Chem.Geol,2006,233:358-363
    [25] Guo Z F,Wilson M,Liu J Q.Post-collisional adakites in south Tibet:products of partial melting of subduction-modified lower crust [J] .Lithos,2007
    [26] Gao S,Rudnick R L,Yuan H L,Liu X M,et al..Recycling lower continental crust in the North China craton.Nature. 2004,432,892–897.
    [27] Harris A C,Allen C M,Bryan S E,Campbell I H,Holcombe R J,Palin J M.ELA-ICP-MS U-Pb zircon geochronology of regional volcanism hosting the Bajodela Alumbrera Cu-Au:deposit implication for porphyry-related mineralization.Mineral Dep,2004,39:46-67
    [28] Hollocher,Bull J,Robinson P.Geochemistry of the metamorphosed Ordovician Taconian Magmatic Arc,Bronson Hill anticlinorium,western New England.Physics and Chemistry of the Earth,2002,27:5-45
    [29] Hoskin P W O.Rare earth element chemistry of zircon and its use as a provenance indicator.Geology,2001,28(7):627-630
    [30] Hou Z Q,Gao Y F,Qu X M,et al.Origin of adakitic intrusive generated during mid-Miocene east-west extension in southern Tibet [J] .Earth and Planetary Science Letters,2004,220:139-155
    [31] Hou Z Q,Meng X J,Qu X M,et al.Copper ore potential of adakitic intrusives in Gangdese porphyry copper belt:constrains from rock phase and sleep melting process [J] .Mineral Deposits,2005,24( 2):l08-114
    [32] Hugh R.Rollison著.杨学明,杨晓勇,陈双喜,译.岩石地球化学.合肥:中国科学技术大学出版社, 2000,1-275
    [33] Ionov D A,Gregoire M,and Prikhod’ko V S. Feldspar-Ti-oxide metasomatism in off-cratonic continental and oceanic upper mantle. Earth and Planetary Science Letters,1999,165,37-44.
    [34] Jackson S E,Pearson N J,Griffin W L,Belousova E A.The application of laser ablation-inductively coupled plasma-mass spectrometry to in-situ U-Pb zircon geochronology.Chem.Geol.,2004,211:331-335
    [35] Jahn B M,Wu F Y,Capdevila R,Martineau F,Zhao Z H,Wang Y X.Highly evolved juvenile granites with tetrad REE patterns;the Woduhe and Baerzhe granites from the Great Xing’an Mountains in NE China.Lithos,2001,59(4):171-198
    [36] Kay RW.Aleutian magnesian andesite:melts from subducted Pacific ocean crust.Journal of Volcanology and Geothermal Research,1978,4:117-132
    [37] Kay RW,Kay SM.Andean adakites :three ways to make them.Acta Petrologica Sinica ,2002,18:303-311
    [38] Kinny P D and Maas R.Lu-Hf and Sm-Nd isotope systems in zircon.In: Hanchar J M and Hoskin P W O (eds.),Zircon.Rev.Mineral.Geochem.,2003,53:327-341
    [39] Knudsen T L,Griffin W L,Hartz E H ,et al.,In-situ Hafnium and Lead Isotope Analyses of Detrital Zircons from the Devonian Sedimentary Basin of NE Greenland:a Record of Repeated Crustal Reworking.Contrib.Mineral.Petrol,2001,141:83-94
    [40] Lee J,Williams I,Ellis D.Pb,U and Th diffusion in nature zircon.Nature,1997,390(13):159-162
    [41] Liegeois G P,Navez J,Hertogen J,etal.Contrasting origin of post-collisional high-Kcalc-alkaline and shoshonitic versus alkaline and peralkaline granitoids:theuse of sliding normalization[J] .Lithos,1998,45:1-28.
    [42] Li X H.Geochemistry of the Longsheng Ophiolite from the southern margin of Yangtze Craton,SE China.Geochenical Journal,1997,31:323-337
    [43] Li X H,Liang X R,Sun M,Guan H,Malpas J G.Precise Pb/U age determination on zircons by laser ablation microprobe-inductively coupled plasma-mass spectrometry using continuous linear ablation.Chem.Geol.,2001,175:209-219
    [44] Liu W,Siebel W,Li X J,Pan X F.Petrogenesis of the Linxi granitoids,northern Inner Mongolia of China:constraints on basaltic underplating.Chemical Geology,2005,219:5-35
    [45] Liu Y S,Gao S,Lee C T,et al..Melt-peridotite interactions:Links between garnet pyroxenite and high-Mg# signature of continental crust.Earth and Planetary Science Letters,2005,234:39-57.
    [46] Ltvinovsky B A,Jahn B M,Zauvilevicb A N,Saunders A,Poulain S,Kuzmin D V,Reichow M K,Titov A V. Petrogenesis of syenite granite suites from the Bryansky Complex(Transbaikali,Russia ):implications for the origin of A-type granitoid magmas. Chemical Geology. 2002,189:105-133
    [47] Machadao N and Simonetti A.U-Pb dating and Hf isotopic composition of zircon by laser-ablation MC-ICP-MS.In:Sylvester P(ed.).Laser Ablation-ICOMS in the Earth Science:Princioles and Applecations:St.John,s,Newfoundland,Mineralogical Association of Canada.2001,p,121-146
    [48] Martin H,Smithies R H,Rapp R,Moyen J F,Champion D.An overview of adakite tonalite-trondhjemite-granodiorite(TTG),and sanukitoid:relationships and some implieations for crustal evolution.Lithos,2005,79:1-4
    [49] Maruyama S,Tetsuzo S.Orogeny and relative plate motions:example of the Japanese islands.Tectonophysics,1986 , 127:305~329.
    [50] Mengel,K.,et al.Crustal xenloliths from Cenozoic volcanic fields of West Germany:Implications for struture and composition of the continental crust.Tectonophy.,1999,195:271-289.
    [51] Menzies M A,Fan W and Zhang M.Palaeozoic and Cenozoic lithoprobes and the loss of 120km of Archean lithosphere,Sino-Korean craton,China.Geological Society of London Special Publication,1993,76:71-78.
    [52] Nelson S T,Davidson J P,Heizler M T,et al.Tertiary tectonic history of the southern Andes:The subvolcanic sequence to the Tatara-San Pedro volcanic complex lat 360S [J] .GAS Bull.1999,111(9):1387-1404
    [53] Nixon P.H.Mantle xenoliths.John Wiley and Sons Ltd.1987
    [54] Patchett P J,Tatsumoto M. A routine high-precision method for Lu-Hf isotope geochemistry and chronology.Contrib.Mineral.Petrol,1980,75:263-268.
    [55] Patchett P J,Kouvo O,Hedge C E,Tatsumoto M.Evolution of continental crust and mantle heterogeneity:evidence from Hf isotopes.Contrib.Mineral.Petrol.1981,78:279-297
    [56] Patchett P J,Vervoort J D,Soderlund U, et a1.Lu-Hf and Sm-Nd isotopic systematics in chondrites and their constraints on the Lu-Hf properties of the Earth.Earth Planet.Sci.Lett.2004,222:29-41
    [57] Patino Douce .A E. Generation of metaluminous A -type granites by low-pressure melting of talc-alkaline granitoids. Geology,1997,25:743-746
    [58] Patino Douce .A E. What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas? In:Castro et al.,(eds.) Understanding Granite: lntegrating,New and Classical Techniques. Geological Society,London。Special Publications, 1999,68:55-75
    [59] Pearce J A.Sources and setting of granitic rocks.Episodes,1996,19:120-125
    [60] Pearson,N.J.,S.Y.O’Reilly,and W.L.Griffin,Heterogineity in the thermal state of the lower crust and upper mantle beneath eastern Australia,Exploration Geophysics,1991,22:295-298.
    [61] Qu X M,Hou Z Q,Li Z Q.40Ar/39Ar ages of porphyries from the Gangdese porphyry Cu belt in south Tibet and implication to geodynamio setting [J].Acta Geologica Sinica,2003,77( 2):245-252 (in Chinese)
    [62] Rapp R P,Shimizu N,Norman M D,Applegatem G S. Reaction between slab-derived melts and peridotite in the mantle wedge:experimental constraints at 3.8GPa.Chemical Geology,1999,160:335-356
    [63] Rapp P R,Xiao L,Shimizu N.Experimental constraints on the origin of potassium-rich Adakites in Eastern China.Acta Petrological Sinica,2002,18:293-302
    [64] Rapp P R,Shimizu N,Norman M D.Growth of early continental crust by partial melting of eclogite.Nature,2003,425:605-609
    [65] Rollinson H R.Using Geochemical data:Evolution,Presentation,Interpretation[M] .Harlow:Longman,1993.1-352
    [66] Rudnick R L.Xenolith-Samples of the lower continental crust.In:Fountain D M,Arculus R and Kay R W (eds).Continental Lower Crust.Elsevier Sci.,1992,269-316.
    [67] Smithis R H.The Archean tonalite-trondhjemite-granodiorite(TTG)series is not an analogue of Cenozoic adakite.Earth and Planetary Science Letters,2000,182:115-125
    [68] Thirwall M F and Walder A J.In situ hafnium isotope ratio analysis of zircon by inductively coupled plasma multiple collector mass spectrometry.Chem.Geol,1995,122:241-247
    [69] Veevers J J,Saeed A,Belousova E A,Griffin W L.U-Pb ages and source composition by Hf-isotope and trace element analysis of detrital zircons in Permian sandstone and medern sand from southwestern Australia and a review of the paleogeographical and denudational history of the Yilgarn craton.Earth Sci.Rev,2005,68:245-279
    [70] Vervoort J D,Patchett P J,Gehrels C E,et al.Constraints on early Earth differentiation from hafnium and neodymium isotopes.Nature,1996,379:624-627
    [71] Wang P J,Liu W J,Wang S X,Song W H.40Ar/39Ar and K/Ar dating on the volcanic rocks in the Songliao basin,NE China:constraints on stratigraphy and basin dynamics.International Journal of Earth Sciences(Geol Rundsch),2002a,91:331-340
    [72] Wang Pujun,Ren Yanguang,Shan Xuanlong,Sun Shaobo,Wan Chuanbiao,Bian Weihua. The Cretaceous volcanic succession around the Songliao Basin,NE China:relationship between volcanism and sedimentation . Geological Journal,2002b,37(2):97-115.
    [73] Wang Pujun,Chen Fukun,Chen Shumin,Siebel W,Satir M. Geochemical and Nd–Sr-Pb isotopic composition of Mesozoic volcanic rocks in the Songliao basin,NE China. Geochemical Journal , 2006,40:149-159
    [74] Williams H,Turner S,Kelley S, et al.Age and composition of dikes in Southern Tibet:new constraints on the timing of east-west extension and its relationship to postcollisional volcanism[ J].Geology,2001,29:339-342.
    [75] Wu F Y,Sun D Y,Li H M,et al.The nature of basement beneath the Songliao Basin in NE China:geochemical and isotopic constraints.Phys Chem Earth (A),2001,29:793—803
    [76] Wu F Y,Sun S Y,Li H M.A-type granites in northeastern China:age and geochemical constraints on their petrogenesis.Chem.Geol.,2002,187:143-173
    [77] Wu F Y,Yang Y H,Xie L W,Yang J H,Xu P.Hf isotopic compositions of the standard zircons and baddeleyites used in U-Pb geochronology.Chem.Geol,2006,234:105-126
    [78] X L Xiong,J Adam,T H Green.Rutile stability and rutile/melt HFSE partitioning during partial melting of hydrous basalt:Implications for TTG genesis.Chemical Geology,2005,339-359
    [79] Xu J F,Shinjio R,Defant M J,Wang Q,Rapp R P.Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China:partial melting of delaminater lower continental crust.Geology,2002,12:1111-1114
    [80] Xu X S,O’Reilly S Y,Zhou X M,Griffin W L.A xenolith-derived geotherm and the crust-mantle boundary at Qilin,southeastern China.Lithos.,1996,38:41-62.
    [81] Xu X S,O’Reilly S Y,Griffin W L,Zhou X M.The nature of the Cenozoic lithosphere beneath Nushan ,east central China.In:Fliwer M E J,Chung S L,Lon C H,et al.Amer.Geophysical Union Geodynamics Series27,Mantle Dynamics and Plate Interactions in East Asia,1998,167-196.
    [82] Xu X S,O’Reilly S Y,Griffin W L,Zhou X M.Genesis of young lithospheric mantle in southeastern China:an LAM-ICPMS trace element study.J.Petrol.,2000,41(1):111-148.
    [83] Xu Y G,Huang X L,Ma J L,et al.Crust-mantle interaction during the tectono-thermal reactivation of the North China Craton:constraints from SHRIMP zircon U–Pb chronology and geochemistry of Mesozoic plutons from western Shandong.Contrib.Mineral.Petrol.,2004,147:750-767.
    [84] Yin G S,Xie G G.Extensional structure and the Xingzi metamorphic core complex in the Lushan area,Jiangxi.Regional Geology of China,1996,1:17-26
    [85] Yuan H L,Gao S,Liu X M,Li H M,Gvnther D,Wu F Y.Accurate U-Pb Age and Trace Element Determinations of Zircons by Laser Ablation-Inductively Coupled Plasma Mass Spectrometry.Geostandards and Geoanalytical Research,2004,28(3):353-370
    [86] Zhang Y B,Wu F Y,Simon A.Zircon U-Pb ages and tectonic implication of Early Paleozoic granitoids at Yanbian,Jilin Province,northeast China.Isl.Are,2004,13:484-505
    [87]蔡先华,谭胜章.松辽盆地南部长岭断陷火成岩分布及成藏规律.石油物探,2002,41(3):363-366
    [88]曹跃,邵贵增,门吉华,苗宏伟.邢伟国.松辽盆地南部火成岩预测及成藏条件浅析.特种油气藏,2003,10(1):90-95
    [89]陈道公,李彬贤,夏群科,吴元保,程昊中.变质岩中锆石U-Pb计时问题评述—兼论大别造山带锆石定年.岩石学报,2001,17(1):129-138
    [90]陈文涛,张晓东,陈发景.松辽盆地晚侏罗世火山岩分布与油气.中国石油勘探,2001,6(2):23-26
    [91]陈义贤,陈文寄,周新华等.辽西及邻区中生代火山岩--年代学、地球化学和构造背景.北京:地震出版社.1997.
    [92]邓晋福,赵海玲,莫宣学,等.中国大陆根-柱构造[M] .1996,北京:地质出版社
    [93]丁日新,舒萍,曲延明,曲延明,程日辉,张斌.松辽盆地庆深气田储层火山岩锆石U-Pb同位素年龄及其地质意义.吉林大学学报(地球科学版),2007,37 (3):525-530
    [94]李培忠,于津生.黑龙江碾子山晶洞碱性花岗岩岩体年龄及其意义.地球化学,1993,4:389-398
    [95]高福红,许文良,杨德彬,裴福萍,柳小明,胡兆初.松辽盆地南部基底花岗质岩石锆石LA-ICP-MSU-Pb定年:对盆地基底形成时代的制约.中国科学D辑:地球科学,2007,37(3):331-335
    [96]高瑞祺,萧德铭.松辽及其外围盆地油气勘探新进展. 1995,北京:石油工业出版社,229
    [97]高妍.松辽盆地东南缘中生代火山岩的年代学和地球化学特征.吉林大学硕士学位论文,2008
    [98]葛文春,林强,孙德有,等.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,1999 ,15(3):396-406.
    [99]葛文春,林强,孙德有,吴福元,元钟宽,李文远,陈明植,尹成孝.大兴安岭中生代玄武岩的地球化学特征:壳幔相互作用的证据.岩石学报,1999,15(03):396-406
    [100]葛文春,林强,孙德有,吴福元,李献华.大兴安岭中生代两类流纹岩成因的地球化学研究.地球科学-中国地质大学学报,2000,25(2):172-178
    [101]葛文春,林强,李献华,等.大兴安岭伊列克得组玄武岩的地球化学特征.矿物岩石,2000,20(3):14-18.
    [102]葛文春,李献华,林强,孙德有,吴福元,尹成孝.呼伦湖早白垩世碱性流纹岩的地球化学特征及其意义.地质科学,2001,36(2):176-183
    [103]葛文春,吴福元,周长勇,等.大兴安岭北部塔河花岗岩体的时代及对额尔古纳地块构造归属的制约.科学通报,2005,50(12):1239-1247
    [104]葛文春,隋振民,吴福元,张吉衡,徐学纯,程瑞玉.大兴安岭东北部早古生代花岗岩锆石U-Pb年龄、Hf同位素特征及地质意义.岩石学报,2007,23(2):423-440
    [105]葛小月,李献华,陈志刚,李伍平.中国东部燕山期高Sr低Y型中酸性火成岩的地球化学特征及成因:对中国东部地壳厚度的制约.科学通报,2002,47(6):474-480
    [106]郭春丽,吴福元,杨进辉,林景仟,孙德有.中国东部早白垩世岩浆作用的伸展构造性质-以辽东半岛南部饮马湾岩体为例.岩石学报,2004,20(05):1193-1204
    [107]郭巍.松辽盆地南部白垩纪构造沉积演化与成藏动力学研究.吉林大学博士论文.2007
    [108]洪大卫,王光洗,韩宝福,等.碱性花岗岩的构造环境分类及其鉴别标志.中国科学(B辑),1995,25(4):418-426
    [109]胡望水,吕炳全,张文军,毛治国,冷军,官大勇.松辽盆地构造演化及成盆动力学探讨.地质科学,2005,40(1):16-31
    [110]黄玉龙,王璞珺,门广田,唐华风.松辽盆地营城组火山岩旋回和期次划分—以盆缘剖面和盆内钻井为例.吉林大学学报(地球科学版),2007,37(6):1183-1191
    [111]纪伟强.吉黑东部中生代晚期火山岩的年代学和地球化学.吉林大学硕士学位论文,2007
    [112]黎广荣.松辽盆地早白垩世岩石圈热结构模型研究.吉林大学硕士论文,2007
    [113]李惠民.铅同位素测年新技术及其地质应用的最新进展.国外前寒武纪地质,1992,4:1-5
    [114]李金龙,王璞珺,郑常青,唐华风,吴颜雄,边伟华.松辽盆地东南隆起区营城组柱状节理流纹岩特征和成因.吉林大学学报(地球科学版),2007,37(6):1131-1138
    [115]李锦轶,莫申国,和政军,孙桂华,陈文.大兴安岭北段地壳左行走滑运动的时代及其对中国东北及邻区中生代以来地壳构造演化重建的制约.地学前缘,2004,11(3):157-168
    [116]李献华,祁昌实,刘颖,等.岩石样品快速Hf分离与MC-ICPMS同位素分析:一个改进的单柱提取色谱方法.地球化学,2005,34(2):109-114
    [117]李注苍.新源阔尔库—拉斯台一带石炭纪大哈拉军组火山岩及其含矿性研究.长安大学硕士学位论文,2005
    [118]林强,葛文春,孙德有,等.中国东北地区中生代火山岩的大地构造意义.地质科学,1998,33(2):129-139
    [119]林强.东北亚中生代火山岩研究若干问题的思考.世界地质,1999,18(2):14-22
    [120]林强,葛文春,曹林,等.大兴安岭中生代双峰式火山岩的地球化学特征.地球化学,2003,32(3):208-222
    [121]刘昌实,陈小明,陈培荣,王汝成,胡欢. A型岩套的分类、判别标志和成因.高校地质学报,2003,9(4):573-591
    [122]刘民武,赫英.激光剥蚀等离子质谱微区分析在固体地球化学中的应用进展.地球科学进展,2003,18(1):116-121
    [123]刘为付,孙立新,刘双龙.松辽盆地莺山断陷火山岩地震反射特征及分布规律.石油实验地质,2000,22(3):256-286
    [124]刘伟,潘小菲,谢烈文,李禾.大兴安岭南段林西地区花岗岩类的源岩:地壳生长的时代和方式.岩石学报,2007,23(2):441-460
    [125]路凤香,朱勤文,李思田,谢意红,郑建平.松辽盆地周边中生代火山作用及其地球动力学背景.见:李思田,路凤香,林畅松等著.中国东部及邻区中、新生代盆地演化及地球动力学背景.武汉:中国地质大学出版社,1997,169-185
    [126]裴福萍.吉南地区中生代火山岩的岩石学和地球化学特征.吉林大学硕士学位论文,2005
    [127]裴福萍,许文良,杨徳彬,等.松辽盆地基底变质岩中锆石U-Pb年代学及其地质意义.科学通报,2006,(24)
    [128]裴福萍,许文良,杨德彬,纪伟强,于洋,张兴洲.松辽盆地南部中生代火山岩:锆石U-Pb年代学及其对基底性质的制约.地球科学-中国地质大学学报,2008,33(5):603-617
    [129]祁昌实.Lu-Hf同位素地球化学方法及其在华南古元古代变质岩和中生代花岗岩研究中的应用.中国科学研研究生院博士学位论文,2006
    [130]芮宗瑶,黄崇轲,齐国明,等.中国斑岩铜(钼)矿床.北京:地质出版社,1984
    [131]杨坤光,杨巍然.碰撞后的造山过程及造山带巨量花岗岩的成因.地质科技情报,1997,16(4):16-22
    [132]邵济安,张履桥,牟保磊.大兴安岭中生代伸展造山过程中的岩浆作用.地学前缘,1999,6(4):339-345
    [133]邵济安,李献华,张履桥,等.南口-古崖居中生代双峰式岩墙群形成机制的地球化学制约.地球化学,2001,30(6):517-524.
    [134]邵济安,张履桥,肖庆辉,等.中生代大兴安岭的隆起-一种可能的陆内造山机制[J] .岩石学报,2005,21(3):789-794
    [135]邵英梅,冯子辉.徐家围子断陷营城组火山岩岩石学及地球化学特征.大庆石油地质与开发.2007,26(4):27-30
    [136]舒萍,丁日新,纪学雁,曲延明.松辽盆地庆深气田储层火山岩锆石地质年代学研究.岩石矿物学杂志,2007,26(3):239-246
    [137]宋维海,王璞珺,张兴洲,蒙启安,单玄龙,程日辉.松辽盆地中生代火山岩油气藏特征.石油与天然气地质,2003,24(1):12-17
    [138]苏玉平,唐红峰. A型花岗岩的微量元素地球化学.矿物岩石地球化学通报,2005,24(3):245-261
    [139]隋振民,葛文春,吴福元,等.大兴安岭东北部侏罗纪花岗质岩石的锆石U-Pb年龄、地球化学特征及成因.岩石学报,2007,23(2):461-480.
    [140]孙德有,吴福元,李惠民,林强.小兴安岭西北部造山后A型花岗岩的时代及与索伦山—贺根山—扎鲁特碰撞拼合带东延的关系.科学通报,2000,45(20):2217-2222
    [141]孙德有,吴福元,高山,等.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约.地学前缘,2005,2(2):263-275
    [142]谭绿贵.新疆西准噶尔恰其海后碰撞花岗岩.吉林大学学报(地球科学版),2008,38(6):980-987
    [143]王虎,郑常青,王璞珺,黄玉龙.松辽盆地东南隆起区下白垩统营城组三段火山岩岩性、岩相序列.吉林大学学报(地球科学版),2007,37(6):1131-1138
    [144]王璞珺,迟元林,刘万洙,程日辉,单玄龙,任延广.松辽盆地火山岩相:类型、特征和储层意义.吉林大学学报(地球科学版),2003,33(4):449-456
    [145]王璞珺,迟元林,任延广,单玄龙,万传彪.火山灰事件沉积在松辽盆地哑地层对比中的应用.吉林大学学报(地球科学版),2003,34 (增刊):109-114
    [146]王强,许继峰,赵振华.一种新的火成岩—埃达克岩的研究综述.地球科学进展,2001,16(2):201-208
    [147]王强,赵振华,许继蜂,白正华,王建新,刘成新.鄂东南铜山口、殷祖埃达克质(adakite)侵入岩的地球化学特征对比:(拆沉)下地壳熔融与斑岩铜矿的成因.岩石学报2004,20(2),351-360
    [148]王颖,张福勤,张大伟,苗来成,李铁胜,孟庆任,刘敦一.松辽盆地南部变闪长岩SHRIMP锆石U-Pb年龄及其地质意义.科学通报,2006,51(15):1811-1816
    [149]王兴光,王颖.松辽盆地南部北带基底岩浆岩SHRIMP锆石U-Pb年龄及其地质意义.地质科技情报,2007,26(1):23-27
    [150]魏春生,郑永飞,赵子福,J W Valley.碾子山A型花岗岩两阶段水—岩相互作用的氧同位素证据.科学通报,2001,46(1):8-13
    [151]吴福元,孙德有,李惠民,等.松辽盆地基底岩石的锆石U-Pb年龄.科学通报,2000,45(6):656-660
    [152]吴福元,李献华,郑永飞,高山.Lu-Hf同位素体系及其岩石学应用.岩石学报,2007, 23(2):185-220
    [153]武广,孙丰月,赵财胜,李之彤,赵爱琳,庞庆帮,李广远.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义.科学通报,2005,20:2278-2288
    [154]吴锁平,王梅英,戚开静. A型花岗岩研究现状及评述.岩石矿物学杂志,2007,26(1):57-66
    [155]夏祖春,徐学义,夏林圻,等.天山石炭-二叠纪后碰撞花岗质岩石地球化学研究.西北地质,2005,38(1):1-14.
    [156]谢桂青,胡瑞忠,蒋国豪,赵军红.锆石的成因和U-Pb同位素定年的某些进展.地质地球化学,2001,29(4):64-70
    [157]肖龙,王方正,王华,F.Pira jno.地幔柱构造对松辽盆地及渤海湾盆地形成的制约.地球科学-中国地质大学学报,2004,29(3):481-490
    [158]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法.地质出版社,2002
    [159]熊小林,韩江伟,吴金花.变质玄武岩体系相平衡及矿物-熔体微量元素分配:限定TTG/埃达克岩形成条件和大陆壳生长模型.地学前缘,14:149-158
    [160]许保良,阎国翰,张臣,李之彤,何中甫. A型花岗岩的岩石学亚类及其物质来源.地续前缘,1998,5(3):113-124
    [161]徐平,吴福元,谢烈文.U-Pb同位素定年标准锆石Hf同位素.科学通报,2004,49(14):1403-1410
    [162]许文良,孙德有,尹秀英.大兴安岭海西期造山带的演化:来自花岗质岩石的证据.长春科技大学学报.1999,29(4):319-323
    [163]许文良,王冬艳,王嗣敏.中国东部中新生代火山作用的pTtc模型与岩石圈演化.长春科技大学学报,2000,30(4):032-038
    [164]杨德彬,许文良,裴福萍,等.辽东-吉南中生代辉长岩-闪长岩的形成时代:锆石SHRIMP和LA-ICPMS U-Pb定年证据.矿物岩石地球化学通报,2005,24(增刊):121
    [165]杨德彬.蚌埠荆山混合花岗岩的形成时代和地球化学特征.吉林大学硕士学位论文,2006
    [166]杨辉,张研,邹才能,文百红,李建忠,李明.松辽盆地深层火山岩天然气勘探方向.石油勘探与开发,2006,33(3):274-281
    [167]杨惠心,李朋武,禹惠民.中国东北地区主要地体古地磁学研究[J] .长春科技大学学报,1998,28(2):202-205
    [168]杨懋新.松辽盆地断陷期火山岩的形成及成藏条件.大庆石油地质与开发.2002,21(5):15-18
    [169]闫全人.晚中生代松辽盆地形成的大地构造环境及成因机制[D] .北京:中国科学院地质与地球物理研究所,2000
    [149]王兴光,王颖.松辽盆地南部北带基底岩浆岩SHRIMP锆石U-Pb年龄及其地质意义.地质科技情报,2007,26(1):23-27
    [150]魏春生,郑永飞,赵子福,J W Valley.碾子山A型花岗岩两阶段水—岩相互作用的氧同位素证据.科学通报,2001,46(1):8-13
    [151]吴福元,孙德有,李惠民,等.松辽盆地基底岩石的锆石U-Pb年龄.科学通报,2000,45(6):656-660
    [152]吴福元,李献华,郑永飞,高山.Lu-Hf同位素体系及其岩石学应用.岩石学报,2007, 23(2):185-220
    [153]武广,孙丰月,赵财胜,李之彤,赵爱琳,庞庆帮,李广远.额尔古纳地块北缘早古生代后碰撞花岗岩的发现及其地质意义.科学通报,2005,20:2278-2288
    [154]吴锁平,王梅英,戚开静. A型花岗岩研究现状及评述.岩石矿物学杂志,2007,26(1):57-66
    [155]夏祖春,徐学义,夏林圻,等.天山石炭-二叠纪后碰撞花岗质岩石地球化学研究.西北地质,2005,38(1):1-14.
    [156]谢桂青,胡瑞忠,蒋国豪,赵军红.锆石的成因和U-Pb同位素定年的某些进展.地质地球化学,2001,29(4):64-70
    [157]肖龙,王方正,王华,F.Pira jno.地幔柱构造对松辽盆地及渤海湾盆地形成的制约.地球科学-中国地质大学学报,2004,29(3):481-490
    [158]肖庆辉,邓晋福,马大铨,等.花岗岩研究思维与方法.地质出版社,2002
    [159]熊小林,韩江伟,吴金花.变质玄武岩体系相平衡及矿物-熔体微量元素分配:限定TTG/埃达克岩形成条件和大陆壳生长模型.地学前缘,14:149-158
    [160]许保良,阎国翰,张臣,李之彤,何中甫. A型花岗岩的岩石学亚类及其物质来源.地续前缘,1998,5(3):113-124
    [161]徐平,吴福元,谢烈文.U-Pb同位素定年标准锆石Hf同位素.科学通报,2004,49(14):1403-1410
    [162]许文良,孙德有,尹秀英.大兴安岭海西期造山带的演化:来自花岗质岩石的证据.长春科技大学学报.1999,29(4):319-323
    [163]许文良,王冬艳,王嗣敏.中国东部中新生代火山作用的pTtc模型与岩石圈演化.长春科技大学学报,2000,30(4):032-038
    [164]杨德彬,许文良,裴福萍,等.辽东-吉南中生代辉长岩-闪长岩的形成时代:锆石SHRIMP和LA-ICPMS U-Pb定年证据.矿物岩石地球化学通报,2005,24(增刊):121
    [165]杨德彬.蚌埠荆山混合花岗岩的形成时代和地球化学特征.吉林大学硕士学位论文,2006
    [166]杨辉,张研,邹才能,文百红,李建忠,李明.松辽盆地深层火山岩天然气勘探方向.石油勘探与开发,2006,33(3):274-281
    [167]杨惠心,李朋武,禹惠民.中国东北地区主要地体古地磁学研究[J] .长春科技大学学报,1998,28(2):202-205
    [168]杨懋新.松辽盆地断陷期火山岩的形成及成藏条件.大庆石油地质与开发.2002,21(5):15-18
    [169]闫全人.晚中生代松辽盆地形成的大地构造环境及成因机制[D] .北京:中国科学院地质与地球物理研究所,2000
    [193]赵文智,李建忠.基地断裂对松辽南部油气聚集的控制作用.石油学报,2004,25(4):1-6
    [194]赵海玲,邓晋福,陈发景,等.黑龙江完达山地区中侏罗世火山岩特征及其形成构造背景.地球科学-中国地质大学学报,1996,21(4):428-432.
    [195]郑常青,王璞珺,刘杰,舒萍,刘万洙,黄玉龙,唐华风.松辽盆地白垩系火山岩类型与鉴别特征.大庆石油地质与开发,2007,26(4):9-16
    [196]周新华.壳-幔深部化学地球动力学与大陆岩石圈研究.见:郑永飞主编.化学地球动力学,北京:科学出版社.1999,15-27.
    [197]周刚.新疆阿尔泰玛因鄂博断裂带两侧后碰撞花岗岩类的年代学-岩石学和地球化学研究.中国地质科学院博士论文,2007
    [198]朱建伟,刘招君,董清水,刘葵,郭巍.松辽盆地层序地层格架及油气聚集规律.石油地球物理勘探,2001,36(3):42-48
    [199]朱勤文,路凤香,谢意红,等.大陆边缘扩张型活动带火山岩组合-松辽盆地周边中生代火山岩研究.岩石学报,1997,13(4):551-563

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700