TiO_2纳米管阵列和纳米线的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛是一种n型宽带隙无机半导体材料,在太阳能的光电转换、光催化水解制氢和气敏、湿敏传感器等方面都有着广泛的应用前景。本论文主要对TiO_2纳米管制备和掺杂规律、光吸收和湿敏特性,以及TiO_2和Na_2Ti_3O_7纳米线的制备和湿敏性能进行了研究,并获得了一系列有意义的结果。
     采用电化学阳极氧化法,以氢氟酸和磷酸的水溶液作为电解液,在金属Ti片表面制备了TiO_2纳米管阵列膜。考察了反应时间、电压,磷酸浓度等因素对TiO_2纳米管结构、形貌和性能的影响。用XRD、FESEM、TEM和UV-vis等手段对其进行了表征,发现:通过反应电压和时间的控制可以制备出形貌均匀、完整的纳米管阵列。经过不同温度处理以后,随着温度的提高TiO_2由无定形结构依次转变为锐钛矿和金红石相结构。UV-vis光吸收的测试表明,P的掺杂可使TiO_2纳米管阵列的吸收边红移。将这种TiO_2纳米管阵列薄膜设计成湿敏传感器,并测试了其湿敏性能,结果表明在600℃温度下退火的样品灵敏度最高,在相对湿度为11-95%的范围内,电阻变化达2个数量级。
     采用水热法,以钛酸丁酯为前驱物制备出Na_2Ti_3O_7纳米线,经过酸化和高温煅烧以后可以得到TiO_2纳米线。Na_2Ti_3O_7纳米线,长度在几微米到几十微米范围,平均直径为100nm左右。酸化以后转变成H2Ti3O7纳米线,进一步高温处理最终得到TiO_2纳米线。通过对TiO_2和Na_2Ti_3O_7纳米线分别进行湿敏性能测试,发现Na_2Ti_3O_7纳米线性能最好,具有响应速度快、灵敏度高、重复性好等特点。
TiO_2,with a wide direct band gap 3.0eV(rutile) and 3.2eV(anatase), is an important n-type semiconducting material. High-aspect-ratio TiO_2 nanotubes and nanowires who possess favorable photocatalyse and sensing properties, are attracting broad attention. In this thesis,we thesis,we prepare TiO_2 nanotubes films and investigate their optical absorption and humidity sensing properties; synthesize TiO_2 and Na_2Ti_3O_7 nanowires and study their humidity sensing properties. A series of important results are obtained.
     In this paper, high-ordered P-doped TiO_2 nanotube arrays films with the tube diameters of 20-100nm have been prepared by electrochemical anodize method in the mixture electrolyte of HF and H3PO4. Through the measurements of TiO_2 nanotubes films by scanning electron microscopy(SEM) and X-ray diffraction, it was found that the TiO_2 nanotubes we prepared is uniformed and ordering tubes arrays. The tubes vertically growth on the Ti plate, and parallel each other. FESEM micrographs show that the tube diameters are increased with the increasing voltages. The diameters of tubes formed in 1% H3PO4 and 0.5% HF, at 10V, 15V, 20V and 25V for 2h, are about 20nm, 70nm, 100nm and110nm. When the voltages increase to 27.5V and 30V, the nanotubes morphologies are destroyed. The TiO_2 nanotubes formed in 1% H3PO4 and 0.5% HF at 20V voltage for 2h are uniform and arranged orderly, so it is the perfect condition for the synthesization of TiO_2 nanotubes. The unannealed nanotubes is amorphous, the sample annealed at 300℃is anatase and the rutile appears in the sample annealed at 600℃.With the increasing the amount of H3PO4 from 1% to7%, the primary peak of anatase shifts from 25.43°to 25.3°.
     The studies on optical absorptions of the TiO_2 nanotubes indicate many conclusions. The optical absorption edge of the sample formed in 1% H3PO4 and 0.5% HF shows t red-shift comparing with that of the sample formed in 0.5% HF. This phenomenon indicates that the use of H3PO4 could change of band gap of TiO_2 and further induce the red-shift of the optical absorption edge. With the increasing voltage, the optical absorption edge also show obvious red-shift. The possible reason is the applied voltage could influence the dopant in the TiO_2, and induce the optical absorption edge shifting to longer wavelength. The absorption in ultraviolet area is obviously enhanced with more H3PO4 being used.
     The studies on the humidity sensing properties of the sensor made of TiO_2 nanotube arrays show the conclusion as follow: The novel sensor based on TiO_2 nanotube arrays is effective. The sensors based on the samples annealed at 400℃, 500℃and 600℃show different response to the change of relative humidity. The sample annealed at 600℃show the highest sensitivity with the two roders change in resistance at 11-95 % RH.
     TiO_2 and Na_2Ti_3O_7 nanowires were synthesized by a simple hydrothermal method. Through the measurements of FESEM and TEM, it is found that the nanowires are of typical lengths ranging from several micrometers to several tens of micrometers. The average diameter of the nanowires is found to be about 100 nm, some nanowires form bundles of~500 nm in diameter and some of the nanowires lay close to each other to form bundles. The XRD patterns show the direct production of hydrothermal reaction is Na_2Ti_3O_7 nanowires, after treating by dilute HCl, the H+ replace the Na+ to form the H2Ti3O7 nanowires. The H2Ti3O7 nanowires which is annealed at high temperature would change to TiO_2 nanowires.
     We fabricated the humidity sensors based on TiO_2 and Na_2Ti_3O_7 nanowires.and investigated the humidity sensing properties of these sensors. It is found that both the two sensor show high sensitivity to the change of relative humidity from 11 to 95% at low frequencese. The response time of TiO_2 and Na_2Ti_3O_7 nanowires sensors is 9s and 5s, the recovery time is 13s and 6s. It indicates that the Na_2Ti_3O_7 nanowires shows more rapid response to the humidity change than TiO_2 nanowires. There are not obvious change on sensitivity, response and recovery time of Na_2Ti_3O_7 nanowires sensors, which indicate its humidity sensing properties is better than TiO_2 nanowires sensor. It can be noted that the sensing element exhibits a narrow hysteresis loop during cyclic humidity operation. The maximum humidity hysteresis is around 3% RH under about 80% RH, <5%, is up to the mustard of the normal humidity sensor. In the test of humidity response of the sensor at different temperatures, the curves of resistance vs. humidity show parallel shift. The average temperature coefficient between 15 and 35 oC is about 0.2 % RH / oC in the humidity range of 11–95 % RH. But there is no obvious change on the sensitivity, response and recovery time.
引文
[1]唐小真.材料化学导论高等教育出版社1997, p1.
    [2] W.P.Halperin. Quantum size effects in metal particles,Rev.of Modern Phys.,1986,58(3):533-607
    [3] R.Kubo, A.Kawabata, and S.Kobayashi. Electronic Properties of Small Parties, Annu.Rev.Mater.Sci.14,49-66,1984
    [4] P.Ball, L.Garwin. Science at the atomic scale,Nature,1992,355(6363):761-766
    [5] Halperin W.P., Rev.of Mordern Phys., 1986,58.532.
    [6] Ball P., Garwin L, Nature, 1992, 355, 761.
    [7]张立德,牟季美.纳米材料和纳米结构科学出版社2001,p60.
    [8] D.D.Awschalom , D.P.DiVincenzo , and J.F.Smyth. Macroscopic quantum effects in nanometer-scale magnets,Science,1992,258(5081):414-421
    [9] A.D.Kent,S. von Molnár, Molnar,S.Gider,and D.D.Awschalom, Properties and measurement of scanning tunneling microscope fabricated ferromagnetic particle arrays,J.Appl.Phys.1994,76(10):6656-6660
    [10] Alivisatos A.P., Barbara P. F., Castleman A. W., Chang J., Dixon D. A.,Klein M.L., Mclendon G. L., Miller J. S., Ratner M. A., Rossky P. J., Stupp S.I.,Thompson M. E., From Molecules to Materials: Current Trends and Future Directions, Adv. Mater. 1998, 10, 1297.
    [11] Simons PY, Dachille F. The structure of TiO2 (Ⅱ) , a high-pressure phase of TiO2 [J]. Acta cryst. 23(1967):334.
    [12] Latroche M, Brohan L, Marchand R, tournoux M. New hollandite oxides: TiO2(H) and K0.06TiO2[J]. Solid State Chem..,81(1989):78
    [13]马国斌,李齐,朱健民,刘治国,闵乃本,冯端TiO2纳米材料中的多重孪晶研究[J].人工晶体学报。29(5):256
    [14]樊美公等著.光化学基本原理与光子学材料科学.北京:科学出版社,2001
    [15] Nenov T, Yordanov S., Ceramic Sensor Device Materials, Sensor and Actuators. 1992,B (8):117-122.
    [16] Roy Morrison S.赵壁英译。表面物理化学[M].北京:北京大学出版社,1984.53-80.
    [17] Yasuhiro Shimizu. J. Electrochem. 1989,136(120:3868.
    [18] A. Fujishima, K. Honda, Nature 238 (1972) 37–41.
    [19] K.S. Raja, V.K.Mahajan,M.Misra, J. Power Sources 159 (2006) 1258–1265.
    [20] JongHyeok Park, SungwookKim,Allen J. Bard,Nano Lett. 6 (2006) 24–28.
    [21] Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes, Nano Lett. 5 (2005) 191–195.
    [22] M. R. Hoffmann, S. T. Martin, W. Choi, D. W. Bahnemannt, Chem. Rev. 95 (1995) 69.
    [23] M. Addamo, M. Bellardita, A. D. Paola and L. Palmisano, Chem. Commun. (2006) 4943.
    [24] A. D. Paola, M. Addamo, M. Bellardita, E. Cazzanelli, L. Palmisano, Thin Solid Films 515 (2007) 3527.
    [25] C. C. Liu, Y. H. Hsieh, P. F. Lai, C. H. Li, C. L. Kao, Dyes Pigm. 68 (2006) 191.
    [26] J. M. Wu, Environ. Sci. Technol. 41 (2007) 1723.
    [27] T.Y. Peng, A. Hasegawa, J.R. Qiu, K. Hirao, Chem. Mater. 15 (2003) 2011–2016.
    [28] M. Zhang, Y. Bando, K. Wada, J. Mater. Sci. Lett. 20 (2001) 167–170.
    [29] W.Z. Wang, O.K. Varghese, M. Paulose, C.A. Grimes, Q.L. Wang, E.C. Dickey, J. Mater. Res. 19 (2004) 417–422.
    [30] O.K. Varghese, D.W. Gong, M. Paulose, C.A. Grimes, E.C. Dickey, J. Mater. Res. 18 (2003) 156–165.
    [31] G.K. Mor, O.K. Varghese, M. Paulose, N. Mukherjee, C.A. Grimes, J. Mater. Res. 18 (2003) 2588–2593.
    [32] Gopal K. Mor, Karthik Shankar, Maggie Paulose, Oomman K. Varghese, Craig A. Grimes, Nano Lett. 6 (2006) 215–218.
    [33] J. Choi, et al., Electrochim. Acta 49 (2004) 2645.
    [34] V. Zwilling, et al., Electrochim. Acta 1999; 45921.
    [35] B. Yang, et al., Biomaterials 25 (2004) 1003.
    [36] Y.-T. Sul, et al., Med. Eng. Phys. 23 (2001) 329.
    [37] R. Beranek, H. Hildebrand, P. Schmuki, Electrochem. Solid-State Lett. 2003, 6, B12.
    [38] D. Gong, C. A. Grimes, O. K. Varghese, W. Hu, R. S. Singh, Z. Chen, E. C. Dickey, J. Mater.Res. 2001, 16, 3331.
    [39] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, Electrochim. Acta 1999, 44, 921.
    [40] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes, Adv. Mater. 2003, 15, 624.
    [41] J. M. Macak, K. Sirotna, P. Schmuki, Electrochim. Acta, in press.
    [42] Paulose M, Shankar K, Yoriya S, Prakasam H E, Varghese O K, Mor G K, Latempa T A, Fitzgerald A and Grimes C A 2006 J. Phys. Chem. B 110 16179
    [43] J. G. Yu, J. C. Yu, B. Cheng, X. J. Zhao, Z. Zheng, A. S. K. Li, J. Sol-Gel Sci. Technol. 24 (2002) 229.
    [44] Jimmy C. Yu, Xinchen Wang, Xianzhi Fu,Chem. Mater. 2004, 16, 1523-1530
    [45] J. M. Wu, M. Antonietti, S. Gross, M. Bauer, B. Smarsly, Chem. Phys. Chem 9 (2008) 748.
    [46] Q. H. Zhang, L. Gao, J. K. Guo, J. Eu. Ceram. Soc. 20 (2000) 2153.
    [47] J. M. Wu, J. F. Liu, S. Hayakawa, K. Tsuru, A. Osaka, J. Mater. Sci. Mater. Med. 18 (2007) 1529.
    [48] E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, J. Am. Chem. Soc. 126 (2004) 7790.
    [49] F. Xiao, K. Tsuru, S. Hayakawa, A. Osaka, Thin Solid Films 441 (2003) 271.
    [50] J. M. Wu, S. Hayakawa, K. Tsuru, A. Osaka, Thin Solid Films 414 (2002) 275.
    [51] Yu Guo, Xi-wen Zhang , Wei-Hao Weng, Gao-rong Han, Thin Solid Films 515 (2007) 7117–7121.
    [52] S. Daothong, N. Songmee, S. Thongtem, P. Singjai, Scr. Mater. 57 (2007) 567.
    [53] J. J. Wu, C. C. Yu, J. Phys. Chem. B 108 (2004) 3377.
    [54] Xinsheng Peng,Aicheng Chen Adv. Funct. Mater. 2006, 16, 1355–1362.
    [55] J. M. Wu, B. Qi, J. Phys. Chem. C 111 (2007) 666.
    [56] J. M. Wu, B. Qi, J. Am. Cream. Soc. 91 (2008) 3961.
    [57] O. K. Varghese, D. Gong, M. Paulose, K. G. Ong, E. C. Dickey, C. A. Grimes, Adv. Mater. 15 (2003) 624.
    [58] Maggie Paulose, Karthik Shankar, Sorachon Yoriya, Haripriya E. Prakasam, Oomman K. Varghese, Gopal K. Mor, Thomas A. Latempa, Adriana Fitzgerald, and Craig A. Grimes,J. Phys. Chem. B 2006, 110, 16179-16184
    [59] Frank A J, Kopidakis N and van de Lagemaat J 2004 Coord. Chem. Rev. 248 1165
    [60] Mor G K, Shankar K, Paulose M, Varghese O K and Grimes C A 2006 Nano Lett. 6 215
    [61] Paulose M, Varghese O K, Mor G K, Grimes C A and Ong K G 2006 17 398
    [62] Varghese O K, Yang X, Kendig J, Paulose M, Zeng K, Palmer C, Ong K G and Grimes C A 2006 Sensor Lett. 4 120
    [63] Mor G K, Varghese O K, Paulose M and Grimes C A 2003 Sensor Lett. 1 42
    [64] Mor G K, Shankar K, Paulose M, Varghese O K and Grimes C A 2005 Nano Lett. 5 191
    [65] Varghese O K, Paulose M, Shankar K, Mor G K and Grimes C A 2005 J. Nanosci. Nanotechnol. 5 1158
    [66] Macak J M, Barczuk P J, Tsuchiya H, Nowakowska M Z, Ghicov A, Chojak M, Bauer S, Virtanen S, Kulesza P J and Schmuki P 2005 Electrochem. Commun. 7 1417
    [67] Jong Hwa Jung,? Hideki Kobayashi, Kjeld J. C. van Bommel, Seiji Shinkai, Toshimi Shimizu,Chem. Mater., 2002, 14, 1445-1447
    [68] Xiaoxu Li, Yujie Xiong, Zhengquan Li, Yi Xie,Inorg. Chem. 2006, 45, 3493-3495
    [69] Dmitry V. Bavykin, Valentin N. Parmon, Alexei A. Lapkin,Frank C. Walsh,J. Mater. Chem., 2004,14 ,3370– 3377
    [70]Holger Strohm,Peer Lo¨bmann,J. Mater. Chem., 2004, 14, 138– 140
    [71] A. Mils, G. Hill, S. Bhopal, I.P. Parkin, S.A. O‘Neill, Thick titanium dioxide films for semiconductor photocatalysis, J. Photochem. Photobiol. A. 160 (2003) 185.
    [72] A. Fujishima, K. Honda, S. Kikuchi, Photosensitized electrolytic oxidation on TiO2 semiconductor electrode, Chem. Soc. Jpn. 72 (1969) 108.
    [73] A. Fujishima, K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode, Nature 238 (1972) 37.
    [74] G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Enhanced Photocleavage of Water Using Titania Nanotube Arrays, Nano Lett. 5 (2005) 191.
    [75] R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. imohigoshi, Watanabe, Light-induced amphiphilic surfaces, Nature 338 (1997) 388.
    [76] K. Zakrzewska, M. Radecka, M. Rekas, Effect of Nb, Cr, Sn additions on gas sensing properties of TiO2 thin films, Thin Solid Films 310 (1997)161.
    [77] A. Rothschild, F. Edelman, Y. Komem, F. Cosandey, Sensing behavior of TiO2 thin films exposed to air at low temperatures, Sens. Actuat. B 67 (2000) 282.
    [78] D. Gong, C. A. Grimes, O. K. Varghese, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16 (2001) 3331.
    [79] S. T. Martin, C. L. Morrison, M. R. Hoffmann, Photochemical Mechanism of Size-Quantized Vanadium-Doped TiO2 Particles, J. Phys. Chem. 98 (1994) 13695.
    [80] S. Klosek, D. Raftery, Visible Light Driven V-Doped TiO2 Photocatalyst and Its Photooxidation of Ethanol, J. Phys. Chem. B 105 (2001) 2815.
    [81] E. Barborini, A. M. Conti, I. Kholmanov, P. Piseri, A. Podesta, P. Milani, C. Cepek, O. Sakho, R. Macovez, M. Sancrotti, Nanostructured TiO2 Films with 2 eV Optical Gap, Adv.Mater. 17 (2005) 1842.
    [82] D. E. De Vos, M. Dams, B. F. Sels, P. A. Jacobs, Ordered mesoporous and microporous molecular sieves functionalized with transition metal complexes as catalysts for selective organic transformations, Chem. Rev. 102 (2002) 3615.
    [83] J. C.Yu, W. Ho, J. Yu, H. Yip, P. K. Wong, J. Zhao, Efficient Visible-Light-Induced Photocatalytic Disinfection on Sulfur-Doped Nanocrystalline Titania, Envion. Sci. Technol. 39 (2005) 175.
    [84] T. Ihara, M. Miyoshi, Y. Iriyama, O. Matsumoto, S. Sugihara, Visible-light-active titanium oxide photocatalyst realized by an oxygen-deficient structure and by nitrogen doping, Appl. Catal. B: Environ. 42 (2003) 403.
    [85] Xinchen Wang, Jimmy C. Yu, Chunman Ho, Yidong Hou, Xianzhi Fu, Photocatalytic Activity of a Hierarchically Macro/Mesoporous Titania, Langmuir 21 (2005) 2552–2559.
    [86] J.M. Macak, H. Tsuchiya, P. Schmuki, High-Aspect-Ratio TiO2 Nanotubes by Anodization of Titanium, Angew. Chem. Int. Ed. 44 (2005) 2100 .
    [87] Y. Shimizu, M. Shimabukuro, H. Arai, T. Seiyama, Chem. Lett. 7 (1985) 917.
    [88] J.G. Fagan, V.R.W. Amarakoon, Am. Ceram. Soc. Bull.72 (1993) 119.
    [89] D.G. Yarkin, Sens. Actuators 107 (2003) 1–6.
    [90] F. Tailoka, D.J. Fray, R.V. Kumar, Solid State Ionics 161 (2003) 267.
    [91] L. Gu, Q.-A. Huang, M. Qin, Sens. Actuators B 99 (2–3) (2004) 491.
    [92] C. Cantalini, M. Pelino, J. Am. Ceram. Soc. 75 (1992) 546.
    [93] W.S. Wang, A.V. Virkar, Sens. Actuators B 98 (2004) 282.
    [94] P. Kronenberg, P.K. Rastogi, P. Giaccari, H.G. Limberger, Opt. Lett. 27 (2002)1385.
    [95] L. Xu, J.C. Fanguy, K. Soni, S. Tao, Opt. Lett. 29 (2004) 1191.
    [96] T.L. Yeo, T. Sun, K.T.V. Grattan, D. Parry, R. Lade, B.D. Powell, Sens. Actuators B 110 (2005) 148.
    [97] Ishibashi K, Nosaka Y, Hashimoto K, et al. [J]. Phys Chem B, 1998, 102: 50.
    [98] Regan B O’, Graezel M. [J]. Nature,1991,352:737.
    [99] Ha N K, Mamoru M, Koinuma H, et al. Open air plasma chemical vapor deposition of highly dielectric amorphous TiO2 films, Appl Phys Lett, 1996,68:2965.
    [100] Sirghi L, Aoki T, Hatanaka Y, et al, Hydrophilicity of TiO2 thin films obtained by radio frequency magnetron sputtering deposition, Thin Solid Films, 2002,422:55.
    [101] Garzella C, Comini E, Tempesti E, et al. TiO2 thin films by a novel sol–gel processing for gas sensor applications, Sens Actuators B, 2000,68:189.
    [102] Kang B C, Lee S B, Boo J H. [J]. Surf Coat Technol, 2000,131:88.
    [103] V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, Electrochim.Acta 45 (2001) 921.
    [104] Kulwicki B M, Novel flexible resistive-type humidity sensor, J. Am. Ceram. Soc. 1991 (74): 697-708.
    [105] Kong J, Franklin N R, Zhou C W, et al, Nanotube Molecular Wires as Chemical Sensors, Science, 2000 (287): 622-625.
    [106] P. Qi, Q. Vermesh, M. Grecu, A. Javey, Q. Wang, H. Dai, S. Peng, K.J. Cho, Toward Large Arrays of Multiplex Functionalized Carbon Nanotube Sensors for Highly Sensitive and Selective Molecular Detection, Nano Lett. 3, 347 (2003).
    [107] Cui Y, Wei Q, Park H, et al, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 2001, 293: 1289.
    [108] Liu Z, Yamazaki T, Shen Y, et al, Room temperature gas sensing of p-type TeO2 nanowires, Appl. Phys. Lett. 2007 (90):173119.
    [109] X. Y. Xue, Y. J. Chen, Y. G. Wang, T. H. Wang, Synthesis and ethanol sensing properties of ZnSnO3 nanowires, Appl. Phys. Lett. 86, 233101 (2005).
    [110] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, C. L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors, Appl. Phys. Lett. 84, 3654(2004).
    [111] Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, X. G. Gao, J. P. Li, Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires, Appl. Phys. Lett. 84, 3085 (2004).
    [112] Q. Kuang, C.S. Lao, Z. L. Wang, Z.X. Xie, L. Zheng, High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire, J. Am. Chem. Soc. 129, 6070 (2007).
    [113] I.D. Kim, A. Rothschild, B. H. Lee, D. Y. Kim, S. M. Jo, H. L. Tuller, Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers, Nano Lett . 6, 2009 (2006).
    [114] Kuang Q, Lao C S, Wang Z L, et al High-Sensitivity Humidity Sensor Based on a Single SnO2 Nanowire [J]. J. Am. Chem. Soc. 2007 (129): 6070-6071.
    [115] Kim I D, Rothschild A, Lee B H, et al Ultrasensitive Chemiresistors Based on Electrospun TiO2 Nanofibers [J]. Nano Lett . 2006 (6): 2009-2013.
    [116] Wan Q, Li Q H, Chen Y J, et al, [J]. Appl. Phys. Lett. 2004, 84: 3085.
    [117] D.U. Kim, M.S. Gong, Sol–gel processing of In-doped CaZrO3 solid electrolyte and the impedimetric sensing characteristics of humidity and hydrogen, Sens. Actuators B 110, 321 (2005).
    [118] S.A. Patil, L.A. patil, D.R. Patil, G.H. Jain, M.S. Wagh, Fe2O3-activated Cr2O3 thick films as temperature dependent gas sensors, Sens. Actuators B 123, 233 (2007).
    [119] C.H. Han, D.W. Hong, I.J. Kim, J. Gwak, S.D. Han, K.C. Singh, Synthesis of Pd or Pt/titanate nanotube and its application to catalytic type hydrogen gas sensor, Sens. Actuators B 128, 320 (2007).
    [120]Mingdeng Wei, Yoshinari Konishi, Haoshen Zhou, Hideki Sugihara, Hironori Arakawa, A simple method to synthesize nanowires titanium dioxide from layered titanate particles, Chemical Physics Letters 400 (2004) 231–234.
    [121] Schaub R, Thostrup P, Lopez N, et al Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110) [J]. Phys. Rev. Lett. 2001, 87: 266104/1-266104/4.
    [122]架桂冬,张金铎,金欢阳等.传感器与应用.陕西:西安电子科技大学出版社,2002。
    [123]全宝富,邱法斌.电子功能材料及元器件.吉林:吉林大学出版社,2001。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700