绿豆酶法水解特性及全绿豆新型饮品的开发研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
绿豆汤在我国甚受欢迎,是我国人民消暑、解渴的主要传统饮品之一,然而目前市场上还没有令人满意的相关产品。本文以酶法水解为主要手段,开发两种绿豆饮料新产品——全绿豆速溶固体饮料和全绿豆仿乳固体饮料,并从实用与理论相结合的角度出发,就产品开发过程中的关键问题进行研究,主要研究结果如下:
     采用粗纤维测定法、中性洗涤纤维测定法、酸性洗涤纤维测定法以及改良的Southgate法分别测定了绿豆中的纤维含量,测定结果分别为5.812%,10.56%,6.921%和12.62%,测定结果从大到小依次为:改良的Southgate法>中性洗涤纤维测定法>酸性洗涤纤维测定法>粗纤维测定法。首次分析了改良的Southgate法分析绿豆纤维素的具体条件,并分析了绿豆膳食纤维组成及其在绿豆皮和子叶中的分布情况:(1)绿豆含膳食纤维12.62%,其中水溶性非消化性多糖、水不溶性非纤维素多糖、纤维素及木质素含量分别为0.8473%、6.272%、4.361%和1.143%;(2)绿豆皮含膳食纤维64.56%,其中水溶性非消化性多糖、水不溶性非纤维素多糖、纤维素和木质素含量分别为9.063%、9.183%、32.84%和13.47%;(3)绿豆中豆皮的干物质含量为8.42%,但它含有绿豆43.07%的膳食纤维,而且绿豆水溶性非消化性多糖和木质素90%以上都来自豆皮。
     建立了绿豆在20℃~40℃时的吸水动力学模型:
     y=f(x,T)=(0.0697×T~2-4.8181×T+134)ln(x)-0.5069×T~2+36.631×T-851.65
     式中,y为吸水百分率;x为浸泡时间,单位为min;T为浸泡温度,单位为℃。对20℃、25℃、30~C、35℃、和40℃下模型吸水进程进行拟合所得的总体回归系数r~2均大于0.99。吸水实验研究结果同时表明,无论采用室温浸泡还是高温浸泡,从吸水率角度考虑,热烫工序没有必要。
     首次研究了绿豆浸泡过程中Mg、Fe、Mn、Ca、Zn和Cu等微量元素的溶出情况。室温浸泡对Mg、Zn和Mn的含量没有明显影响,对Fe、Cu和Ca的含量影响相对明显但这种影响基本与浸泡时间及过程中绿豆状态(皮裂开与否)无关。热烫处理对浸泡过程中Fe和Ca的流失影响不显著,但对Mg、Cu、Zn及Mn的流失有加速作用,尤其加速Mg的损失,因此,从微量元素损失角度考虑,热烫工序不可取。水煮处理并没有很好地使绿豆中的微量元素溶于水中,即使煮沸45min至烂,绿豆中的Mn、Zn和Fe仍然很难进入水相,其提取率分别只有8.01%、18.0%、23.3%,其它三种微量元素除Mg之外,也有60%以上残留在渣中,因此,传统的“绿豆汁”工艺或只喝绿豆汤而弃其渣的习惯对绿豆中的微量元素利用率不高。
     确定了α-耐高温淀粉酶的最佳水解工艺条件,即:加酶量0.5%,酶解温度98℃,酶解时间3小时,pH6.2及底物浓度1∶8(绿豆∶水),淀粉提取率为96.34%。
     从氮收率和产物风味两个指标出发,考察了Alcalase 2.4L FG酶、复合蛋白酶、木瓜蛋白酶、风味蛋白酶对绿豆分离蛋白的水解特性。从水解度方面考虑,Alcalase 2.4L FG酶具有最高的氮收率,其次是木瓜蛋白酶、复合蛋白酶,风味蛋白酶的氮收率最低;从风味方面考虑,Alcalase 2.4L FG酶和木瓜蛋白酶水解产物均有苦味,而复合蛋白酶和风味蛋白酶水解产物无苦味;风味蛋白酶水解产物虽无苦味,却有明显的鲜味,不适合清爽型饮料开发。
     通过SAS软件进行响应面分析,建立了Alcalase 2.4L FG酶解绿豆蛋白工艺中酶浓度、水解温度、水解时间,底物浓度和pH值对水解度的数学模型(见表5.3)。Alcalase 2.4L FG酶水解绿豆蛋白工艺参数:酶浓度为0.21 mL·10 g~(-1)底物,反应温度54.7℃,反应时间1.52 hr,底物浓度11.28 g·100 mL~(-1)水,反应pH值8.8,在实验条件下,该酶催化水解绿豆蛋白反应的动力学参数如下:K_m=0.2057mol·L~(-1),V_(max)=0.2001 mol·hr~(-1)·L~(-1)。
     以提取绿豆渣水溶性纤维素量为指标,考察了Viscozyme L、Celluclast 1.5L以及两种酶的互配混合酶的水解效果。在开始7小时水解时间内,Celluclast 1.5L和互配混合酶的作用效果比Viscozyme L更好,但在后面的水解时间里,Viscozyme L的水解效果明显更佳,因此,选择Viscozyme L酶为本实验用酶。建立了Viscozyme L酶解绿豆渣提取水溶性纤维素的数学模型,如下:
     RE=44.482727+0.3741665x_1-3.1308335x_2-0.56000x_5-0.537727x_1~*x_1-0.471250x_2~*x_1-1.967727x_2~*x_2-0.261477x_3~*x_3+0.59125x_4~*x_3+0.30875x_5~*x_2
     式中,RE为纤维素提取百分率,x_1、x_2、x_3、x_4、x_5分别是水解时间、水解温度、酶用量、水解pH和水与底物质量比等因素的标准化参数。优化了工艺参数:酶解时间25.4小时、温度41.5℃、加酶量[E]/[S]0.0223mL·g~(-1)豆渣、pH4.64、水体积/绿豆渣干重13.1倍,该条件下,绿豆渣纤维素提取率为49.39%。
     采用原子吸收法分析了绿豆渣中的微量元素含量和绿豆渣在Viscozyme L酶水解过程中各微量元素溶出情况:绿豆渣中的各微量元素含量比绿豆中的高得多,通过Viscozyme L酶解,提取出了绿豆渣中63.05%的Mg、31.82%的Fe、33.00%的Cu、55.55%的Ca、59.36%的Zn和61.04%Mn,从微量元素角度说明了在绿豆饮料开发过程中水解绿豆纤维素的必要性。
     通过GC/MS分析了绿豆汤及绿豆分步酶解过程中的香气成分。经NISTO2数据库检索,确定绿豆汤十二种香气成分,分别是1-乙酯基-z,z-10,12-十六二烯、苯并噻唑、1,3,5,7,9-五乙基-环五硅氧烷、1,1,3-三甲基-1-硅烷基-环丁烷、2-溴代乙醇、1-氟十六烷、1,3-二丙氧基-十八烷烃、2,4,6-三甲基葵烷、4,6-二-特-丁基-m-甲酚、3-乙基甲基胺-丙腈、9-十四碳烯酸、2,2,4,4,5,5,7,7-八甲基-3,6-二氧-2,4,5,7-四硅辛烷。研究结果表明,绿豆汤香气清淡的原因来自两方面:一是本身所含香气成分种类少,二是各香气组分含量低。对分步酶解产物香气成分的GC/MS分析结果表明,酶解对绿豆香气成分改变不多。
     绿豆经水煮、淀粉酶水解、淀粉酶水解+蛋白酶水解、淀粉酶水解+蛋白酶水解+纤维素酶水解等四种处理方式对绿豆总黄酮的提取率(溶出率)依次是0.1745%、0.2157%、0.2424%和0.3056%;相对水煮,三步酶解处理方式的黄酮溶出量依次增加了23.6%、38.9%和75.1%。通过对这四种处理方式所得产物中总黄酮的HPLC/MS谱图分析,结果表明:在绿豆汤中得到8个HPLC峰,分子量依次为323.9、684.5、341.2、263.8、164.7、448.1、432.1和432.1,其中第2、5、6、7、8分子量的峰在其它三步酶解产物黄酮中均出现。
     绿豆极其分步酶解过程中的微量元素变化分析结果表明:(1)通过酶解,绿豆中Se、Cu、Zn、Mn、Fe的总提取率依次为97.79%、68.84%、51.84%、63.97%和30.40%,而水煮对各微量元素的提取率依次只有19.26%、36.22%、17.58%、7.85%和22.99%;(2)绿豆酶解产物中Se主要以有机态形式存在,其中蛋白酶解产物中Se有机态含量最高,其次是淀粉酶解产物,酶解产物中Se的有机态分布系数为60%左右,远大于绿豆汤中Se的有机态分布系数(3.64%);(3)绿豆酶解产物中Cu主要无机态形式存在,与绿豆汤中的存在形式相同;(4)绿豆酶解产物中Zn主要以有机态形分布系数为26.17%,绿豆汤中Zn的有机态分布系数只有6.64%,其中蛋白酶解产物中Zn有机态分布系数最高,其次是纤维素酶解产物;(5)绿豆汤中Mn元素几乎完全以无机态形式存在,而绿豆酶解产物中Mn的有机态形系数为14.76;(6)绿豆汤和绿豆酶解产物中Fe元素均以无机态形式存在。
     对绿豆及其分步酶解产物的氨基酸组成进行了分析,结果表明:(1)绿豆中17种氨基酸总含量为18.41%,其中含量在1.0%以上氨基酸的有天门冬氨酸、谷氨酸、精氨酸、缬氨酸、亮氨酸、苯丙氨酸、赖氨酸;蛋氨酸、半胱氨酸和组氨酸含量最低,不到0.1%;(2)总体上,氨基酸分布在蛋白酶解产物中的含量最高,其次是淀粉酶解产物,在残渣中的含量很低,仅占总氨基酸的2.1%,说明通过酶解工艺,氨基酸得到充分利用;(3)工艺加工给氨基酸带来了一定损失,损失比较严重的几种氨基酸依次是赖氨酸(50.97%)、丝氨酸(28.79%)、苯丙氨酸(20.11%)、甘氨酸(13.58%)和半胱氨酸(10.32%),其它氨基酸损失不显著,在10%以内;但总氨基酸的损失只有7.92%。
     采用HPLC对绿豆蛋白酶解产物分子量分布进行了分析:85%的蛋白酶解产物出峰时间在32.9min,分子量在301~612范围,产物苦味不重。
     采用正交试验设计优化了绿豆固体饮料调味配方,即:基料粉用量10%、蔗糖用量3%、多孔淀粉用量0.05%。采用正交试验设计优化了绿豆固体饮料的喷雾干燥条件,即:进风温度170℃,进料速度22.0mL·min~(-1),气流压力0.07Mpa,出风温度为95℃。产品呈亮黄绿色,清爽可口,甜香宜人,绿豆利用率达到92.1%。
     探讨了Alcalase 2.4LFG酶水解米渣蛋白的工艺条件(深度水解)为:温度T=60℃,pH=9,酶浓度([E]/[S])=0.033 mL·g~(-1)渣,底物浓度=0.0833 g·mL~(-1),水解时间=1 h,该实验条件下,Alcalase 2.4L FG是一种典型的蛋白构象比较稳定的米氏酶,该酶催化水解米渣蛋白反应的动力学参数如下:K_m=0.6598 mol·L~(-1),V_(max)=0.00351 mol·min~(-1)·L~(-1)。
     探讨了Alcalase 2.4LFG有限水解米渣蛋白的工艺条件(低度水解):温度T=60℃,pH=9.0,酶浓度为0.003 mL·g~(-1)渣,底物浓度10 g渣/120mL水,水解时间约为30min。在实验条件下,该酶催化反应的底物临界浓度为22.25g渣/120mL。在一定水解条件(0.003 mL·g~(-1)渣、pH值9.0、温度为60℃、反应时间不大于25min)下,Alcalase 2.4LFG酶催化有限水解米渣蛋白反应符合如下动力学模型:
     x=1/(37.76846)ln[1+(-0.0008[S]_0+0.0178)×37.76846×t]式中,x为水解度(%),[S]_0为底物初始浓度(g·mL~(-1)),t为水解时间(min)。通过有限水解,得到了高乳化性的米渣蛋白肽。
     研究了新型绿豆仿乳固体饮料制备工艺,建立了以“自制的酶法有限水解米渣蛋白肽(DH=4.59)+阿拉伯胶+单甘酯+蔗糖酯+大豆磷脂”为复合乳化剂的新乳化体系,其中米渣蛋白肽完全替代了价格昂贵的酪朊酸钠。优化了各工艺参数,并通过中试生产制备了新型全绿豆仿乳固体饮料(如图10.10),油脂包埋率达到95%以上。对所制备的全绿豆仿乳固体饮料新产品的理化指标、有害重金属元素含量、微生物指标进行了测定分析,结果表明,各项指标均符合相关要求。
     采用分形理论对SEM电子束轰击粉末油脂微胶囊表面产生应力裂纹进行了分析:(1)应力裂纹具有良好自相似性,可以采用分形维数进行定量分析;(2)在实验设计条件下,粉末油脂微胶囊经SEM电子束轰产生应力裂纹盒子维数与相应产品的油脂包埋率存在非常显著的二次关系,其中相关系数R~2=0.9969。这对微胶囊粉末油脂的质量评价和制备机理研究具有重要意义。
Mungbean soup is one of the most primary traditional drinks to remove summer-heat and to quench the thirst and is greatly popular in our country. But still, there is no good cognate product in the market. In this text, two new kinds of mungbean drinks were developed with enzymatic treatments: one is the whole mungbean solid beverage and the other is the whole mungbean juice-like milk solid beverage. And also, some significant problems in the process were discussed. The main results were as follows.
     Dietary fiber in mungbean was analyzed by four methods, such as crude fiber method, neutral detergent fiber method (NDF), acid detergent fiber method (ADF) and improved Southgate method. The results showed significant differences among these methods. The sequence of total fiber content from high to low was as follows: improved Southgate method> neutral detergent fiber method> acid detergent fiber method> crude fiber method. The improved Southgate method determining conditions were firstly studied with the mungbean as the substrate. The soluble non-digestive polysaccharide, insoluble non-digestive polysaccharide, cellulose, and lignin in mungbean and its spermoderm were determined by the improved Southgate method. The results were 0.8473%, 6.272%, 4.361%, 1.143% respectively and 9.063%, 9.183%, 32.84%, 13.47% respectively.
     The mungbean water absorbing kinetic model in 20℃to 40℃range was established as follow:
     y=f(x, T) = (0.0697×T~2 - 4.8181×T + 134) ln(x) -0.5069×T~2 + 36.631×T - 851.65 where y is the water absorbing percentage, x is soaking time in minutes, T is soaking temperature in centigrade. Regression coefficients in fitting experiments were above 0.99. Influence of blanching on water absorbing percentage was also studied and proved no significant value to improve the percentage.
     Dissolution properties of Mg, Fe, Mn, Ca, Zn, and Cu elements from mungbean in the course of soaking were studied. In room temperature, parts of Fe, Cu and Ca released in water when soaking, but the amounts got no significant influences of soaking time and seed states, whether its coat broken or not. While little Mg, Zn and Mn released in water in the course of soaking. Blanching accelerated dissolution of Mg, Cu, Zn and Mn, especially of Mg. Cooking treatment didn't release great amount of trace elements in water, except Mg. Only 8.01% Mn, 18.0% Zn and 23.3 %Fe were in water after 45 min boiling treatment.
     Optimization of mungbean starch hydrolysis conditions withα- amylase was studied by orthogonal design experiment with the following results, pH was 6.2, the hydrolytic time was 3h, temperature was 98℃, the substrate concentration was 1:8(mungbean to water), respectively. Starch extraction rate was 96.34%.
     The hydrolysis properties of mungbean protein with Alcalase 2.4L FG, protamex, caroid and flavourzyme were studied on the basis of nitrogen yield and product flavor. Alcalase 2.4L FG proved the first choice when nitrogen yield was considered, then were caroid, protamex and flavourzyme respectively. To product flavor aspect, Alcalase 2.4L FG and caroid got bitter-tastes while the others didn't. Protamex was relatively better than flavourzyme as a non-bitter-taste protease in developing bean beverage. Because the latter brought other uncomfortable taste. In short, Alcalase 2.4L FG was suited for getting highnitrogen yield and protamex was suited for improving flavor in mungbean protein hydrolysis.
     A mungbean protein hydrolysis kinetic model of Alcalase 2.4L FG was established with Second Order Regression Rotation Designing in SAS analysis System. The optimum hydrolysis conditions were got by Ridge of Maximum Response analysis with the following results, pH was 8.8, the hydrolytic time was 1.52h, temperature was 54.7℃, the substrate concentration was 11.28 g·100 ml~(-1), the enzyme concentration was 0.21 ml·10 g~(-1). the kinetic parameters of Km and Vmax were 0. 2057mol·L~(-1) and 0. 2001 mol·hr~(-1)·L~(-1).
     The hydrolysis characters of fiber in mungbean residues were studied with Viscozyme L, Celluclast 1.5L and compound of the two on the primary goal to improve fiber solubility. Viscozyme L behaved the best one in total. The kinetic model of the process of extraction soluble fibre from mungbean residue with Viscozyme L was established with Second Order Regression Rotation Designing in SAS analysis system and the result was as follow.
     RE= 44.482727 + 0.3741665x_1 - 3.1308335x_2 - 0.56000x_5 - 0.537727x_1*x_1 - 0.471250x_2*x_1 - 1.967727x_2*x_2 - 0.261477x_3*x_3 + 0.59125x_4*x_3 + 0.30875x_5*x_2 where RE was the soluble fiber extraction rate, x1, x2, x3, x4, and x5 stood for the normalized parameters of reaction time, temperature, enzyme concentration, pH and substrate concentration, respectively. The optimum hydrolysis conditions were as follows, pH was 4.6, the hydrolytic time was 25.4h, temperature was 41.5℃, the substrate concentration was 1:13.1 (residue to water), the enzyme concentration was 0.0223 ml·g~(-1) and the soluble fibre extraction rate was 49.39% in the repeated experiment. Also, the shift on the trace elements in the residue during the course of the process was analyzed. The extraction rates of trace elements were as follows, Mg 63.05%, Fe 31.82%, Cu 33.00%, Ca 55.55%, Zn 59.36%, Mn 61.04%.
     Twelve aroma compounds in mungbean were determined by GC/MS analysis and NIST02 index library. They were z, z-10, 12-Hexadecadien-1-ol acetate, benzothiazole, 1, 3, 5, 7, 9-Pentae-thylcyclopentasiloxane, 1, 1, 3-Trimethyl-1-silacyclo-butane, 2-bromo-ethanol, 1-flouro-dodecane, 1, 3-propanediylbis- octadecane, 2, 4, 6-trimethyl-decane, 4, 6-di-tert-butyl-m-cresol, 3-ethylmethy- lamin-propane-nittrile, myfistoleic acid and 2, 2, 4, 4, 5, 5, 7, 7-octamethyl-3, 6-dioxa-2, 4, 5, 7- tetra-silaoctane. It depended on both the lack of the quantity and content of aroma compounds which made mungbean aroma taste light. Aroma analysis of the enzymatic hydrolysates showed little change in aroma with enzymatic treatment.
     The extraction rates and HPLC/MS spectrum of total flavonoids were analyzed in mungbean with different treatments, such as cooking, amylase hydrolysis, amylase and protease hydrolysis, amylase and protease and cellulose hydrolysis. Total flavonoids extraction rates of the four treatments were 0.1745%, 0.2157%, 0.2425% and 0.3056%. To cooking treatment, the other enzymatic ones improved extraction rates over 23.6%, 38.9%, 75.1%. Eight peaks were got in the HPLC spectrum of flavonoids in mungbean soup and their molecular masses were analyzed to be 323.9, 684.5, 341.2, 263.8, 164.7, 448.1, 432.1 and 432.1, respectively. Among these, peak2, peak5, peak6, peak7 and peak8 appeared in other samples with enzymatic treatments.
     Trace elements speciation distributions in mungbean during enzymatic hydrolization were investigated with AFS-230E atom fluorescence photometer. The results showed: (1) Se, Cu, Zn, Mn and Fe elements total extraction rates by enzymatic hydrolization were 97.79%, 68.84%, 51.84%, 63.97% and 30.40%, respectively. (2) Se was mostly in organic form in the hydrolysates. Organic speciation was primarily in protease hydrolysate, and then in amylase hydrolysate. The distribution coefficient of Se in organic form was about 60 % in total enzymatic product and 3.64 % in mungbean soup. (3) Cu was in inorganic form in both mungbean hydrolysate and soup. (4) The distribution coefficient of Zn in organic form was about 26.17 % in total enzymatic product and 6.64 % in mungbean soup. Zn organic speciation was primarily in protease hydrolysate, and then in cellulase hydrolysate. (5) Mn was mainly in inorganic form in mungbean soup while there was 14.76% in total hydrolysates. (6) Fe was in inorganic form in both mungbean hydrolysate and soup.
     Amino acid compositions in mungbean and hydrolysis products were investigated. (1) Total amino acids content in mungbean was 18.14%. Aminouccinic acid, glutamic acid, arginine, aminoisovaleric acid, leucine, phenylalanine and lysine had contents above 1.0%. Methionine, halfcystine and histidine got lowest contents which were under 0.1%. (2) In total, most amino acids were. in protease hydrolysate, then were in amylase hydrolysate. Only 2.1% total amino acids was in the hydrolysis residue, which showed high utilization rate of amino acids by enzymatic hydrolysis process. (3) The process load to some loose in lysine(50.97), serine(28.79), phenylalanine(20.11%), glycocine(13.58) and halfcystine(10.32%). But total loose rate was only 7.92%.
     Exclusion chromatography analysis showed that 85% mungbean protein hydrolysate molecular weight rage was in 301 to 612, wthich indicated that mungbean protein was in oligopeptide form in product.
     Flavouring formula was optimized by orthogonal experiment design with results as follows, 10% mungbean hydrolysate, 3% sugar and 0.05% poIyporate starch. Spray drying process was also optimized by orthogonal experiment design with results as follows, inlet air temperature 170℃, outlet air temperature 95℃, feeding rate 22.0mL·min~(-1), air pressure 0.07MPa. The new product of whole mungbean beverage was relaxed and palatable, and with comfortable sweetness and aroma. The mungbean utilization rate in the whole process was 92.1%.
     The hydrolysis characters of rice residue protein were studied with Alcalase 2.4L FG in high hydrolysis degree and with the results as follows, pH was 9.0, the hydrolytic time was 1h, temperature was 60℃, the substrate concentration was 0.0833 g·ml~(-1), the enzyme concentration was 0.5 ml·g~(-1)(the enzyme was diluted to 10% concentration), the kinetic parameters of Km and Vmax were 0.6598mol·L~(-1) and 0.00351mol·hr~(-1)·L~(-1).
     A rice residue-protein hydrolysis kinetic model of Alcalase 2.4L FG was established with Second Order Regression Rotation Designing in SAS analysis system. The optimum hydrolysis conditions were got by Ridge of Maximum Response analysis with the following results, pH was 8.8, the hydrolytic time was 1.52h, temperature was 60℃, the substrate concentration was 11.28 g·100 ml~(-1), the enzyme concentration was 0.21 ml·10 g~(-1). the kinetic parameters of Km and Vmax were 0.2057mol·L~(-1) and 0.2001 mol·hr~(-1)·L~(-1).
     The hydrolysis characters of fiber in mungbean residues were studied with Viscozyme L, Celluclast 1.5L and compound of the two on the primary goal to improve fiber solubility. Viscozyme L behaved the best one in total. The kinetic model of the process of extraction soluble fibre from mungbean residue with Viscozyme L was established with Second Order Regression Rotation Designing in SAS analysis system and the result was as follow.
     The characters of rice residue protein limited hydrolysis were studied with Alcalase 2.4L FG in light hydrolysis degree and with the results as follows, pH was 9.0, the hydrolytic time was 30min, temperature was 60℃, the substrate concentration was 10 g·120ml~(-1)water, the enzyme concentration was 0.03 ml·120ml~(-1) water(the enzyme was diluted to 10% concentration). The critical concentration of the substrate was 22.25 g·120ml~(-1)water. A limited hydrolysis model of rice residue protein was established as follow.
     where x stood for hydrolysis degree, [S]_0 was substrate concentration, t was the reaction time.
     The rice protein peptid with good emulsibility was got with limited hydrolysis process.
     The process of new whole mungbean juice-like milk solid beverage was discussed and a pragmatic process flow was got in fig. 10. 10. In this process, a new emulsification system was established with rice residue peptide (DH=4.59) as the protein emulsifier. A good quality product was got in semi-works production with a microencapsulation efficiencie over 95%.
     The fractral analysis on cracks in microcapsule of powder oil occurred during SEM electron bean scanning was carried out. (1) The cracks could be regarded as having self-similarity, and could be studied according to fractal theory. (2) The fractal dimensions of the cracks showed second order relationship with the microencapsulation efficiencies of the products and the coefficient correlation was 0.9969. It indicated a new load to study on the quality evaluation and process mechanism of powder oil.
引文
[1] 李里特主编.食品原料学[M].中国农业出版社,200l(09):88.
    [2] J. P. Machaiah, M.D. Pednekar. Carbohydrate composition of low dose radiation-processed legumes and reduction in flatulence factors [J].Food Chemistry, 2002.79(3): 293-301.
    [3] 中国预防医学科学院营养与食品卫生研究所.食物成分表[M].北京:人民卫生出版 社.1991,6-7.
    [4] 江苏新医学院编:《中药大词典》.上海科学技术出版社.1977:167.
    [5] 赵守训,黄泰康,丁志尊.中药辞海(第三卷)[M].北京.中国医药科技出,1997,642-643。
    [6] 高兰兴,刘继鹏.实用营养学手册[M].北京:人民军医出版社.1997:181.
    [7] Pawan K. Jaiwal, Ragini Kumari, S. Ignacimuthu, Ingo Potrykus, Christof Sautter. Agrobacterium tumefaciens-mediated genetic transformation of mungbean (Vigna radiata L. Wilczek)-a recalcitrant grain legume [J]. Plant science, 2001, 161: 239-247.
    [8] G.S.S. Khattak, M. A. Haq, M. Ashraf, G. R. Tahir, E.U.K. Marwat. Detection of epistasis and estimation of additive and dominance components of genetic variation for synchrony in pod maturity in mung bean (Vigna radiata L. Wilczek ) [J]. Field crops research, 2001, 72(1): 211-219.
    [9] A. E. Mubarak. Nutritional composition and antinutritional factors of mung bean seeds (Phaseolus aurius) as affected by some home traditional processes [J]. Food chemistry, 2005, 89(2): 489-495.
    [10] Oplinger ES, Hardman LL, Kaminski AR, Combs SM, Doll JD, Mungbean Report Alternative Fieloversity of Wisconsin-Extension, University of Minnesota Center for Alternative Plant Animal Products, 1990, 4: 1-4.
    [11] 李敏.绿豆化学成分及药理作用的研究概况[J].上海中医药杂志.2001(5):47-49
    [12] C.Y.Lii,P.Tomasik.etc. Granular starches as dietary fibre and natural microcapsules. International Journal of Food Science and Technology.2003, 38(6): 677-685.
    [13] 武美莲.绿豆的营养和储藏[J].粮油食品科技.2002,10(6):42-43.
    [14] 曹维强,王静.绿豆综合开发及利用[J].粮食与油脂.2003(3):37-39.
    [15] 张恒,余纲哲.绿豆蛋白的提取和应用(上)[J].中国粮油学报.1990,5(3):112-115.
    [16] 张恒,余纲哲.绿豆蛋白的提取和应用(下)[J].中国粮油学报.1990,5(4):96-98.
    [17] 刘桂发 绿豆分离蛋白提取及其功能特性[J] 粮油食品科技1991,(6):112-114.
    [18] 王鸿飞,樊明涛 绿豆种子蛋白质和氨基酸组成特性的研究[J] 江苏理工大学学报2000,21(3):39-41.
    [19] Tomooka N. Center of Genetic Diversity and Dissemination Pathways in Mungbean Deduced from Seed Protein Electeophoresis [J].Theror Appl Genet, 1992, 83: 289-293.
    [20] Wolf. WJ, briggs D R. Ultracentrifugal inverdtigation of the effect of neutral salts on the extraction of soybean protein[J].arch biochem biophys, 1986, 63: 40-49.
    [21] H. Yamaguchi, Isolation and characterization of the subunits of Phaseolus vulgaris α-amylase inhibitor[J], J. Biochem.(Tokyo), 1991, 110: 785-789.
    [22] A. A. Kortt, J. B. Caldwell, Isolation and properties of the lectins from tuberous roots of winged bean Psophocarpus tetragonolobus (L)DC [J]. J. Sci. Food Agric, 1987, 39: 47-57.
    [23] N. Benhamou, K. Broglie, R. Broglie, I. Chet, Antifungal effect of bean endochitinase on Rhizoctonia solani: ultrastructual changes and cytochemical aspect of chitin breakdown[J]. Can. J. Microbiol, 1993, 39: 318-328.
    [24] R. Vogelsang, W. Barz, Purification, characterization and differential hormonal regulation of a β-1, 3-glucanase and two chitinases from chickpea (cicer arietinum L.)[J]. Planta, 1993, 189: 60-69.
    [25] Adsule RN, Kadam SS, Salunkhe DK, Chemistry and technology of gream gram (Vigna radiata L. Wilczek )[J], Crit Rev Food Sci Nutr, 1986, 25 (9): 73-105.
    [26] 赵守训,黄泰康,丁志尊.中药辞海(第三卷)[M].北京。中国医药科技出版,1997,642-643.
    [27] Kayo Watanabe, Yuji Ohori, Yukiharu Sato, Peter Boger, Ko Wakabayashi. Changes in fatty acid composition of neutral lipid in mung bean cotyledons by oxyfluorfen-induced peroxidation [J]. 2001, 69(1): 166-173.
    [28] Bandaru S. Reddy. Role of Dietary Fiber in Colon Cancer: An Overview [J]. The American Journal of Medicine, 1999, 106(1): 16-19.
    [29] Punna Ramulu, Paruchuri Udayasekhara Rao. Total, insoluble and soluble dietary fiber contents of Indian fruits [J]. Journal of Food Composition and Analysis, 2003, 16(6): 677-685.
    [30] Schweitzer, T. F., Edwards, C. A. Dietary fiber, nutritional function, health and disease—a component of food [M]. London, UK: Springer. 1992: 295-332.
    [31] Wayne H. Schwesinger, William E. Kurtin, Carey P. Page, et al. Soluble Dietary Fiber Protects against Cholesterol Gallstone Formation [J]. The American journal of surgery, 1999, 177(4): 307-310.
    [32] Joanne L. Slavin. Dietary fiber and body weight. Nutrition, 2005, 21(3): 411-418.
    [33] Christine L., Williams. Important of Dietary Fiber in Childhood [J]. Journal of the American Dietetic Association, 1995, 95(10): 1140-1147.
    [34] 李积华,郑为完,杨静等.绿豆膳食纤维的分析[J].食品研究与开发,2006,32(6):13-16.
    [35] 李积华,郑为完,周德红等.酶法提取绿豆渣水溶性纤维素及过程中微量元素含量变化分析研究[J].食品工业科技,2006,9:106-109.
    [36] Yamaoka Y., M. Takcuchi and Y. Morohashi. Purification and characterization of a cysteine endoprotease in cotyledons of germinated mung bean seeds [J]. Plant Physiol, 1990, 94 (2): 561-566.
    [37] 朱德煦.绿豆种子蛋白酶的研究[J].生物化学与生物物理学报,1963,3(2):139-146.
    [38] V.W. Padhye, D.K. Salunkhe. Studies on black gram ( Phasealus mungo L.) trypsin inhibitor[J], Food Biochem, 1980, 4: 119-138.
    [39] 李一莉,林晓红,崔大敷,等.绿豆胰蛋白酶抑制剂片段及其类似物的合成[J].中国科学(B辑),1994,24(1):42-47.
    [40] 吴国荣.豆类种子的超氧物歧化酶活性、同工酶及热稳定性[J].南京师范大学学报(自然科学版),2000,23(4)-87-92.
    [41] 程霜,杜凌云.绿豆皮中抗氧剂的初步研究[J].币国粮油学报,2000,15(2):39-43.
    [42] Xiuyun Ye, Tzi Bun Ng. A chitinase with antifungal activity from the mung bean[J]. Protein expression and purification, 2005, 40(6): 230-236.
    [43] Shaoyun Wang, Tzi Bun Ng, Tianbao Chen, Dongyun Lin, Jinhong Wn. First report of a novel plant lysozyme with both antifungal and antibacterial activities [J]. Biochemical and biophysical research communications, 2005, 327(1): 820-827.
    [44] X.Y. Ye. T. B. Ng. Mungin, a novel cyclophilin-like antifungal protein from the mung bean[J]. Biochem. Biophys. Res, 2000, 273(6): 1111-1115.
    [45] E. Del Campillo, L. M. Shannon, C. N. Hankins, Molecular propertiens of the enzymic phytohemag- glutinin of mung bean, J. Biol. Chem: 1981, 256: 7177 - 7180.
    [46] Susan J. Granat, Karl A. Wilson, Anna L. Tan-Wilson. New serine carboxypeptidase in mung bean seedling cotyledons [J]. Journal of plant physiology, 2003, 160(3): 1263-1266.
    [47] Sing Chung Li, Jiahn Were Han, Kuan Chung Chen, Ching San Chert. Purification and characterization of isoforms of β-galactosidases in mung bean seedlings [J]. Phytochemistry, 2001, 57(12): 349-359.
    [48] Y. C. Zeng, Alan D. Elbein. Purification to homogeneity and properties of plant glucosidase Ⅰ [J]. Archives of biochemistry and biophysis, 1998, 355(1): 26-34.
    [49] Ashish Lal, William C. Plaxton, Arvind M. Kayastha. Purification and characterization of an allosteric fructose-1,6-bisphosphate aldolase from germinating mung bean (Vigna radiata ) [J]. Phytochemistry, 2005, 66(4): 968-974.
    [50] Donald E. Moreland, Frederick T. Corbin, Thomas J. Fleischmann, Janis E. Mcfarland. Partial characterization of microsomes isolated from mung bean. cotyledons [J]. Pesticide biochemistry and physiology, 1995, 52(3): 98-108.
    [51] S.Y. Wang, Z.B. Xu, X.Y. Ye, R.E Rao, Purification and characterization of a malate dehydro- genase from Phaseolus mungo, J. Food Biochem. 2005, 66: 968-974.
    [52] S.Y. Wang, J.H. Wu, X.Y. Ye, T.B. Ng, P.E Rao, A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean[J]. Peptids,2004, 25(7): 1235-1242.
    [53] H. Yamaguhi, Isolation and characterization of the subunits of Phaseolus vulgaris a-amylase inhibitor[J]. Biochem, 1991, 110: 785-789.
    [54] 傅翠真.食用豆类药用有效成分值分析[J].生物学杂志,1990,35(3):15-17.
    [55] 董晓荚,尚瑛达粮油中矿物质元素的抗癌作用[J] 陕西粮油科技 1994,(1)
    [56] 李积华,郑为完,周德红等.绿豆在湿热处理及酶解过程中微量元素的分布分析[J].食品与发酵工业,2006,32(6):107-109.
    [57] 张洪,马红斌,蔡鸿生.降脂中药浅谈[J].时珍国药研究.1995,6(1):34-35.
    [58] 陈汉源.绿豆对实验小鼠肿瘤诱发预防作用[J].第一军医大学学报,1989,(5):454-458.
    [59] 王晓华.苯丙氨酸氨解酶抗白血病作用的实验研究[J].兰州医学院学报,1995,21(4):226-228.
    [60] 唐煦,周国林.绿豆苯丙氨酸解氨酶的性质及抗肿瘤作用研究[J].微生物学免疫学进展,1996,24(1):35-39.
    [61] 张俊荣,陈庆全.家用解毒药物[M].广州:广东高等教育出版社,1988,77-78.
    [62] 韩高波,陈玉莉,王美玲.“高温保健清凉饮”的保健效果观察[J].职业医学,1997,24(2):22-23.
    [63] 郑建仙.功能性食品第二卷[M].北京:中国轻工业出版社,1999,89.
    [64] 林宣贤,林华,李维珍.绿豆SOD口服液的研制[J].食品科学,1997,18(3):25-26.
    [65] 赵守训,黄泰康,丁志尊.中药辞海(第三卷)[M].北京.中国医药科技出版,1997,642-643.
    [66] 胡长海.低糖芦荟绿豆饮料的研制[J].食品与发酵工业,2003,29(4):98.
    [67] 黄发新,龙思召,蔡永忠.莲子冬瓜绿豆清凉饮料的研制[J].江苏食品与发酵,1997,2:2-7.
    [68] 李桂琴,王书玲,张洪俊.绿豆消暑碳酸饮料的研制[J].饮料工业,2001,4(1):31-33.
    [69] 何玲,周会玲,郑太波,周存田.绿豆饮料的研制[J].蔬菜,2003,5:26-27.
    [70] 成剑锋.绿豆饮料及其护色研究初探[J].山西食品工业,1997,3:34-36
    [71] 王仲礼.清凉绿豆碳酸饮料的研制[J].江苏食品与发酵,108(1):33-35.
    [72] 王书玲.仙人掌、绿豆复合保健碳酸饮料的研制[J].山西食品工业,2001,4:27-28.
    [73] 胡长海,张木兰.仙人掌绿豆低糖饮料的研制[J].食品科技,2003,11:67-68.
    [74] 方献群.黑芝麻绿豆乳的加工工艺[J].食品工业.2003(2):10-11
    [75] 于祥春,王云峰,吴学敏.绿豆酸化全乳饮料的研制[J].食品工业科技.2000,21(5):39-40。
    [76] 周亚军,孙钟雷,石晶,张爱媛,王淑杰.植物型复合冰淇淋的开发研究[J].食品工业科技2002.9.
    [77] 李晶;黑米绿豆发酵酸奶研究[J].粮食与油脂,2004,3:9-11.
    [78] 郑鸿雁.黑米绿豆发酵酸乳的研制[J].食品与发酵工业,2004,30(7):151-153.
    [79] 杨明义.绿豆奶饮料的加工技术[J].食品与机械,2000,75(1):25-26.
    [80] 甄润英,刘金福.绿豆奶饮料生产工艺及稳定性研究[J].天津农学院学报,1999,6(2):19-23.
    [81] 樊黎生,樊幸生.绿豆乳生产工艺条件研究[J].西部粮油科技,2001,26(4):27-30.
    [82] 郭成宇,孙梅君.绿豆-小米酸乳的研制[J].食品与发酵工业,2004,30(1):145-147.
    [83] 高云,陆军.绿豆酸奶粉的加工工艺[J].饮料工业,2002,5(1):35-39.
    [84] 徐丽萍,缪铭.绿豆固体饮料开发及工艺研究[J].食品工业科技,2005,1:124-126.
    [85] 胡培亮.植物蛋白饮料乳化剂的选择研究[J].食品工业科技,2006,27(12):189-190.
    [86] Hardas N., Danviriyakul S., Foley J. L., et al. Accelerzted Stability Studies of Microencapsulated Anhydrous Milk Fat [J]. Lebensmittel.-Wissenschaftund -Technologie, 2000, 33(7): 506-513.
    [87] Pothakamury Usha R., Barbosa-Canovas Gustavo .V. Fundamental aspects of controlled release in foods [J]. Trends in Food Science and Technology, 1995, 12(6): 397-406.
    [88] Hogana Sean A., McNamee Brian F., O' Riordan E. Dolores, et al. Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends [J]. International Dairy Journal, 2001, 11(3): 137-144.
    [89] 殷小梅,许时婴.EPA、DHA的微胶囊化:壁材的筛选[J].食品与发酵工业,2000,26(1):33-36.
    [90] 张锦胜,郑为完,周鹏.维生素C微胶囊化技术现状与展望[J].食品研究与开发,2000,21(5):3-5.
    [91] 温少红,滕剑敏.微胶囊化粉末猪油壁材的研究[J].食品科学,2001,22(9):30-33.
    [92] 吴向明,雕鸿荪.大豆蛋白加工功能性改善及应用[J].浙江工业大学学报,2000,28(3):256-259.
    [93] 朱选,许时婴,王璋.以明胶为主要壁材的β-胡萝卜素微胶囊化[J].食品与发酵工业,1998,24(2):11-15.
    [94] 舒铂,赵亚平,于文利.以明胶和蔗糖为复合壁材的番茄红素微胶囊化研究[J].食品工业科技,2004,25(9):52-58.
    [95] Lazko J., Popineau Y., Legrand J. Soy glycinin microcapsules by simple coacervation method [J]. Colloids and Surfaces B: Biointerfaces, 2004, 37(1): 1-8.
    [96] Perez-Alonso C., Baez-Gonzalez J. G., Beristain C. I., et al. Estimation of the activation energy of carbohydrate polymers blends as selection criteria for their use as wall material for spray-dried microcapsules [J]. Carbohydrate Polymers, 2003, 53(2): 197-203.
    [97] You-Jin Jeon, Thava Vasanthan, Feral Temelli, et al. The suitability of barley and corn starches in their native and chemically modified forms for volatile meat flavor encapsulation [J]. Food Researchlntemational, 2003, 36(4): 349-355.
    [98] Rabiskova M., Valaskova J. The influence of HLB on the encapsulation of oils by complex coacervation [J]. Journal of Microencapsulation, 1998, 15: 747-751.
    [99] 候振建.食品添加剂及其应用技术[M].北京:化学工业出版社,2004:67-68.
    [100] 王萍,吕姗姗,高丽丽.红松仁油微胶囊化粉末油脂的研究[J].粮油加工与食品机械,2004,(11):48-50.
    [101] Hannah T. Osborn, Casimir C. Akoh. Effect of emulsifier type, droplet size, and oil concentration on lipid oxidation in structured lipid-based oil-in-water emulsions [J]. Food Chemistry, 2004, 84(3): 451-456.
    [102] Yelena Vinetsky, Shlomo Magdassi. Microencapsulation by Surfactant-Gelatin Insoluble Complex: Effect of pH and Surfactant Concentration [J]. Journal of Colloid and Interface Science, 1997, 189(1): 83-91.
    [103] Chao Hung-Ya. Microencapsulation by interchange of multiple emulsions [P]. US, B01J 013/02. 4495509. 1985.1.22.
    [1] Leila Picolli da Silva, Maria de Lourdes Santorio Ciocca. Total, insoluble and soluble dietary fiber values measured by enzymatic-gravimetric method in cereal grains[J]. Journal of Food Composition andAnalysis, 2005, 18(1): 113-120.
    [2] 柴巍中.膳食纤维主要分析方法及其在我国的应用[J].中国食物与营养,2003,(8):36-38.
    [3] Englyst, H. N., Cummings, J. H. Improve methods for measurement of dietary fiber as non-starch polysaccharides in plant food [J]. J. Assoc. offAnal. Chem., 1988, 71: 808-814.
    [4] 卫生部食品卫生监督检验所.GB/T 5009.10—2003.植物类食物中粗纤维的测定[S].北京:中华人民共和国卫生部,中国国家标准化管理委员会,2003.
    [5] 卫生部食品卫生监督检验所.GB/T 5009.88—2003.食品中不溶性膳食纤维的测定[S].北京:中华人民共和国卫生部,中国国家标准化管理委员会,2003.
    [6] Weinberg Z. G., Ashbell G., Yaira Hen, et al. The effect of cellulose and hemicellulase plus pectinase on the aerobic stability and fibre analysis of peas and wheat silages [J]. Animal Feed and Techonlogy, 1995, 55(3): 287-293.
    [7] 大连轻工学院,华南理工大学等校合编.食品分析[M].北京:中国轻工业出版社,1999:205-206.
    [8] 李丹.苯酚—硫酸法测定食品总糖方法的应用和改进[J].中国卫生检验杂志,2003,13(4):506.
    [9] SIEVERT D, POMERANZ Y. Enzyme-resistant. I. Characterization and evaluation by enzymatic, therrno analytical and microscopic methods[J]. Cereal Chem, 1989, 66(4)342~347.
    [10] 余燕影,曹树稳,万小芬,等.H点标准加入光度法同时测定膳食纤维中己粮和戊糖[J].食品工业科技,2000,21(4):65-66.
    [11] 高丽娟,田晓燕.甘草残渣中多糖含量的分光光度法测定[J].宁夏大学学报(自然科学版),2003,23(2):182-183.
    [12] 张津枫,王健刚,邓国才.葡萄糖发酵液D-核糖含量的高效液相色谱分析[J].高等学校化学学报,2001,22(1):43-45.
    [13] 彭彦峰,吴兆亮,李英杰.分光光度法测定微生物发酵液中D—核糖浓度及其机理[J].分析化学,2002,30(8):975-977.
    [14] 刘莉,王志鹏,梅其炳,等.大黄多糖提取工艺对糖含量和糖醛酸含量的影响[J].中国药学杂志,2003,(38)10:748-750.
    [15] 张小玲.果胶的咔唑硫酸分光光度测定法研究[J].甘肃农业大学学报,1999,34(1):75-78.
    [16] 林颖,黄琳娟,田庚元.一种改良的糖醛酸含量测定方法[J].中草药,1999,30(11):817-819.
    [1] 佘纲哲,金霞.绿豆的化学与利用[J].中国粮油学报,1993,S1:59-67.
    [2] 王莘,王艳梅,董浩.豆类萌发期矿物元素和糖类含量变化的研究[J].扬州大学学报(农业与生命科学版),2003,24(2):72-74.
    [3] 王莘,胡可心,汪树生,董浩.豆类萌发期蛋白质和氨基酸含量的比较分析[J].吉林农业大学学报,2003,25(1):21-23.
    [4] 吴小勇,曾庆孝,田金河.绿豆的浸泡工艺及其对绿豆种子萌发的影响研究[J].食品工业科技.2004.2:104-106.
    [5] K. A. Taiwo. Regression relationships for the soaking and cooking properties of two cowpea varieties [J]. Journal of food engineering, 1997, 33(5): 331-344.
    [6] 熊力,懂群义.绿豆浸泡时胀豆率随时间、温度变化的非线性回归分析[J].食品科学,1996,17(11):14-17.
    [7] 胡春梅,季俊杰,吕国华,王秀峰.瓜尔豆种子吸水动态及其发芽特性[J].山东农业大学学报(自然科学版),2002,33(3):281-285.
    [8] Zakia M, Abdel Kader. Study of some factors affecting water absorption by faba beans during soaking [J]. Food chemistry, 1995, 53(3): 235-238.
    [9] Nissreen Abu-Gh-annam, Brian McKenna. The application of Peleg's equation to model water absorption during the soaking of red kidney beans (Phaseolus vulgaris L.) [J]. Journal of food engineering, 1997, 32(4): 391-401.
    [10] Nissreen Abu-Ghannam.Modelling textural changes during the hydration process of red beans [J]. Journal of food engineering, 1998, 38(3): 341-352.
    [11] Zhongli Pan. Modeling of water absorption of pinto beans during blanching and soakong[J]. Transactions of the CSAE (China),2002,18(5): 160-166.
    [12] 中国预防医学科学院营养与食品卫生研究所.食物成分表[M].北京:人民卫生出版社.1991:6-7。
    [13] 李敏.绿豆化学成分及药理作用的研究概况[J].上海中医药杂志.2001(5):47-49
    [14] 王德淑,张敏.茯苓中微量金属元素的测定[M].现代中药研究与实践,2003,17(4):30-31.
    [15] Ibrahim Turkekula, Mahfuz Elmastas, Mustafa Tuzen. Determination of iron, copper, manganese, zinc, lead, and cadmium in mushroom samples from Tokat, Turkey[M]. Food Chemistry, 2004, 84(3): 389-392.
    [16] Jianrong Chen, Khay Chuan Teo. Determination of cadmium, copper, lead and zinc in water samples by flame atomic absorption spectrometry after cloud point extraction [J]. Analytica Chimica Acta, 2001, 450(1): 215-222.
    [17] Lo Coco E, Ceccon L., Ciraolo L., et al. Determination of cadmium (Ⅱ) and zinc (Ⅱ) in olive oils by derivative potentiometric stripping analysis [J]. Food Control, 2003, 14(1): 55-59.
    [18] 王红艳,严睿文.ICP-AES法测定洗衣粉中微量金属元素[J].宿州师专学报,2001,16(4):54-55.
    [19] 赵晋府.食品工艺学[M].北京:中国轻工业出版社,1999:181.
    [1] 李敏.绿豆化学成分及药理作用的研究概况[J].上海中医药杂志,2001(5):47~49.
    [2] 卢玉栋,吴宗华.糊化条件对淀粉溶解度及性能的影响[J].中国造纸学报,2003,18(1):94-96.
    [3] 林晓岚,陈惠芳,陈麒麟.紫甘薯淀粉提取工艺优化[J].福建农林大学学报(自然科学版),2003,23(4):527-530.
    [4] 徐丽萍,缪铭.绿豆酶解工艺的研究[J].哈尔滨商业大学学报(自然科学版),2005,21(1):96-98.
    [5] 陈丽凤.葛根淀粉水解工艺的试验研究[J].大连轻工业学院学报,1999,18(3):234-236.
    [6] 刘仲敏,曾辉,何新民,等.耐高温α-淀粉酶的研制开发及酶学特性的研究[J].食品工业科技,1999,4(20):18—20.
    [1] 中国预防医学科学院营养与食品卫生研究所.食物成分表[M].北京:人民卫生出版社.1991:6-7.
    [2] Pawan K. Jaiwal, Ragini Kumari, S. Ignacimuthu, Ingo Potrykus, Chfistof Sautter. Agrobacterium tumefaciens-mediated genetic transformation of mungbean ( Vigna radiata L. Wilczek )- a recalcitrant grain legume [J]. Plant science, 2001, 161: 239-247.
    [3] J. P. Machaiah, M. D. Pednekar. Carbohydrate composition of low dose radiation-processed legumes and reduction in flatulence factors [J]. Food Chemistry, 2002, 79(3): 293-301.
    [4] 曹维强,王静.绿豆综合开发及利用[J].粮食与油脂.2003(3):37-39
    [5] 张恒,余纲哲.绿豆蛋白的提取和应用(上)[J].中国粮油学报.1990,5(3):112-115.
    [6] 张恒,余纲哲.绿豆蛋白的提取和应用(下)[J].中国粮油学报.1990,5(4):96-98.
    [7] 刘桂发 绿豆分离蛋白提取及其功能特性[J] 粮油食品科技1991,(6):112-114.
    [8] 王鸿飞,樊明涛 绿豆种子蛋白质和氨基酸组成特性的研究[J] 江苏理工大学学报2000,21(3):39-41.
    [9] Tomooka N.Center of Genetic Diversity and Dissemination Pathways in Mungbean Deduced from Seed Protein Electeophoresis [J]. Theror Appl Genet, 1992, 83: 289-293.
    [10] Wolf WJ, briggs D R. Ultracentrifugal inverdtigation of the effect of neutral salts on the extraction of soybean protein[J]. arch biochem biophys, 1986, 63: 40-49.
    [11] H. Yamaguchi, Isolation and characterization of the subunits of Phaseolus vulgaris a-amylase inhibitor[J], J. Biochem.(Tokyo), 1991, 110: 785-789.
    [12] A. A. Kortt, J. B. Caldwell, Isolation and properties of the lectins from tuberous roots of winged bean Psophocarpus tetragonolobus (L)DC [J]. J. Sci. Food Agric, 1987, 39: 47-57.
    [13] N. Benhamou, K. Broglie, R. Broglie, I. Chet, Antifungal effect of bean endochitinase on Rhizoctonia solani: ultrastructual changes and cytochemical aspect of chitin breakdown[J].Can. J. Microbiol, 1993, 39: 318-328.
    [14] R. Vogelsang, W. Barz, Purification, characterization and differential hormonal regulation of a β-1,3-glucanase and two chitinases from chickpea (cicer arietinum L.)[J]. Planta, 1993, 189: 60-69.
    [15] 张雪,魏建春,李云芳.酶法水解植物蛋白技术研究[J].郑州牧业工程高等专科学校学报,2002,22(4):246-247.
    [16] 李成会.蛋白质营养的新阶段:肽营养[J].畜禽业,2005,16(11):48-50.
    [17] 卢珍华,郭彩华.木瓜蛋白酶水解绿豆蛋白制备可溶性台的研究[J].食品工业科技,2005,11:56-58.
    [18] 徐丽萍,缪铭,王彬.绿豆固体饮料开发及工艺研究[J].食品工业科,2005,1:124-126.
    [19] 张长付,王金水,高晓雷.木瓜蛋白酶水解提高绿豆分离蛋白乳化性研究[J].郑州工程学院学报,2004,25(1):52-54.
    [20] 司卫丽,王金水,张长付.木瓜蛋白酶水解绿豆分离蛋白研究[J].粮食与油脂,2003,12:19-21.
    [21] 周秀琴.日本天然调味料开发现状[J].中国调味品,1993,(11):1-8
    [22] 武彦文,欧阳杰.氨基酸和肽在食品中的呈味作用[J].中国调味品,200l,(1):21-24
    [23] Ishibashi N. et al. Role of the hydrophobic amino acid residue in the bitterness of peptides[J]. Agriculture biochemistry, 1988, 52(1): 91-94.
    [24] Otagiri K., et al. Studies on a model of bitter peptides including arginine, proline and phenylalanine residues[J]. Agriculture biochemistry, 1985, 49(4): 1019-1026.
    [25] 宋俊梅,曲静然,徐少萍.大豆肽的研究进展(续完)[J].山东轻工业学院学报,2002,(12):44-47
    [26] 邓勇,冯学武.大豆多肽分子质量分布与苦味的确定[J].中国农业大学学报,2001,6(4):98-102
    [27] 田波,石玉杰.蛋白蛋清水解物的水解程度与分子量的关系的研究[J].食品工业科技,2002,(11):76-78.
    [28] 赵国华,陈宗道,罗爱民.蛋白水解产物苦味研究进展[J].粮油食品,2000,(3):28-30
    [29] 唐传核,彭志英.大豆蛋白水解物的苦肽以及脱除方法进展[J].中国油脂,2000,(6):167-172
    [30] 冯红霞,陆兆新,尤华.苦味肽的形成及脱苦方法的研究[J].食品科学,2002,(5):51-54
    [31] 刘洋,王长云,薛常湖等.鱼水解蛋白脱苦方法的研究[J].1995,(5):1-3
    [1] 中国预防医学科学院营养与食品卫生研究所.食物成分表[M].北京:人民卫生出版社.1991:6-7.
    [2] 闫永玮.绿豆发酵酸乳的制备[J].农业科技通讯.2002,6:65.
    [3] 于祥春,王云峰,吴学敏.绿豆酸化全乳饮料的研制[J].食品工业科技.2000,21(5):39-40.
    [4] 陈茂春.绿豆乳软饮料生产新工艺[J].河南农业.2003(2):9.
    [5] 张琪,马丽.绿豆夹心冰淇淋的生产工艺[J].食品工业.2003,1:67-68.
    [6] 周亚军,孙钟雷,石晶,张爱媛,王淑杰.植物型复合冰淇淋的开发研究[J].食品工业科技,2002,9:77-78.
    [7] 刘志皋.食品营养学[M].北京:中国轻工业出版社,1991:120-123.
    [8] David. J. A. Jenkins. Dietary fiber, the evolution of the human diet and coronary, heart disease [J]. Nutrition research, 1998, 18(4): 633-652.
    [9] Maria J. Bragado. Protective effect of long term high fiber diet consumption on rat exocrine pancreatic function after chronic ethanol intake [J]. Journal of nutrition biochemistry, 2001, 12: 338-345.
    [10] Robert H. Knopp. Long-term blood cholesterol-lowering effects of a dietary fiber supplement [J]. Am. J. Prey. Med., 1999, 17(1): 18-23.
    [11] Bandaru S. Reddy. Role of Dietary Fiber in Colon Cancer: An Overview [J]. The American Journal of Medicine, 1999, 106(1): 16-19.
    [12] Punna Ramulu, Paruchuri Udayasekhara Rao. Total, insoluble and soluble dietary fiber contents of Indian fruits [J]. Journal of Food Composition and Analysis, 2003, 16(6): 677-685.
    [13] Schweitzer, T.F., Edwards, C.A. Dietary fiber, nutritional function, health and disease—a component of food [M]. London, UK: Springer. 1992: 295-332.
    [14] Wayne H. Schwesinger, William E. Kurtin, Carey P. Page, et al. Soluble Dietary Fiber Protects against Cholesterol Gallstone Formation [J]. The American journal of surgery, 1999, 177(4): 307-310
    [15] Joanne L. Slavin. Dietary fiber and body weight. Nutrition, 2005, 21(3): 411-418.
    [16] Christine L., Williams. Important of Dietary Fiber in Childhood [J]. Journal of the American Dietetic Association, 1995, 95(10): 1140-1147.
    [17] 李积华,郑为完,杨静等.绿豆膳食纤维的分析[J].食品研究与开发,2006,32(6):13-16.
    [18] 李积华,郑为完,周德红等.酶法提取绿豆渣水溶性纤维素及过程中微量元素含量变化分析研究[J].食品工业科技,2006,27(9):106-109.
    [19] 郑冬梅,谢庆辉,张宏亮.豆渣膳食纤维提取工艺预处理条件的研究[J].食品科学,2005,26(9):340-346.
    [20] 黄晓青,瞿伟菁,王燕,等.采用酶法从豆渣中制备2种膳食纤维[J].食品与发酵工业,2004,30(1):25-28.
    [21] 姚文华,胡玉宏,丘承军,尹卓容.酶法制备枣膳食纤维与应用的研究[J].食品科学,2007,28(1):139-142.
    [22] 孟秀梅,王宏勋,张晓昱.红薯膳食纤维饮品的生产[J].食品科技,2005,5:55-56.
    [23] 大连轻工业学院,华南理工大学,郑州轻工业学院等合编.食品分析[M].北京:中国轻工业出版社.1995:205-206.
    [24] David Thompson. Response Surface Experimentation[J]. Journal of Food Processing and Preservation, 1982, 18(6): 155-158.
    [1] Takahata Y, Noda T, Nagata T. Effect of β—amylase stability and starch gelat_inization during heating on varietal differences in maltose content in sweetpotatoes. J. Agfic. Food Chem. 1994, 42: 1564-1569.
    [2] 王德培.干热处理对绿豆和豌豆淀粉化学组成的影响及与粉丝品质的关系研究[J].仲恺农业技术学院学报.1997,10:62-66.
    [3] 张玮,刘长虹,马智刚.面团发酵过程中蛋白质和V_(B6)变化[J].粮食加工,2004,2:41-47.
    [4] Sarwar G, McDonough FE. Evaluation of protein digestibility---corrected amino acid score method for assessing protein quality of foods[J]. J Assoc Off Anal Chem, 1990, 73: 347-356.
    [5] 吕雪娟,宁正祥,陈惠音,杨军.蔬菜腌制过程中的氨基酸组成变化[J].氨基酸和生物资源,1998,3:28-31.
    [6] 陈健初,董绍华,叶兴乾,苏平.芹菜黄酮及其在主要制汁过程中的变化[J].浙江农业大学学报,1998,3:279-282.
    [7] 王莘,王艳梅,董浩.豆类萌发期矿物质元素和糖类含量变化的研究[J].扬州大学学报,2003,24(2):72-74.
    [8] 王辰,李琳.加工条件对芹菜汁和黄酮类化合物稳定性的影响[J].食品研究与开发2006,127(5):23-25.
    [9] 史国安,郭香凤.槲叶加工过程中色素和酚类物质的变化[J].特产研究2000,2:14-17.
    [10] 程霜,杜凌云.绿豆皮中抗氧剂的初步研究[J].中国粮油学报,2000,15(2):39-43.
    [11] 李敏.绿豆化学成分及药理作用的研究概况[J].上海中医药杂志.2001(5):47-49
    [12] 李积华,郑为完,周德红等.酶法提取绿豆渣水溶性纤维素及过程中微量元素含量变化分析研究[J].食品工业科技,2006,9:106-109.
    [13] 中国预防医学科学院营养与食品卫生研究所.食物成分表[M].北京:人民卫生出版社.1991,6-7。
    [1] 江苏新医学院编:《中药大词典》.上海科学技术出版社.1977.
    [2] 赵守训,黄泰康,丁志尊.中药辞海(第三卷)[M].北京.中国医药科技出版,1997,642-643.
    [3] 高兰兴,刘继鹏.实用营养学手册[M].北京:人民军医出版社.1997.
    [4] Xiuyun Ye, Tzi Bun Ng. A chitinase with antifungal activity from the mung bean[J]. Protein expression and purification, 2005, 40(6): 230-236.
    [5] Shaoyun Wang, Tzi Bun Ng, Tianbao Chert, Dongyun Lin, Jinhong Wn. First report of a novel plant lysozyme with both antifungal and antibacterial activities [J]. Biochemical and biophysical research communications, 2005, 327(1): 820-827.
    [6] X.Y. Ye. T. B. Ng. Mungin, a novel cyclophilin-like antifungal protein from the mtmg bean[J]. Biochem. Biophys. Res, 2000, 273(6): 1111-1115.
    [7] 傅翠真.食用豆类药用有效成分值分析[J].生物学杂志,1990,35(3):15-17.
    [8] 张洪,马红斌,蔡鸿生.降脂中药浅谈[J].时珍国药研究.1995,6(1):34-35.
    [9] 陈汉源.绿豆对实验小鼠肿瘤诱发预防作用[J].第一军医大学学报,1989,(5):454-458.
    [10] 王晓华.苯丙氨酸氨解酶抗白血病作用的实验研究[J].兰州医学院学报,1995,21(4):226-228.
    [11] 唐煦,周国林.绿豆苯丙氨酸解氨酶的性质及抗肿瘤作用研究[J].微生物学免疫学进展,1996,24(1):35-39.
    [12] 张俊荣,陈庆全.家用解毒药物[M].广州:广东高等教育出版社,1988,77-78.
    [13] 吴国荣.豆类种子的超氧物歧化酶活性、同工酶及热稳定性[J].南京师范大学学报(自然科学版),2000,23(4):87-92.
    [14] 林宣贤,林华,李维珍.绿豆SOD口服液的研制[J].食品科学,1997,18(3):25-26.
    [15] 程霜,杜凌云.绿豆皮中抗氧剂的初步研究[J].中国粮油学报,2000,15(2):39-43.
    [16] Yamaoka Y., M. Takcuchi and Y. Morohashi. Purification and characterization of a cysteine endoprotease in cotyledons of germinated mung bean seeds [J]. Plant Physiol, 1990, 94 (2): 561-566. inhibitor[J], Food Biochem, 1980, 4: 119-138.
    [19] 李一莉,林晓红,崔大敷,等.绿豆胰蛋白酶抑制剂片段及其类似物的合成[J].中国科学(B辑),1994,24(1):42-47.
    [20] E. Del Campillo, L. M. Shannon, C. N. Hankins, Molecular propertiens of the enzymic phytohemag- glutinin of mung bean, J. Biol. Chem: 1981, 256: 7177-7180.
    [21] Sing Chung Li, Jiahn Wern Hart, Kuan Chung Chen, Ching San Chen. Purification and characterization of isoforms of β-galactosidases in mung bean seedlings [J]. Phytochemistry, 2001, 57(12): 349-359.
    [22] S.Y. Wang, Z.B. Xu, X.Y. Ye, R.F. Rao, Purification and characterization of a malate dehydro- genase from Phaseolus mungo, J. Food Biochem. 2005, 66: 968-974.
    [23] S.Y. Wang, J.H. Wu, X.Y. Ye, T.B. Ng, P.F. Rao, A non-specific lipid transfer protein with antifungal and antibacterial activities from the mung bean[J]. Peptids,2004, 25(7): 1235-1242.
    [24] H. Yamaguhi, Isolation and characterization of the subunits of Phaseolus vulgaris a-amylase inhibitor[J]. Biochem, 1991, 110: 785-789.
    [25] 方献群.黑芝麻绿豆乳的加工工艺[J].食品工业.2003(2):10-11
    [26] 闫永玮.绿豆发酵酸乳的制备[J].农业科技通讯.2002,6:65.
    [27] 于祥春,王云峰,吴学敏.绿豆酸化全乳饮料的研制[J].食品工业科技.2000,21(5):39-40.
    [28] 陈茂春.绿豆乳软饮料生产新工艺[J].河南农业.2003(2)
    [29] 张琪,马丽.绿豆夹心冰淇淋的生产工艺[J].食品工业.2003,(1):10-11.
    [30] 周亚军,孙钟雷,石晶,张爱媛,王淑杰.植物型复合冰淇淋的开发研究[J].食品工业科技2002,23(9):111-113.
    [31] 吴成谋.食品分析与感官评定[M].北京:中国农业出版社,2002:127-129.
    [32] 大连轻工业学院,华南理工大学,郑州轻工业学院,西北轻工业学院,湖北工学院等合编.食品分析[M].北京:中国轻工业出版社.2002:75-76.
    [33] 无锡轻工大学,天津轻工业学院合编.食品分析[M].北京:中国轻王业出版社.2002:124-125.
    [34] 孔保华,郑冬梅.鱼油微胶囊技术的研究[J].食品工业科技,1999,20(5):8-10.
    [1] 刘钟栋.我国食品乳化剂的发展趋势[J].食品科技,2004,2:42-46.
    [2] Kim, S. H.; Kinsella, J.E. Effects of reduction with dithiothreitol on some molecular properties of soy glycinin [J]. Agriculture and chemistry., 1986, 34: 623-627.
    [3] Kim, S. H.; Kinsella, J. E. Surface active properties of food proteins:effects of reduction of disulfide bonds on film properties and foam stability [J]. Food science, 1987, 52: 128-131.
    [4] Kato, A.; Tanimoto, S.; Muraki, Y.; Oda, Y.; Inoue, Y.; Kobayashi, K. Relationships between conformational stabilities and surface functional properties of mutant hen egg-white lysozymes constructed by genetic engineering [J]. Agriculture food chemistry, 1994, 42: 227-230.
    [5] Voutsinas, L.P.; Cheung, E.; Nakai, S. Relationship of hydrophobicity to emulsifying properties of heat denatured proteins [J]. Food science, 1983, 48: 26-32.
    [6] Beverung, C. J.; Radle, C. G.; Blanch, H.W. Protein adsorption at the oil/water interface: characterization of adsorption kinetics by dynamic interfacial tension measurements [J]. Biophys chemistry, 1999, 81: 59-80.
    [7] Huang, X. L.; Catignani, G.L.; Swaisgood, B.E. Improved emulsifying properties of β-barrel domain peptides obtained by membrance-fractionation of a limited tryptie hydrolysate of β-lactogl obulin [J]. Agriculture food chemistry, 1996, 44: 3437-3443.
    [8] Swaisgood, H. E. Chemistry of milk protein - In Developments in Dairy Chemistry-1: Fox, P. E., Ed; Applied Science: London, U.K., 1982: pp1-60.
    [9] 孙焕,张春红,陈海英,连芙菲,刘长江.大豆分离蛋白的双酶改性改善功能性的实验[J].食品科技,2005,12:11-14.
    [10] 崔继科,刘景顺.大豆分离蛋白酶解的研究(二)[J].郑州粮食学院学报,1998,19(4):20-29.
    [11] 玄国东,何国庆,熊皓平,徐莹.大米蛋白酶法改性及酶解物功能特性研究[J].中国粮油学报,2005.20(3):1-4.
    [12] 赵国华,陈宗道,王光慈,阚建全.改性对玉米蛋白质功能性质和结构的影响(Ⅰ)酶解[J).中国粮油学报,2000,15(3):28-31.
    [13] 鲁晓翔,陈新华,唐津忠.酶法改性玉米蛋白功能特性的研究[J].食品科学,2000,21(12):13-15.
    [14] 刘大川,杨国燕.酶改性大豆分离蛋白的制备及产品功能性的研究[J].中国油脂,2004,29(12):56-61.
    [15] 金世合,陈正行,周素梅.酶解米糠蛋白的功能性质研究[J].食品工业科技,2004,3:56-58.
    [16] 李秀凉,王璋.酶解对芝麻蛋白功能性质的影响[J].黑龙江大学自然科学学报,2005,22(1):130-134.
    [17] 刘志强,刘擘,曾云龙.酶法有限水解对花生蛋白功能特性的影响[J].食品科学,2004,25(1):69-72.
    [18] 刘粼.酶法有限水解对大豆分离蛋白乳化性能的影响[J].中国粮油学报,2000,15(1):26-29.
    [19] 刘粼,叶峰,欧志敏.蛋白质酶法有限水解过程反应机理和动力学特性[J].化工学报,2002,53(2):199-202.
    [20] 王章存,姚惠源.大米蛋白测定中蛋白系数的确定[J].食品工业科技,2004,25(1):66-67.
    [21] Jens Adler-Nissen. Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid[J]. Agriculture food chemistry, 1979, 27(6): 1256-1262.
    [22] K. Surowka, D. Zmudzinski, M. Fik,et al. New protein preparations from soy flour obtained by limited enzymic hydrolysis of extrudates[J].Innovative food science and emerging technologies, 2004,5:225-234.
    
    [23] Volkert M A,Klein B P,Protein dispersibility and emulsion characteristics of flour soy products[J].Food Science,1979,44: 93-96.
    
    [24] Puski G. Modification of functional properties of soy protein by proteolytic enzyme treatment [J].Cereal chemistry,1975,52:655
    
    [25] Mietsch F. Investigation of functional properties of partically hydrolyzed proteins.Die Nahrung [J],1989,33(1):9-15.
    [1] 胡培亮.植物蛋白饮料乳化剂的选择研究[J].食品工业科技,2006,27(12):189-190.
    [2] Graya, Reineccins. Flavor Encapsulation [J]. Food Review International, 1989, 5(2): 147-176.
    [3] 王亮,张慜,张少宁,等.微胶囊壁材的选择对粉末油脂品质的影响[J].无锡轻工大学学报,2003,22(2):83-87.
    [4] 焦学瞬,贺明波主编.乳状液与乳化技术新应用[M].北京:化学工业出版社,2006:59.
    [5] 王喜忠,于才渊,周才君编.喷雾干燥[M].第二版.北京:化学工业出版社,2004:5-6.
    [6] 张恒,余纲哲.绿豆蛋白的提取和应用(上)[J].中国粮油学报,1900,5(3):112-115.
    [7] 张恒,余纲哲.绿豆蛋白的提取和应用(下)[J].中国粮油学报,1900,5(4):96-98.
    [8] 刘桂发 绿豆分离蛋白提取及其功能特性[J] 粮油食品科技,1991,(6):112-114.
    [9] 王鸿飞,樊明涛 绿豆种子蛋白质和氨基酸组成特性的研究[J] 江苏理工大学学报2000,21(3):39-41
    [10] Tomooka N. Center of Genetic Diversity and Dissemination Pathways in Mungbean Deduced from Seed Protein Electeophoresis [J].Theror Appl Genet, 1992, 83: 289-293
    [11] Wolf WJ, briggs D R.Ultracentrifugal inverdtigation of the effect of neutral salts on the extraction of soybean protein[J].arch biochem biophys, 1986, 63: 40-49
    [12] Imagi J., Muraya K., Yamashita D., et al. Retarded oxidation of liquid lipids entrapped in matrixes of saccharides or proteins [J]. Bioscience Biotechnology Biochemistry, 1992, 56(8): 1236-1240.
    [13] 徐满清,郑为完,祝团结.花生蛋白部分水解制取微胶囊速溶花生粉壁材的研究[J].南昌大学学报(工科版),2004,26(1):81-84.
    [14] Hardas N., Danviriyakul S., Foley J. L., et al. Accelerated Stability Studies of Microencapsulated Anhydrous Milk Fat [J]. Lebensmittel-Wissenschaftund -Technologie, 2000, 33(7): 506-513.
    [15] Rosenberg M. Microencapsulating properties of whey protein: Microencapsulating of anhydrous milk fat [J]. Journal of Dairy Science, 1993, 76(10): 2868-2885.
    [16] Sean A. Hogan, Brian F. McNamee, E. Dolores O' Riordan, et al. Emulsification and microencapsulation properties of sodium caseinate/carbohydrate blends [J]. International Dairy Journal, 2001, (11): 137-144.
    [17] B.B.Mandelbrot. The Fractal Geometry of N ature[M]. NewYork: WHFreemanandco. 1982
    [18] 李后强,程光戊,分形与分维[M].成都:四川教育出版社,1990,1-10
    [19] 曹同玉,刘庆普,胡金生编.聚合物乳液合成原理性能及应用[M].北京:化学工业出版社,2000:165.
    [20] Garti Nissim et. al. Hydrocollords as food emulsifiers and stabilizers.Food structure, 1993, 12 (4): 411-426.
    [21] 姚辉.磷脂微胶囊制备技术的研究[D].大连:大连理工大学,2004:6.
    [22] 滕剑敏,温少红.乳状液稳定性对微胶囊粉末猪油品质的影响[J].烟台大学学报(自然科学与工程版),2000,13(4):292-297.
    [23] 孙新虎.番茄红素微胶囊包埋的研究[D].无锡:江南大学,2004,6.
    [24] Pedroza Ialas R, Vernom Carter E J. Using biopolymer blends for shrimp feedstuff microencapsulation-Ⅰ. Microcapsule particle size, morphology and microstructure [J]. Food Research International, 1999, 32: 367-374.
    [25] 刘云凤,邵斌,王义永.食品和饲料添加剂工业中微胶囊产品的特性研究[J].中国食品添加剂,2004,(3):36-39.
    [1] Imagi J., Muraya K., Yamashita D., et al. Retarded oxidation of liquid lipids entrapped in matrixes of saccharides or proteins [J]. Bioscience Biotechnology Biochemistry, 1992, 56(8): 1236-1240.
    [2] 徐满清,郑为完,祝团结.花生蛋白部分水解制取微胶囊速溶花生粉壁材的研究[J].南昌大学学报(工科版),2004,26(1):81-84.
    [3] Hardas N., Danviriyakul S., Foley J. L., et al. Accelerated Stability Studies of Microencapsulated Anhydrous Milk Fat [J]. Lebensmittel-Wissenschaftund -Technologie, 2000, 33(7): 506-513.
    [4] B. B. Mandelbrot. The Fractal Geometry of Nature[M]. NewYork: WHFreemanandco. 1982.
    [5] 李后强,程光戊,分形与分维[M].成都:四川教育出版社,1990:1~10.
    [6] 敖力布.林鸿溢.分形学导论[M].呼和浩特:内蒙古人民出版社,1996:45-46.
    [7] Witten T. A., Sander L. M. Diffusion-limited aggregation, a kinetic critical phenomenon[J], Phys Rev Lett, 1981, 47: 1400-1408.
    [8] Stapleton H. Proteins as fractals in "Protein structure"[M].New York: Springer-Verlag, 1987, 1-20.
    [9] 辛厚文.分形理论及其应用[M]..中国科学技术大学出版社,1993,98-105.
    [10] 连政国,朱文学.玉米应力裂纹的分维测量与分析[J].莱阳农学院学报,1997,14(3):216-219.
    [11] 李后强,汪富泉.分形理论及其在分子科学中的应用[M].北京:科学出版社.1993.263-268.
    [12] 孙迎庆,茹炳根,阎伯旭.酶的分形反应动力学[J].北京大学学报(自然科学版),1996,32(6):756-759.
    [13] Kopelman R Fractal reaction kinetic[J]. Science, 1988, 241: 1620-1626.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700