黑龙江省塔河县宝兴沟金矿床成矿地质条件及找矿潜力分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宝兴沟金矿地处天山-兴蒙造山带、大兴安岭火山岩带东北部上黑龙江拗陷腰站断陷南缘与十八站隆起北缘交接部位。矿体产出于闪长玢岩、辉绿玢岩、花岗细晶岩与二十二站组砂岩接触带中,目前已发现矿化蚀变带4条,破碎蚀变岩型金矿体13条,储量规模达到中型。本区成矿地质条件优越,找矿标志明显,具备较好的找矿潜力。
     本文从成矿地质背景分析入手,深入研究矿床地质特征、地球化学特征,分析成矿地质条件,厘定成矿岩体的形成时代,探讨矿床成因,建立成矿模式;根据成矿地质条件与地质、地球物理、地球化学等找矿信息研究,确定找矿方向,优选后续勘查工作靶区,预测找矿潜力。研究成果对指导该矿床乃至该地区类似矿产的勘查工作具有重要理论与实际意义。
The Baoxinggou gold deposit is located in the Tahe transition zone in southeastern border of Eerguna massif, in geosyncline folded belt from Daxinanling to Inner Mongolia, in the intersection of southern fringe of Yaozhan fault depression and noah margin of Shibazhan uplift. Mineralization condition in this region is advantageous, Ore-prospecting criteria, and it also has a good prospecting prospect.
     The mainly stratas of this mining area are only Jurassic twenty-two station formation, emuer river formation and quaternary; Magmatic rock strains in shape, which contains granitic porphyry, dioritic porphyrite, diabase porphyrite and granitic aplite. The Vein rocks are mainly diorite porphyrite, diabase porphyrite and granitic aplite. Fracture structures mainly exist in this area, which consists of the north-west yixiken to twenty-two station fracture, suian station to fifteen Bridge fracture, and the north east, North west Subprime fracture. Ring structures are also developmented in this area, which are in the north west that of directional distributed, and they are likely to be relevant to the shallow or super shallow intrusions. Hidden rocks may exist beside of some exposed rocks.
     The ore body is closely relevant to the shallow intrusions, such as diorite porphyrite, diabase porphyrite, etc, which are veins in the contact area of diorite porphyrite, diabase porphyrite,and twenty-two station sandstone. The Ore-hosting rocks are altered sandstone and altered diorite porphyrite.Four mineralized altered zones and 13 broken altered mine bodies are found in this study area, with a control length of 240 to 1147m, an average thickness of 0.50 to 10.45m, and a tenor of 1.12 to 2.79×10-6.Pyrite are the main metal minerals, others such as chalcopyrite, copper, sphalerite and galena may also exist.。The altered degree of ore-forming relevant wallrock is characterized as the mid-low temperature alteration, which consists of silica, carbonatization, sericitization and chloritization, etc.Gold ore is mainly controlled by the north east linear structures, which also control the Au anomalism that displays a north eastern distribution.There are strong superposition characters in later period, where is the key for searching the Au, Ag, Pb, Sb deposits.
     The rare-earth element models of the mining rock and minerals show the enrichment of light elements, which have the characters of Eu negative to weak positive abnormal. Ore-forming related diorite porphyrite and diabase porphyrite show a high k calcium alkaline basalt. By the means of zircon U-Pb dating, a 124.92±1.3Ma age can be estimated for the intrusion age. Considering the relationship between the rock and the gold deposit, we conclude that the metallogenic epoch should be slightly later than 124.92±1.3 Ma, which belongs to early cretaceous.The main metallogenic materials come from the Jurassic twenty-two statio sandstone, early cretaceous diorite porphyrite and diabase porphyrite.The heat source comes from magma activities, and the uniform temperature of ore-forming fluid shows from 266.9 to 319.6oC, with a peak of 280-290oC. The metallogenic depth is 0.8-120 kilometers,Therefore this deposit is considered to be the epithermal deposits.
     According to the geological characteristics of the main orebodies thar are discovered, soil anomalies and electrical anomalies of the outer area of main orebody are evaluated, to decide 2 research areas for further exploration, which are predicted to have a potential amount of about 4000 kg, and to put forward some Suggestions for indicating the direction for follow-up exploration work.
     Based on the existing research results, Baoxinggou gold deposit and its periphery shows a good prospect of becoming a big gold deposit.
引文
[1]黑龙江省地质矿产局.黑龙江省区域地质志[M].北京:地质出版社,1993.
    [2]武警黄金第三支队.黑龙江省塔河县宝兴沟矿区阶段性报告[R].哈尔滨:武警黄金第三支队,2008.
    [3]武警黄金第三支队.黑龙江省塔河县宝兴沟岩金普查地质设计[R].哈尔滨:武警黄金第三支队,2010.
    [4]汤鹏飞,公维国,杨吉波.黑龙江省塔河县宝兴沟金矿地质特征及找矿方向探讨[J].黄金科学技术.2008,16(3):34-36
    [5]黑龙江省地质矿产局.区域地质调查报告(依西肯幅、十八站幅、兴华幅、鸥浦幅)[R].黑龙江省地质矿产局,1989.
    [6]黑龙江省地质矿产局.区域地质调查报告(开库康幅)[R].黑龙江省地质矿产局,1985.
    [7]武警黄金第三支队.黑龙江省塔河一呼玛县宝兴沟—依西肯1:50000水系沉积物测量报告[R].哈尔滨:武警黄金第三支队,2002.
    [8]武警黄金第三支队.黑龙江省塔河县腰站林场—宝兴沟1:50000遥感解译报告[R].哈尔滨:武警黄金第三支队,2008.
    [9]杨言辰,王可勇,冯本智.大横路式钴(铜)矿床地质特征及成因探讨[J].地质与勘探.2004.01.
    [10]姚凤良,孙丰月,矿床学教程[M].地质出版社,2006.
    [11]徐文喜,王建发等.黑龙江浅成低温热液金矿床基本特征及找矿前景分析[J].金属矿山,2006.08.
    [12]韩振新,赫正平,等.黑龙江省主要成矿带矿床成矿系列[M].哈尔滨工程大学出版社,1996.
    [13]杨言辰,张兰玲,叶松青,王可勇.黑龙江省逊克县新民金矿床流体包裹体研究[J].黄金,2009,03.
    [14]王晓勇.大兴安岭北部金矿床类型及地质特征[J].黄金地质,2004.6
    [15]杨言辰,孙德有,马志红,许文良.红旗岭镁铁超镁铁岩侵入体及铜镍硫化物矿床的成岩成矿机制[J].吉林大学学报(地球科学版),2005.09.
    [16]张海心,杨言辰.高密度电阻率法在东安金矿床勘探中的应用[J].,吉林地质2005,09.
    [17]杨毅恒韩燕.多维地学数据处理技术及方法[M].2002.3.
    [18]范永香.成矿规律与成矿预测[M].2003.12
    [19]韦延光,王可勇,杨言辰等.吉林白山市大横路CuCo矿床变质成矿流体特征[J].吉林大学学报(地球科学版).2002.04.
    [20]薛明轩,叶松青,刘智明等.黑龙江东安金矿床地质地球化学特征初探J].黄金,2002,07.
    [21]李万亨.矿产经济与管理[M].2000.11
    [22]刘忠田,黑龙江省漠河县砂宝斯岩金矿普查报告[R].武警黄金第三支队,2006。
    [23]武警黄金第三支队.黑龙江省上黑龙江凹陷中西段岩金成矿预测研究报告[R].武警黄金第三支队,1996.
    [24]黑龙江省漠河县砂宝斯金矿控矿条件及赋存规律研究[R].武警黄金地质研究所,1996.
    [25]卫万顺、张宇辉,金矿床模型[M].中国大地出版社,2005.
    [26]王晓勇,王献忠,金同和,梁海军,怀宝峰.吉南复兴村金矿床地质特征及控矿因素[J].桂林工学院学报.2008.11
    [27]杨言辰,马志红,杨宝俊.中国北方古元古代成矿带矿床成矿系列研究[M].吉林人民出版社.2002
    [28]武广.大兴安岭北部区成矿背景与有色、贵金属矿床成矿作用[J].吉林大学,2006。
    [29]齐金忠等大兴安岭北部砂宝斯蚀变砂岩型金矿床地质特征[J].矿床地质,2000。
    [30]梁海军等黑龙江省砂宝斯金矿床成矿模式探讨[J].2007。
    [31]Hugh R.Rolliso岩石地球化学[M].中国科学技术大学出版社
    [32]陈毓川.矿床成矿系列[J].地学前缘.1994,(3):90-94
    [33]程裕淇,陈毓川,赵一鸣,等.初论矿床成矿系列问题[J].中国地质科学院院报,1979,1(1):32-58
    [34]程裕淇,陈毓川,赵一鸣,等.再论矿床的成矿系列问题[J].中国地质科学院院报,1983,(6):1-64
    [35]贾伟光,王晓勇,张春辉等.黑龙江砂宝斯金矿成矿流体性质研究.[J].地质与资源,2004,13(3):148-151
    [36]王献忠,舒本耀,梁海军,陈满等.大兴安岭北部砂宝斯金矿床控矿因素及成因[J].黄金地质,2003,09.
    [37]刘建明,张锐,张庆洲.大兴安岭地区的区域成矿特点[J].地学前缘,2004,11(1):269-277
    [38]武广,孙丰月,朱群等上黑龙江盆地金矿床地质特征及成因探讨[J].矿床地质,2006,
    [39]杨言辰 王建 马志红.山西五台七图式沉积变质-热液叠加改造型砾岩金矿床[J].黄金,2001.07.
    [40]王可勇,姚书振,张均,吕新彪.川西北马脑壳金矿床流体包裹体研究与热液成矿机理探讨[J].岩石学报,2000.
    [41]吴国学.团结沟金矿床综合找矿标志研究[J].长春地质学报
    [42]卢焕章,范宏瑞。倪培等流体包裹体[M].科学出版社,2004.
    [43]刘斌,沈昆.流体包裹体热力学[M].北京:地质出版社,1999,1~290.
    [44]秦鼎等.中国金矿主要类型区域成矿条件[M].北京:地质出版社,1988,1~127.
    [45]韦永福,吕英杰等.中国金矿床[M].北京:地址出版社,1994,1~329.
    [46]陈毓川,李兆鼎,母瑞身等.中国金矿床及其成矿规律[M].北京:地质出版社,2001,1~465.
    [47]罗镇宽,关康等编著.中国金矿床概论[M].天津科学技术出版社,1993,1~308.
    [48]孙培基,韦永福等.当代中国金矿地质[M].北京:地质出版社,1996,1~363.
    [49]张贻侠,寸珪,刘连登等著.中国金矿床进展与思考[M].北京:地质出版社,1996,1~205.
    [50]邱家骧.岩浆岩岩石学[M].北京:地质出版社,1985,1~340.
    [51]银建钊.我国金矿床成矿理论研究现状[J].地质科技情报,1994,13(2):58~62.
    [52]袁见齐,朱上庆,翟裕生.矿床学[M].北京:地址出版社,1985,1~345.
    [53]成建勋,叶松青,丁枫,唐菊兴.藏东马牧普地区斑岩型铜金银多金属矿化带地球化学异常评价[J].世界地质,2005,12.
    [54]刘凤山,石准立.国外岩浆热液成矿理论研究现状与进展[J].地质科技情报,1994,13(2):75~80.
    [55]彭齐鸣,许虹.成矿理论研究现状及进展[J].世界地质,1993,(3):7~11.
    [56]王可勇,任云生,程新民,代军治.黑龙江团结沟金矿床流体包裹体研究及矿床成因[J].大地构造与成矿学.2004.05
    [57]唐文龙,杨言辰,李骞,毛向军.伊春前进地区岩浆岩的地球化学特征及其对成矿的制约[J].吉林大学学报.2007,37(1):41—47
    [58]葛文春,隋振民,吴福元等.大兴安岭东北部早古生代花岗岩锆石U—Pb年龄、Hf同位素特征及地质意义[J].岩石学报.2007,23(2):423—440
    [59]杨言辰.鹿鸣一前进地区多金属矿床成矿规律与成矿预测[R].项目报告.2006
    [60]王可勇,王力,刘正宏,汪建宇,张吉衡.辽宁高家堡子大型银矿流体包裹体及矿床成因[J].岩石学报.2008.
    [61]孙德有,吴福元,高山.吉林中部晚三叠世和早侏罗世两期铝质A型花岗岩的厘定及对吉黑东部构造格局的制约[J].地学前缘.2005,12(2):263—275
    [62]杨言辰.黑龙江小兴安岭—张广才岭成矿带金、多金属矿床成矿规律与成矿预测[R].项目报告.2005
    [63]刘培栋,杨言辰.辽宁尖山沟金矿床地质特征及成因探讨[J].黄金.2007.08
    [64]韩振新,徐衍强,郑庆道.黑龙江省重要金属和非金属矿产的成矿系列及其演化[M].黑龙江人民出版社.2004
    [65]李惠,张国义,禹斌.构造叠加晕模型及找矿效果[M].地质出版社,2006.1
    [66]孙德有.张广才岭中生代花岗岩成因及其地球动力学意义[D].吉林大学博士学位论 文.2001
    [67]王京彬,王玉往,王莉娟.大兴安岭中南段铜矿成矿背景及找矿潜力[J].地质与勘探.2000,36(5):1—4
    [68]李朝阳等著.中国铜矿主要类型特征及其成矿远景[M].地质出版社.2000
    [69]吴福元,曹林.东北亚地区的若干重要基础地质问题[J].世界地质.1999,18(2):1—13
    [70]侯敏,杜恒芳.小兴安岭南段—张广才岭成矿带主要金属矿床成矿系列的划分及区域成矿规律[J].黑龙江地质.1998,9(3):10—16
    [71]邱家骧,林景仟.岩石化学[M].北京:地质出版社.1991
    [72]王中刚,于学元,赵振华等.稀土元素地球化学[M].北京:科学出版社.1989,223—224
    [73]路远发.3eokit软件.长江大学地球化学系.2008
    [74]Singer. Donald A. Porphyry copper deposit density. Economic Geology.2005.100(3).p1637-1641.
    [75]Zheng. you-ye. Ore-forming fluid controlling minerallzation in Qulong super-large porphyry copper deposit, Tibet.Diqiu Kexue-Zhongguo Dizhida Daxue Xuebao/Earth Science-jlurnal of China University of Geosciences.2006.31(3).p349-354.
    [76]Han. Chunming. Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, central Asia. Ore Geology Reviews.v.2006,.29(1).p 77-94.
    [77]Li. Peilan. Yu. Xingzhen. Experimental Study Of The Principle Of Geochemical Potential Conservation Based On The Mineralization Of Duobaoshan Porphyry Copper Deposit. Zhongnan Kuangye Xueyuan Xuebao/Journal of Central-South Institute of Mining and Metallurgy.1987.18(4).p 380-384
    [78]Zheng. you-ye. Ore-forming fluid controlling minerallzation in Qulong super-large porphyry copper deposit, Tibet [J].Diqiu Kexue-Zhongguo Dizhida Daxue Xuebao/Earth Science-jlurnal of China University of Geosciences.2006,31(3):349-354.
    [79]Han. Chunming. Geological characteristics and genesis of the Tuwu porphyry copper deposit, Hami, Xinjiang, central Asia[J]. Ore Geology Reviews.v.2006,29(1):77-94.
    [80]Dengjun,Liuwei, S unzhongshi.et al. Evidence of mantle-rooted fluid and multi-level circulation ore-formingdynamics:A case study from the Xiadian gold deposit,Shangdong province.China. [J].Science in China(series D):2003,46:123-134.
    [81]Dengjun,Sunzhongshi,Wangqingfei,et al. Crust mantle structure and gold enrichment mechanismof mantle fluid system[J].Chinese journal of geochemistry,2003,22(3):263-270.
    [82]Dengjun,Wangqingfei,Sunzhongshi. Origin of gold bearing fluid and its initiative localization mechanism in Xiadian gold deposit,Shandong province[J].Chinese Journal of geochemistry.2002,21(3):282-288.
    [83]ARRIBAS A J, HEDENQUIST J W, ITAYA T, et al. Con-temporaneous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines[J].Ge-ology,1995,23:337-340.
    [84]DURR S B. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet) [J].Geol Soc Am Bull,1996,108:669-684.
    [85]ARRIBAS A Jr. Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluid[J].Mineralogical Association of Canada Short Course Series,1995,23:419-454.
    [86]Bischoff J L. Densities of liquids and vapors in boiling NaCl-H2O solutions:A PVTX summary from 300 to 500℃ [J]. America Journal of Science,1991.291:309~338.
    [87]ALL GRE C J, GIRARDEAU J, MARCOUX J,et al. Struc-ture and evolution of the Himalayan-Tibet orogenic belt[J].Na-ture,1984,307:17-22.
    [88]Bell D R. Water in mantle minerals [J]. Nature,1992,357:646-647.
    [89]Boyle R W. The geochemistry of gold and its deposit (together with a chapter on geochemical prospectingforthe element) [M]. Geological Sur-vey, Bulletin 280,1979.
    [90]DEFANT M J, DRUMMOND M S. Derivation of some modern arc magmas by melting of young subducted lithosphere[J].Na-ture,1990,347:662-665.
    [91]BLLSNLUK P M, HACKER B, GLODNY J, et al. Normal faulting in central Tibet since at least 13.5 Myr ago[J].Na-ture,2001,412:628-632.
    [92]Bloom M S. Chemistry of inclusion fluids:stockwork molybde-num deposits form Questa, New Mexico, Hudson Bay Mountain,and Endako, Bristish Columbia[J]. Econ. Geo,1981,6:1906-1920.
    [93]Ai Y F and Feng R Z. Mo-bearing granitic material sources and genetic type of Yangjiazhangzi-Lanjiagou area[J]. Henan Geol.,1985, (Supp.):198~204 (in Chinese)
    [94]BABCOCK R C J, BALLANTYNE G H, PHILLIPS C H.Summary of the geology of the Bingham District, Utah[J].Arizona Geological Society Digest,1995,20:316-335.
    [95]CAMUS F, SILLTIOE R H, PETERSEN R. Andean copper deposits:New discoveries, mineralization style and metallogeny[J].Society of Economic Geologist, Special Publications,1996, 5:198.
    [96]Bondar B J. Revised equation and table for determining the freez-ing point depression of H2O_NaCl solutions. Geochemi Cosmochem Acta,1993.57:683-684.
    [97]Cerny P,Blevin P L,Cuney M,et al.Granite-related ore deposits[C]//Hedenquist J W,et al.Economic Geology 100th Anniversary Volume.Littleton:Society of Economic Geologists,Inc,2005:337-370.
    [98]Candela P A,Piccoli P M.Magmatic processes in the development of porphyry-type ore systems[C]//Hedenquist J W, et al.Economic Geology 100th Anniversary Volume.Littleton:Society of Economic Geologists, Inc.,2005:25-37.
    [99]Defant M J, Drummond M S. Derivation of some modern arc magmas by melting of young subduction lithosphere[J].Na-ture,1990,347:662-665.
    [100]CLARK G H. Panaguna copper-gold deposit[A]. HUGHES FE.Geology of the Mineral Deposits of Australia and Papua New Guinea[C]. Australia:Australian Institute of Mining and Metallurgy,1990.1807-1816.
    [101]COLEMAN M, HODGES K. Evidence for Tibetan Plateau up-lift before 14 Ma ago from a new minimum age for east-west ex-tension[J].Nature,1995,374:49-52.
    [102]CHEN W J, LI Q, HAO J, et al. Post crystallization thermal evolution history of Gangdese batholithic zone and its tectonic implication[J].Science in China,1999,42 (1):37-44.
    [103]Candela P A.Controls on ore metal ratios in granite-related ore systems:an experimental and computational approach[J].Transac-tions of the Royal Society of Edinburgh:Earth Sciences,1992,83:317-326.
    [104]COULON C, MALUSKI H, BOLLINGER C, et al. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet:39Ar/40Ar dating, petrological characteristics and geodynamic sig-nificance[J].Earth Planet Sci Lett,1986,79:281-302.
    [105]Chung S L, Liu D Y, Ji J Q, et al. Adakites from continental collision zones:Melting of thickened lower crust beneath southern Tibet[J].Geology,2003.
    [106]Beus A, Grigorian S V. Gechemical Exploration Methods For Mineral Deposits (M) Moscow:Applied publishing LTD,1975:124~127。
    [107]DEWEY J F, SHACKELTON R M, CHANG C, et al. The tectonic evolution of the Tibetan plateau[J].Phil Trans RoySoc Lond,1988, A327:379-413.
    [108]Defant M J, Drummond M S, Mount St. Helens:potential example of the partial melting of the subducted lithosphere in a volcanic arc[J]. Geology,1993,21:547-550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700