TiO_2纳米管阵列电极光电催化降解不同类型有机物反应特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
TiO_2纳米管阵列(Titania nanotube array, TNA)电极材料具有高效的光电催化降解有机物性能。本文利用薄层反应器中发生的耗竭氧化反应,研究了采用阳极氧化技术制备的TNA电极的光电催化降解不同类型有机污染物的反应特性和反应机制,探讨提高有机物光电催化降解的有效途径。
     论文首先以易降解的葡萄糖和难降解的丁二酸、邻苯二甲酸作为模型化合物,考查了有机物在TNA光电催化薄层反应器中的光电流-反应时间(I-t)变化特征,表明I-t曲线的变化特征能够瞬时反映有机物在TNA电极表面的反应速率变化。同时还考查了反应器体积等参数的变化对于有机物光电催化反应性能的影响,表明随着反应器液层厚度的增加,有机物耗竭氧化反应时间相应增加。
     利用有机物可以在薄层反应器中发生耗竭氧化反应的特点,论文选择具有不同电极吸附特性的有机物—弱吸附型的葡萄糖和强吸附型的邻苯二甲酸作为研究对象,研究了两种有机物在TNA电极表面不同的光电催化反应性能和反应机制。对于弱吸附型的葡萄糖,由于其在TNA电极表面吸附能力弱,从溶液本体被吸附至电极表面较慢,致使葡萄糖在高浓度时,其光电催化反应速率出现瞬时升高然后迅速下降,再呈现缓慢下降的变化趋势。对于强吸附型的邻苯二甲酸,其吸附性强且难降解,电极表面总是存在着大量的邻苯二甲酸,导致溶液中邻苯二甲酸浓度升高时,光电催化反应速率瞬时升高,然后持续升高,之后才呈缓慢下降的变化趋势。论文还对有机物的吸附类型、吸附系数、反应机制等进行了分析。上述研究表明,有机物的吸附性能影响着其光电催化反应性能,利用薄层反应器的耗竭氧化反应,有助于搞清有机物在电极表面的反应过程和微观机制。
     基于难降解有机物在薄层反应器的光电催化反应特性,论文研究了极难降解的有机物金刚烷胺的降解性能,发现难降解的金刚烷胺与葡萄糖之间存在着光电催化的协同作用。实验表明,在实验条件下直接光电催化降解COD浓度50mg/L的金刚烷胺,其降解效率仅能达到30%,然而向金刚烷中加入具有羟基官能团的葡萄糖时,可以大幅度提高金刚烷胺降解效率,当溶液中金刚烷与葡萄糖浓度比值达到1:2时,可以实现金刚烷胺的完全耗竭氧化。论文探讨了这一协同光电催化作用的机制,认为这种光电催化协同作用是由于葡萄糖中含有大量的羟基官能团,在光电催化下产生了大量的羟基自由基,促进了难降解有机物的光电催化降解。
TiO_2 nanotube arrays (TNAs) materials have exhibit outstanding photo-generated electron transportation performances and high efficiency in photoelectrocatalytic degradation. This thesis studied the reaction activities and mechanisms of exhausted photoelectrocatalytic oxidation of organic compounds based on self-organized and highly ordered TNAs electrode and a thin-layer reactor, and also discussed how to improve the photoelectrocatalytic degradation efficiency of organic compounds.
     Glucose was used as a representative easily degradable organic compound while succinic acid and phthalic acid as representative refractory compounds to investigate the effect of different reactor volume on reaction activities and mechanisms of photoelectrocatalytic degradation of organic compounds using TNAs electrode in a thin-layer cell. We found that with the increase of the reactor thickness, the photoelectrocatalytic reaction time would increase. The partial voltage, electrolyte concentration and organic compound concentration for photoelectric catalytic reaction influence were also analyzed in this thesis.
     The kinetics and mechanisms of photoelectrocatalytic degradation of two kinds of compounds, glucose with weak adsorption and phthalic acid with strong adsorption on TNAs were investigated by using a thin layer reactor, in which organic compounds can be exhaustive oxidized rapidly. The photo-generated currents-time(I-t) profiles were used to analyze the micro-processes of photoelectrochemical catalytic degradation on TNA electrode. As for glucose, the I-t curve, increased sharply in the initial time and then decreased rapidly, followed with a slowly decrement. This could be ascribed to the weak adsorbability of glucose molecule and it was slowly adsorbed on the surface of TNA electrode from body solution. However, the I-t curve for phthalic acid revealed a quite different changing trend- increased sharply in the initial time, then continued to increase and decreased slowly at last, which was due to the strong adsorbability and the mass existence of phthalic acid on electrode, and in addition, the low degradability of phthalic acid. The adsorption properties and the adsorption coefficient of the organic compounds, the reaction mechanism were also analyzed in this paper. It could be concluded that the exhausted photoelectrocatalytic oxidation of organic compounds in a thin-layer cell could help investigate the surface reaction process and micro-mechanism of organic compounds degraded on TNA electrode.
     We also studied the photoelectrochemical degration of the difficult degradable nitrogen organic compounds- amantadine in a thin layer reactor. It found that only 30% amantadine could be oxidized when the COD concentration was 50mg/L. When glucose which has abundant hydroxyl groups were mixed with amantadine could improved the degradation rate of hydrochloride. This results could be attribute to the hydroxyl radical produced by glucose which had synergistic effect on the degradation of amantadine. The mechanism of the synergistic action was preliminary discussed in the paper.
引文
[1]尾崎又治,架集诚一郎,赵健泽.纳米微粒导论[M].武汉,武汉工业大学出版社, 1991
    [2]张玉龙,李长德.纳米材料与纳米塑料[M].北京,中国轻工业出版社, 2002
    [3]卫英慧,韩培德,杨晓华.纳米材料概论[M].北京,化学工业出版社, 2009
    [4] Henglein A. Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles[J]. Chem. Rev., 1989, 89: 1861-1873
    [5]赵于文.低温等离子体在化学合成中的应用[J].现代化工, 1991, 1: 48-52
    [6]陈翌庆,石瑛.纳米材料学基础[M].长沙,中南大学出版社, 2009
    [7] Halperin W P. Quantum size effects in metal particles[J]. Rev. of Mod. Phy., 1986, 58(3): 533-606
    [8] Barbara B, Wernsdorfer W. Quantum tunneling effect in magnetic particles[J]. Curr. Opin. Solid State Mater. Sci., 1997, 2(2):220-225
    [9]罗胜联,杨丽霞.功能化二氧化钛[M].北京,科学出版社, 2011
    [10] Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature. 1972, 238: 37-38
    [11]唐振宁.钛白粉的生产与环境治理[M],北京,化学工业出版社, 2000
    [12] Henrich V E, Kurtz R L, Surface electronic structure of TiO_2: Atomic geometry, ligand coordination, and the effect of adsorbed hydrogen[J]. Phys. Rev. B, 1981, 23: 6280
    [13] Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95(3), 735-758
    [14] Zhang D H, Brodie D E. Transparent conducting ZnO films deposited by ion-beam-assisted reactive deposition[J]. Thin Solids Films, 1992, 213: 109-112
    [15] Fujishima A, Rao T N, Tryk D A. Titannium dioxide photocatalysis[J]. Photo- chem. Potobiol C: Photochem. Rev., 2000, 1: 1-21
    [16] Hoffmann M R, Martin S T. Choi W Y. Environmental applications of semiconductor photocatalysis[J]. Chem. Rev., 1995, 95: 69-96
    [17] Peill N J, Hoffmann M R. Development and Optimization of a TiO_2-coated fiber-optic cable reactor: photocatalytic degradation of 4-chlorophenol[J]. Environ. Sci. & Technol., 1995, 29: 2974-2981
    [18] Qu P, Zhao J, Zang L, Shen T, Hidaka H. Enhancement of the photoinducedelectron transferfrom cationic dyes to colloidal TiO_2 particles by addition of an anionic surfactant in acidicmedia[J]. Colloids & Surfaces, 1998, 138: 39-50
    [19] Shima T, Kubokawa Y. ESR and photoluminescence evidence for the photo-catalytic formation of hydroxyl radical on small TiO_2 particles[J]. Chem. Lett., 1985, 85(12): 1799-1805
    [20] Jaeger C D, Bard A J. Spin trapping and electron spin resonance detection of radical intermediates in the photodecomposition of water at titanium dioxide particulate systems[J]. Phys. Chem., 1979, 83: 3146-3152
    [21]刘正保,姚清照,光催化氧化技术及其发展[J].工业水处理, 1997, 17(6), 7-8
    [22] Chin P. Kinetics of photocatalytic degradation using tianiun dioxide films[D]. North Carolina State: Carolina State University, 2008
    [23] Linsebigler A L, Lu G, John T. Photocatalysis on TiO_2 surfaces: principles, mechanisms, and selected results[J]. Chem. Rev., 1995, 95(3): 735-758
    [24] Wang Y, Jiang Z H, Yang F J. Preparation and photocatalytic activity of mesoporous TiO_2 derived from hydrolysis condensation with TX-100 as template[J]. Materials Science and Engineering B, 2006, 128(1): 229-233
    [25] Hugenschmidt M B, Gamble L, Campbell C T. The interaction of H2O with a TiO_2(110) surface[J]. Surf. Sci., 1994, 302(3): 329-332
    [26] Pan J M, Maschhoff B L, Diebold U, Madey T E. Structural study of ultrathin metal films on TiO_2 using LEED, ARXPS and MEED[J].Vac. Sci. Technol. A, 1993,291(3): 381-394
    [27] Gopel W, Rocker G, Feierabond R. Intrinsic defects of TiO_2(110): Interaction with chemisorbed O_2, H2, CO, and CO_2 [J]. Phys. Rev. B, 1983,28(6): 3427-3450
    [28] Hebenstreita E L D, Hebenstreita W, Geislerc H, Ventrice C A, Hite D A, Sprunger P T, Diebold U. The adsorption of chlorine on TiO_2(110) studied with scanning tunneling microscopy and photoemission spectroscopy[J]. Surf. Sci., 2002, 505: 336-348
    [29] Li S C, Wang J G, Jacobson P. Correlation between bonding geometry and band gap states at organic-inorganic interfaces: catechol on rutile TiO_2(110)[J]. Am. Chem. Soc., 2009,131(3): 980-984
    [30] Arana J, Dina Rodrigues J M, Gonzalez Diaz O. The effect of acetic acid on the photocatalytic degradation of catechol and resorcinol[J]. Appl. Catal. A: General, 2006, 299: 274-284
    [31] Kieu L, Boyd P, Idriss H. Modelling of the adsorption of formic acid and formaldehyde over rutile TiO_2(110) and(011) clusters[J]. Mol. Catal. A: Chem.,2001, 176: 117-125
    [32] Zhang Z B, Wang C C, Zakaria R, Ying J Y. Role of particle size in nanocrystalline TiO_2-based photocatalysis[J]. Phys. Chem. B, 1998, 102(52): 10871-10878
    [33]王芳芳.纳米TiO_2对水中对羟基苯甲酸吸附及光催化降解[J].建筑节能, 2008, 2(36): 41-42
    [34] Ziolli R L, Jardim W F. Photocatalytic decomposition of seawater soluble crude-oil fractions using high surface area colloid nanoparticles of TiO_2[J]. Journal of photochemistry and photobiology A: Chemistry, 2002, 147: 205-212
    [35] Peng T Y, Zhao D, Song H B. Preparation of lanthana-doped titania nanoparticles with anatase mesoporous walls and high photocatalytic activity[J]. Journal of Molecular Catalysis A: Chemical, 2005, 238: 119-126
    [36] Zhang X, Zhang F, Chan K Y. Synthesis of titania-silica mixed oxide mesoporous materials, characterization and photocatalytic properties[J]. Applied Catalysis A: General, 2005, 284: 193-198
    [37] Beydoun D, Ameal R, Low G, Mcevoy S. Novel Photocatalyst: Titania-Coated Magnetite. Activity and Photodissolution[J]. Phys. Chem. B. 2000, 104 (18): 4387- 4396
    [38] Li Y J, Chen W, Li L Y. Effects of surface areas and adsorption strength on the photoactivity and decomposition kinetics of acid red 27 over TiO_2 coated/ activated carbon composite[J]. Acta Phys- Chim. Si n., 2011, 27(7): 1751- 1756, 2011, 27(7), 17
    [39] Lu M C, Chen J N, Chang K T. Effect of adsorbents coated with titanium dioxide on the photocatalytics duration of propoxur[J]. Chemosphere, 1999, 38(3): 617- 627
    [40] Matos J, Laine J, Heffmann J M. Synergy in the photocatalytic degration of phenol on a suspended mixture of titania and activated carbon[J]. Applied Catalysis B: Environmental, 1998, 18: 281-291.
    [41] Chuan Xiuyun, Masanori Hirano, Michio Inagaki. Preparation and photo-catalytic performance of anatase-mounted natural porous silica. pumice by hydrolysis under hydrothermal conditions[J]. Applied Catalysis B: Environmental, 2004, 51: 255-260
    [42]传秀云,卢先春,卢先初.热处理对TiO_2/埃洛石降解亚甲基蓝特性的影响[J].中国粉体工业, 2008, 4: 31-34
    [43]张爱琴,张荣斌,张宁,洪三国. TiO_2/硅柱撑蒙脱石复合材料的制备及其光催化性能[J].化工新型材料, 2010, 38(8): 66-68
    [44]江芳,郑正,郑寿荣,许昭怡,安立超.焙烧温度对TiO_2纳米光结构和吸附性能的影响[J].环境化学, 2008, 27(6): 731-735
    [45]高卓,徐瑛,王燕,何娇.二氧化钛纳米管对亚甲基蓝的吸附[J].广州化工, 2010, 38(6): 67-69
    [46]庄慧芳,赖跃坤,李静,孙岚,林昌健.高度有序的二氧化钛纳米管阵列的制备及其光催化活性研究[J].化学学报, 2007, 21(65): 2363-2369
    [47] Xu A W, Gao Y, Liu H Q. The preparation ,characterization ,and their photo- catalytic activities of rare-earth-doped TiO_2 nanoparticles[J]. Journal of Catalysis, 2002, 207: 151-157
    [48] Stengl V, Bakardjieva S, Murafa N. Preparation and photocatalytic activity of rare earth doped TiO_2 nanoparticles[J]. Materials Chemistry and Physics, 2009, 114: 217-226
    [49] Asahi R, Ohwaki T, Aoki K. Visible-light photocatalysis in nitrogen-doped titanium oxides[J]. Science, 2001, 293: 269-271
    [50] Umebayashi T, Yamaki T, Itoh H, Asai K. Band gap narrowing of titaniμm dioxide by sulfur doping[J]. Applied Physics Letters, 2002, 81: 454-459
    [51] Irie H. Watanabe Y. Hashimoto K. Nitrogen-concentration dependence on photo- catalytic activity of TiO_2-xNx powders[J]. Journal of Physical Chemistry B, 2003, 107: 5483-5486
    [52] Hattori A, Tada H. High photocatalytic activity of F-doped TiO_2 film on glass[J]. Journal of Sol-Gel Science and Technology, 2001, 22: 47-52
    [53] Fujishima A, Zhang X T, Tryk D A. TiO_2 photocatalysis and related surface phennmena[J]. Surface Science Reports, 2008, 63: 515-582.
    [54] Li F B, Li X Z. The enhancement of photodegradation efficiency using Pt-TiO_2 catalyst[J]. Chemosphere, 2002, 48: 1101-1111
    [55] Bamwenda G R, Tsubota S, Nakamura T. The influence of the preparation methods on the catalytic activity of platinum and gold supported on TiO_2 for CO oxidation[J]. Catalysis Letters, 1997, 44: 83-87
    [56] Hirai T, Suzuki K, Hironori O, Komasawa L. Preparation and photocatalytic properties of composite CdS nanoparticles-titanium dioxide particles[J]. Journal of Colloid and Interface Science, 2001, 244: 262-265
    [57] Grandcolas M, Louvet A, Keller N, Keller V. Layer-by-layer deposited titanate- based nanotubes for solar photocatalytic removal of chemical warfare agents from textiles. Angewandte Chemie - International Edition, 2009, 48 (1): 161-164
    [58] Bessekhouad Y, Chaoui N, Trzpit M. UV-vis versus visible degradation of Acid Orange II in a coupled CdS/TiO_2 semiconductors suspension[J]. J Photoch. Photobio. A: Chemistry, 2006, 183: 218-224
    [59]唐剑文,吴平霄,曾少雁.为二氧化钛可见光光催化剂研究进展[J].现代化工, 2005, 25(2): 25-28
    [60]章少华,曾爱军,蔡建信,谢冰.双氧水改性二氧化钛的光催化性能研究[J].稀有金属材料与工程, 2007, 36: 152-154
    [61] Morrison S R. Electrochemistry at semiconductor and oxidized metal electro- des[M]. Peikin, Science Press, 1998
    [62] Conway B E, Niu J, Pell W G. Electrochemistry at high specific-area carbon electrodes: Applications to adsorptive purification of waters and to charge-storage by supercapacitors[J]. Journal of chemists and chemical engineers, 2005, 54(5): 187-198
    [63] Oldham K B. A Gouy-Chapman-Stern model of the double layer at a (metal) / (ionic liquid) interface[J]. Journal of Electroanalytical Chemistry, 2008, 613: 131-138
    [64] Kinraide T B. Use of a Gouy-Chapman-Stern Model for Membrane-Surface Electrical Potential to Interpret Some Features of Mineral Rhizotoxicity[J]. Environmental and Stress Physiology, 1994, 106(4): 1583-1592
    [65]张金龙,陈锋,何斌.光催化[M],华东理工大学出版社,上海, 2004:9
    [66]李少婷,张青,汤亚飞,李庆新.电催化氧化处理难降解废水技术研究进展[J].四川环境, 2005, 24(5): 83-87
    [67]安太成,张文兵,朱锡海,熊亚,盛国英.一种新型光电催化反应器的研制及甲酸的光电催化深度氧化[J].催化学报, 2003, 24(5): 338-342
    [68]吴合进,吴鸣,谢茂松,刘鸿,杨民,孙福,杜鸿章.增强型电场协助光催化降解有机物[J].催化学报, 2009, 21(5): 400-404
    [69]张文杰,王小西,王雪.悬浮TiO_2-Ti电极体系中光电催化降解甲基橙[J].沈阳理工大学学报, 2009, 28(5), 59-62
    [70] Leng W H,Zhang Z, Zhang J Q. Photoelectrocatalytic degradation of aniline over rutile TiO_2/Ti electrode thermally formed at 600℃[J]. Journal of Molecular Catalysis A: Chemical, 2003, 206: 239–252
    [71] Sun C C, Chou T C. Electrochemically promoted photocatalytic oxidation of nitrite ion by using rutile form of TiO_2/Ti electrode[J]. Journal of Molecular Catalysis A: Chemical, 2000, 151: 133-145
    [72] Kesselman L M, Lewis N S, Hoffmann M R. Photoelectrochemical degradationof 4-chlorocatechol at TiO_2 electrodes: comparison between sorption and photo- reactivity[J]. Environ. Sci. Technol., 1997, 31: 2298-2302
    [73] Li X Z, Li F B, Fan C M. Photoelectrocatalytic degradation of humic acid in aqueous solution using a Ti/TiO_2 mesh photoelectrode[J]. Water Research, 2002, 36: 2215-2224
    [74] Zanoni M V B, Sene J J, Anderson M A. Photoelectrocatalytic degradation of remazol brilliant orange 3R on titanium dioxide thin-film electrodes[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2003, 157: 55-63
    [75] You H, Yao J, Sun L X. Preparation of TiO_2-activated carbon complex members and their photoelectrocatalytic activity[J]. Journal of Harbin Institute of Technology, 2003, 10(1): 4
    [76]倪珺,冷文华,施晶莹,张鉴清,曹楚南.光电协同催化降解水杨酸和苯胺:二氧化钛晶型的影响[J].环境科学学报, 2005, 25(6): 756-760
    [77]冷文华,张昭,成少安,张鉴清,曹楚南.光电催化降解苯胺的研究-外加电压的影响[J].环境科学学报, 2001, 21(6): 710-714
    [78]宋琳,王心乐,张鑫,李明玉,刁增辉.新型单双槽光电催化反应器的设计及其降解性能[J].四川大学学报, 2011, 42(2): 183-187
    [79] Xu Y L, He Y, Cao X D, Zhong D J, Jia J P. TiO_2/Ti rotating disk photoelectrocatalytic (PEC) reactor: A combination of highly effective thin-film PEC and conventional PEC processes on a single electrode[J]. Environ. Sci. Technol., 2008, 42(7): 2612-2617.
    [80]史载锋,范益群,徐南平等.不同光源对光催化降解亚甲基蓝的影响[J].南京化工大学学报, 2000, 22 (1): 59-63
    [81] Chang H T, Wu N M, Zhu F Q. A kinetic model for photocatalytic degradation of organic contaminants in a thin–filmTiO_2 catalyst[J]. Wat. Res., 2000, 34(2): 407-416
    [82] Kavan L, Gratzel M, Gilbert S E, Klemenz C, Scheel H J. Electrochemical and photoelectrochemical investigation of single-crystal anatase[J]. Journal of the American Chemical Society, 1996, 118(28): 6716-6723
    [83] Carneiro P A, Osugi M E, Fugivara C S. Elaluation of different electrochemical methods on the oxidation and degradation of reactive Blue 4 in Aqueous solution [J]. Chemosphere, 2005, 59: 431-439
    [84]刘中林,李春喜,王子镐.苯酚水溶液光催化降解的盐效应[J].中国环境科学, 2003, 23(5): 539-542
    [85] He C, Li X Z, Graham N. Preparation of Ti/ITO and TiO_2/Ti photoelectrodes bymagnetron sputtering for photocatalytic application[J]. Applied Catalysis A: General, 2006, 305: 54-63
    [86] Hitchman M I, Tian F. Studies of thin film prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chloro- phenol[J]. Journal of Electroanalytical Chemistry, 2002, 538(13): 164-172
    [87] Ni M, Michael K H, LeungDennis Y C, LeungK S. A review and recent development in photocataltic water-splitting using TiO_2 hydrogen production[J]. Renewable & Sustainable Energy Reviews, 2007,11(3): 401-425
    [88] Gong D W, Grimes C A, Varghese O K, Chen Z, Hu W C, Dickey E C. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Mater. Res., 2001, 16: 3331
    [89] Liu Y B, Gan X J, Zhou, B. X.; Xiong, B. T.; Li, J. H.; Dong, C. P.; Bai, J.; Cai, W. M. Photoelectrocatalytic degration of tetracycline by highly effective TiO_2 nanopore arrays electrode[J]. Journal of Hazardous Materials, 2009, 171(1-3): 678
    [90] Neyens E, Baeyens J. A review of classic Fenton's peroxidation as an advanced oxidation technique[J]. Journal of Hazardous Materials, 2003,98: 33-50
    [91]王海龙,张玲玲,王新力,刘超.臭氧氧化工艺在印染废水处理中的应用进展[J].工业水处理, 2011, 31(7): 18-21
    [92]冯玉杰,李晓岩,尤宏等.电化学技术在环境工程中的应用[M].北京:化学工业出版社, 2002: 94-105
    [93] Mohan N, Balasubramanian N, Subramanian V. Electrochemical Treatment of Simulated Textile Effluent [J] . Chem. Eng. Technol., 2001, 7(24): 749-753
    [94]陈诵英.催化反应动力学[M].北京:化学工业出版社, 2007
    [95] Zheng Q, Zhou B X, Bai J, Li L H, Jin Z J, Zhang J L, Li J H, Liu Y B, CaiW M, Zhu X Y. Self-organized TiO_2 nanotube array sensor for the determination of chemical oxygen demand[J]. Advanced Materials, 2008, 20:1044
    [96] Gong D, Grimes C A, Varghese O K, Hu W, Singh R S, Chen Z, Dickey E C. Titanium oxide nanotube arrays prepared by anodic oxidation[J]. Mater. Res., 2001, 16: 3331-3334
    [97] Krysa J, Waldner G., Mestankova H, Jirkovsky J, Grabner G.. Photocatalytic degradation of model organic pollutants on an immobilized particulate TiO_2 layer. Roles of adsorption processes and mechanistic complexity[J]. Appl.Catal. B. 2006, 64(3-4): 290
    [98] Bai J, Zhou B X, Li J H, Zheng Q, Liu Y B, Shao J H, Zhu X Y, Cai W M. Theformation mechanism of titania nanotube arrays in hydrofluoric acid electrolyte [J]. Mater. Sci. 2008, 43, 1880-1884
    [99] Lam S W, Chiang K, Lim T M, Amal R, Low G K-C. The effect of platinum and silver deposits in the photocataltic oxidation of resorcinol[J]. Photoch. Photobio. A: Chem. 2007, 72(3-4): 363-372
    [100] Moser J, Punchihewa S, Infelta P P, Gratzel M. Surface complexation of collodal semiconductors strongly enhances interfacial electron-transfer rates[J]. Langmuir. 1991, 7(12): 3012
    [101]奥野良信.金刚烷胺[J].日本医学介绍, 2004, 25(7): 307-309
    [102]孙爱春.金刚烷的化学[J].浙江师大学报(自然科学版), 1994, 17(2): 51-56
    [103] Park K K, Sim W J. Chemoselective reduction of nitroarenes and nitroalkanes by sodium dithionite using octylviologen as an electron transfer catalyst[J]. Org. Chem., 1995, 60: 6202- 6204
    [104] Molinari A, Montoncello M, Rezala H, Maldotti A. Partial oxidation of allylic and primary alcohols with O_2 by photoexcited TiO_2[J]. Photochem. Photobiol. Sci. 2009, 8(5): 613-619

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700