Mg-Zr系镁合金强度与阻尼性能的平衡优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择目前应用较为广泛的高阻尼MgZr镁合金,在其基础上逐步添加合金元素形成体系(MgZr、MgZnZr、MgZnZrY),采用金相显微组织分析(OM)、X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、拉伸力学性能测试、动态机械分析(DMA)等实验手段研究了体系中各种合金经过常规变形工艺或热处理后其强度和阻尼性能的变化规律。
     本文首先介绍了近年来阻尼镁合金的研究背景及意义,总结了目前金属阻尼材料的表征、测量方法及形成机理,概述了目前阻尼镁合金的研究现状并提出了本论文的研究目的及意义。
     研究不同挤压工艺参数(T、ε)对Mg-Zr合金微观组织、屈服强度及阻尼性能的影响。通过引入Zener-Hollomon参数和数据拟合,建立了Z参数与合金再结晶平均晶粒度d之间的关系模型符合d=376.6 ? 13.6lnZ;得到挤压工艺参数与合金屈服强度之间的定量关系σ=100.9+296.5(376.6 - 13.6ln(εexp (Q/RT)))~(1/2);得到挤压工艺参数与合金阻尼性能之间的定量关系Q_h~(-1) = A(376.6 - 13.6 ln(εexp(Q/RT)))~3 /εexp(-C_2/ε)。
     通过研究一次挤压、二次挤压、锻造三种塑形变形工艺以及不同热处理工艺(T4、T5、T6)对MgZnZr高强变形镁合金强度及阻尼性能的影响,发现变形工艺或热处理后,合金的各力学性能之间相差不多,但却使阻尼性能发生了显著变化。其中,变形工艺中锻造态ZK60镁合金的阻尼性能最好,相对于挤压态提高2倍多。热处理后,合金的阻尼性能均得到不同程度的提高,其中,固溶态合金的阻尼性能最好。几种工艺对MgZnZr合金阻尼性能的影响规律均可通过G-L理论很好解释。
     最后,研究主要针对MgZnZrY合金,分析添加不同含量的Y元素后,合金相析出的规律及对其微观组织、强度和阻尼性能的影响规律。研究发现:Y元素具有明显的细化晶粒的作用,并且Y、Zn原子的同时存在会引入长周期相、准晶相等。当Y/Zn比约为0.05-0.2时,合金中会生成准晶相(I相-Mg3Y6Zn),当Y/Zn比大于0.5时,会有长周期相(X相-Mg12YZn-LPS)生成,而W相(Mg3Y2Zn3)会在Y/Zn为0.05-0.5的较大范围内存在。这几种相无论是对合金的强度还是阻尼性能均有所提高,其中贡献的大小依次为W+LPS>LPS>W+I>W>MgZn2。最后还发现,在综合性能最好的合金中,当W相与LPS结构共存时,其中的W相与Mg基体具有新的位相关系([001]W//[01—10]α,(110)W//(0001)α)。
In this thesis, the present widely used high damping MgZr magnesium alloys were chosen to form systems (MgZr、MgZnZr、MgZnZrY) through adding alloying element into them. The variation of strength and damping capacity of these alloy systems after general deformation and heat-treatment were systematically investigated by optical metallographic (OM), X-ray diffraction (XRD), scanning and transmission electron microscopy (SEM and TEM), mechanical tensile properties test, dynamic mechanical analysis (DMA).
     In the first part of the thesis, the background and significance of a recent progress of damping magnesium alloys was critically overviewed, which includes the token, test approach and damping forming mechanism. Based on investigation actuality, the objective and significance of this thesis were represented.
     In present study, the hot-extrusion deformation of conventional high damping Mg-Zr magnesium alloys was carried out by using a various processing parameter of temperature T and strain rateε, and the effect of deformation temperature and strain rate on microstructure, strength and damping capacities of Mg-Zr alloys have been investigated. By fitting , the quantitative relationship between extruded Zener-Hollomon( Z =εexp(Q/RT)) parameter and grain size has been builded:d=376.6 - 13.6ln Z. The quantitative relationship between extruded parameter and the yield strength can expressed asσ=100.9+296.5(376.6 - 13.6ln(εexp (Q/RT)))~(-1/2). The quantitative relationship between extruded parameter and the damping capacity can expressed as Q_h~(-1) = A(376.6 - 13.6 ln(εexp(Q/RT)))~3 /εexp(-C_2/ε) .
     The effect of series deformation processes (first extrusion, second extrusion and forging) and heat treatments on MgZnZr magnesium alloys was studied. We found that the mechanical properties of alloys after deformation process or heat treatment changed little, but the damping properties have obvious change for MgZnZr magnesium alloys in these different processes technology. The damping capacity of alloys treated by forging was increased more, and the damping properties in the forging state are more than twice than in the extrusion state. The damping properties have obvious increase for MgZnZr magnesium alloys in three different heat treatment technology, and the damping capacity of alloys treated by solution are increased more. The influences of processes technology on damping properties can be explained by the G-L theory.
     The high strength extruded MgZnZrY alloy was chosen to study the influence of Yttrium addition on microstructure, strength and damping capacity. In the light of present literature reports, Yttrium played significant role of the grain refinement, and the coexisting of Y, Zn atom will introduce long period structure and quasicrystalline phase. When the ratio of Y/Zn is 0.05-0.2, quasicrystalline phase(I phase-Mg3Y6Zn) formed. When the ratio of Y/Zn more than 0.5, long period structure ( X phase-Mg12YZn-LPS) formed. The W phase formed on a large scale of 0.05-0.5. These phases have both contribution on mechanical properties and damping capacities, and the contributions from big to small are: W+LPS>LPS>W+I>W. Also found in the end that in the best performance of the alloys, when W and LPS phases exist, the new phase relationships between W phase and Mg matrix formed([001]W//[011—0]α,(110)W//(0001)α).
引文
[1]刘广,张振忠,张少明,等.高阻尼镁锆合金的研究进展及展望[J].材料导报,2006,20(7):425.
    [2]李沛勇,戴圣龙,刘大博,等.材料阻尼及阻尼合金的研究现状[J].材料工程,1999(8):44.
    [3]赵稼祥.加强发展军用功能材料[J].材料工程,1995(3):311.
    [4]田莳,李秀臣,刘正堂.金属物理性能[M].北京:航空工业出版社,1994:143.
    [5]方前锋,朱震刚,葛庭燧.高阻尼材料的阻尼机理及性能评估[J].物理,2000,29(9):541.
    [6] Cahn R W,师昌绪,柯俊.非铁合金的结构与性能[M].北京:科学出版社,1999:101.
    [7] Zhang X N,Wu R J.Damping capacity of pure Mg metal ma-trix composites[J].Key Engineering Materials,2003,249:217-222.
    [8]曾荣昌,柯伟,徐永波,等.Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [9] Froes F H , Eliezer D , Aghion E.The science , technology andapplications of magnesium[J].JOM,1998(9):30-33.
    [10] Kojima Y.Plat form science and technology for advancedmagnesium alloy[J].Material Science Forum,2000,350-351:312.
    [11] Wan Diqing, Wang Jincheng, Yang Gencang. A study of the effect of Y on the mechanical properties, damping capacity of high damping Mg-0.6%Zr based alloys [J]. Materials Science and Engineering A, 2009, 517: 114-117.
    [12]葛庭燧.固体内耗理论基础.晶界弛豫与晶界结构[M].科学出版社.2000:1~35.
    [13]哈宽富.金属力学性质的微观理论[M].科学出版社.1983:187~190.
    [14]王从曾.材料性能学[M].北京工业大学出版社.2001:9~13.
    [15] A.S.Nowick,B.S.Berry.Anelastic Relaxation in Crystalline.Academic Press[M]. New York. 1972:130~132.
    [16] C.Zener.Elasticity and Anelasticity of Metals.The University of Chicago Press. Chicago[M]. 1984:41~43.
    [17]冯端.金属物理学.第三卷金属力学性能[M].科学出版社.1999:13~16.
    [18]李沛勇,戴圣龙,刘大博,柴世昌,李裕仁.材料阻尼及阻尼合金的研究现状[J].材料工程, 1999, 8: 44-48.
    [19]王进,贺才春,刘国钧,杨军.材料阻尼性能的表征与测试[J].振动与冲击. 2006,25:1101-1103.
    [20]过梅丽.高聚物与复合材料的动态力学热分析[M].化学工业出版社.2002:79~160.
    [21]张小农.金属基复合材料的阻尼行为研究[D].上海交通大学博士学位论文.1997:1~79.
    [22]李开明.当代金属类阻尼材料及其应用[J].上海航天.1996,1:40~47.
    [23] D.Pulino-Sagradi,M.Sagradi,A.Karimi,et al.DAMPING CAPACITY OF Fe-Cr-X HIGH-DAMPING ALLOYS AND ITS DEPENDENCE ON MAGNETIC DOMAIN STRUCTURE [J]. Scripta Materialia,1998,39(2):131
    [24]丁文江,等.镁合金科学与技术[M].北京:科学出版社,2007:180.
    [25]米林,田铁,谭伟.镁合金阻尼特性及检测技术研究[J].振动、测试与诊断, 2010,30 (1): 75-77.
    [26]陈荣,黄正,张永刚,陈昌麒. Al-Li-Mg-Si合金的相图计算及组织的TEM观察[J].材料研究学报, 2000,14(3):271-276.
    [27]邱成军,王元化,王义奎.材料物理性能[M].哈尔滨:哈尔滨工业出版社,2003:242.
    [28] Levinson D W,Mcpherson D J.Phase relations in magne-siurn-lithium-aluminum alloys[J]. Trans ASM,1956,48:689.
    [29] C.Zener .Elasticity and Anelasticity in Metals,University of Chicago Press,Chicago,IL,1948
    [30] Weissmann G F,Babingson W.Proceeding ASM[EB/OL].http://www.mat. eng. Osaka/ u.ac.jp/ coe21/res/pdf/14.pdf.
    [31]孔志刚,刘泓波,张虎.Zr含量对Mg-Zr合金组织和性能的影响[J].北京航空航天大学学报,2004,30(10):974.
    [32] Sugimoto K,Niiya K,Okamoto T,et al.A study of dampingcapacity in magnesium alloys[J].Transactions of Japan In-stitute Metals,1977,18:277-288.
    [33] Hu X S,Zhang Y K,Zheng M Y,et al.A study of dampingcapacities in pure Mg and Mg-Ni alloys[J].2005,52:1142.
    [34] [34] TrojanovàZ,Lukác P,Riehemann W,et al.Influence of rapid solidification on the damping behavior of some magnesium alloys[J].Mater Sci Eng A,1997,A226-228:867-870.
    [35] Diqing Wan , Jincheng Wang , Lin Lin , et al.Damping proper-ties of Mg-Ca binary alloy[J].Physica B,2008,403:2439.
    [36] Liao Lihua,Zhang Xiuqin,Li Xianfeng,et al.Effect of sili-con on damping capacities of pure magnesium and magne-sium alloys[J].Materials Letters,2007,61:231-234.
    [37]ДрицМЕ,РохлинЛЛ.Магниевыесплавысособымиамустическимсвойствами[M]. 1983.
    [38] Nishiyama K.Damping properties of Mg-Cu-Mn alloy[J].JpnRes Inst Mater Technol,1994,12(2):37-39.
    [39] Nishiyama K,Mat sui R,Ikeda Y,et al.Damping properties of a sintered Mg-Cu-Mn alloy[J].Journal of Alloys and Compounds,2003,355:22-25.
    [40]马春江,张荻,覃继宁,等.Mg-Li-Al合金的力学性能和阻尼性能[J].中国有色金属学报,2000,10(1):13.
    [41]黄良余,叶青,翟春泉,等.高阻尼高强度镁合金ZMJD-1S的应用研究[J].特种铸造及有色合金,1992(5):20.
    [42]丁文江,袁广银.新型镁合金的研究开发与应用[J].有色金属加工,2002,31(3):30-32.
    [43]江东亮,闻建勋,陈国民,等.新材料:现代高技术丛书[M].上海:上海科学技术出版社,1994:25.
    [44] Froes F H , Eliezer D , Aghion E. The science , technology and applications of magnesium[J ]. JOM , 1998(9) : 30 33.
    [45] Kojima Y. Platform science and technology for advanced magnesium alloy[J] . Material Science Forum, 2000 , 350 351 : 3 12.
    [46] Rokhlin, L. L., Drits, M. E., etc. Damping Properties of Light Alloys[J]. Army Foreign Science and Technology Center Charlottesville Va, 1974, FSTC-HT-23-1429-73, 11p.
    [47] Weissmann G F , Babingson W. Proceeding ASM [EB/ OL] . http : //www. mat . eng. osaka2u. ac. jp/coe21/res/ pdf/ 14. pdf .
    [48] Avedesian M M , Baker H. ASM Specialty Hand-book-Magnesium and Magnesium Alloys [M] . ASM International , 1999. 59 60.
    [49] LIU Chu-ming, JI Ren-feng, etc. Research and development progress of damping capacity of magnesium and magnesium alloys[J]. The Chinese Journal of Nonferrous Metals, 2005 , 15 (9) :1319.
    [50] JI Ren-feng, LIU Chu-ming. Study on High-strength Damping Mg-Zr-series Alloy—Analysis of Damping Behavior of Ca/Y Modified Mg-0.6Zr Alloy[J]. Rare Metals and Cemented Carbides, 2007, 35(3): 23-27.
    [51] J I RenOf eng, L IU ChuOming. Effect of Hot Extrusion and Annealing on Microst ructure and Properties of Mg-Zr-(Ca/Y) Alloys[J]. Rare Metals and Cemented Carbides, 2007, 35(4): 23-26.
    [52] N.V. Ravi Kumar, J.J. Blandin, etc. Grain refinement in AZ91 magnesium alloy during thermomechanical processing[J]. Materials and Engineering A, 2003, 359: 150-157.
    [53] Hansen, Niels. Hall-petch relation and boundary strengthening[J]. Scripta Materialia, 2004,51(8):801-806.
    [54] Ji Luo, Zhirui Wang. On the physical meaning of the Hall-Petch constant[J]. 2007,15-17:643-648.
    [55] LIU Zi-juan, LIU Chu-ming, ZHOU Hai-tao, JI Ren-feng, ZHANG Jia. Influence of HeatTreatment on Mechanical and Damping Properties of As-extruded AZ61 Magnesium Alloy[J]. Hot Working Technology, 2006, 35:35-53.
    [56] G. Y. Lin, Z. F. Zhang, etc. Study on the Hot deformation behaviors of Al-Zn-Mg-Cu-Cr aluminum alloy[J]. Acta Materialia, 2008,21(2): 109-115.
    [57] Watanabe H, Tsutsui H, Mukai T, Ishikawa K, Okanda Y, Kohzu M, Higashi K. Grain size control of commercial wrought Mg-Al-Zn alloys utilizing dynamic recrystallization[J]. Mater Trans, 2001, 42(7): 1200?1205.
    [58] Hodgson, P. D. Rapid method for determining the effect of process variables on recrystallisation [J]. Materials Science and Technology, 1996, 12(9): 788.
    [59] Fuxing Yin. Damping behavior characterization of the M2052 alloy aimed for practical application[J]. Acta Metallurgica Sinica,2003,39(11):1139-1144.
    [60]刘正,刘重阳,王中光,等.固溶和时效对压铸AZ91HP合金力学性能的影响[J].金属学报,1999,35(8):869-873.
    [61] Zhang X N. Effect of reinforcements on damping capacity of pure magnesium[J]. Journal of Materials Science Letters,2003,22(7):503-505.
    [62] Wan Di-qing,Wang Jin-cheng,Lin Lin,et al. Damping properties of Mg–Ca binary alloys[J]. Physica B,2008,403(13-16):2438-2442.
    [63]王敬丰,赵亮,胡耀波,等.阻尼镁合金的研究现状与发展趋势[J].材料导报,2008,22(7):103-106.
    [64]米林,田铁,毛星子,谭伟.镁及镁合金阻尼特性的机理研究[J].机械工程学报,2009,45(9):272-278.
    [65] Granato A,Lücke K. Application of Dislocation Theory to Internal Friction Phenomena at High Frequencies[J]. Journal of Applied Physics, 1956,27:789-792.
    [66] Granato A,Lücke K. Application of dislocation theory to internal friction phenomena at high frequencies[J]. Journal of Applied Physics,1956,27:789-805.
    [67] Trojanová, Z, Mielczarek, A, Riehemann, W, Lukác, P. Cyclic bending and the damping behaviour of short fibre-reinforced magnesium alloy AZ91[J]. Composites Science and Technology,2006,66(3-4):585-590.
    [68] Zhang Zhen-yan,Peng Li-ming,Zeng Xiao-qin,et al. Effects of Extrusion on the Mechanical Properties and Damping Capacity of Mg-1.8Cu-0.5Mn Alloy[J]. Materials Science Forum,2007,546-549:257-260.
    [69] A. Sanschagrin, R. Tremblay, R. Angers. Mechanical properties and microstructure of new magnesium-lithium base alloys[J]. Mater. Sci. Eng. A 1996, 220(1-2):69-77.
    [70] TSUI R T C. Internal friction and transmission electron microscopy studies of magnesium (Ⅱ):Electron microscopy[J]. Acta Metallurgica, 1967, 15(11): 1723?1730.
    [71]王晓林,于洋,梁书锦,王尔德.热挤压工艺对AZ31镁合金晶粒大小及性能的影响[J].材料科学与工艺,2005,13(6):567-569.
    [72] XU Guang-ming , BAO Wei-ping , CUI Jian-zhong , ZUO Yu-bo. Effect of magnetostatic f ield on microstructure of magnesium alloy ZK60[J]. Trans. Nonferrous Met. Soc. China, 2003,13(6):1270-1273.
    [73] Tsui R T C.Internal friction and transmission electron microscopy studies of magnesium-Ⅱelectron microscopy[J].Acta Metallurgica, 1967,15(11):1723-1730.
    [74] YU Kun, LI Wen-xian, WANG Ri-chu(余琨,黎文献,王日初). Effects of heat treatment on microstructures and mechanical properties of ZK60 magnesium alloy[J]. The Chinese Journal of Nonferrous Metals(中国有色金属学报),2007,17:188-192.
    [75] LIU Zi-juan, LIU Chu-ming, ZHOU Hai-tao, JI Ren-feng, ZHANG Jia(刘子娟,刘楚明,周海涛,纪仁峰,张佳). Influence of Heat Treatment on Mechanical and Damping Properties of As-extruded AZ61 Magnesium Alloy[J]. Hot Working Technology(热加工工艺), 2006, 35:35-53.
    [76] Hiroyuki Watanabe, Toshiji Mukai, Mukai,Masami Sugioka, et al. Elastic and damping properties from room temperature to 673K in an AZ31 magnesium alloy[J]. Scripta Materialia, 2004, 51:291-295.
    [77] Zhenyan Zhang,Liming Peng,Xiaoqin Zeng,Lin Du,Lan Ma,Wenjiang Ding.Effects of Extrusion on the Mechanical Properties and Damping Capacity of Mg-1.8Cu-0.5Mn Alloy[J].Material Science Forum,2007,546:257-260.
    [78] Y.K.Zhang,X.S.Hu,K.Wu,M.Y.Zheng.Application of G-L Dislocation Model in Low Frequency Damping Capacities of AZ91D and SiCw/AZ91D Composites[J]. Material Science Forum,2007,549:495-498.
    [79] ZHANG Jia,LIU Chu-ming,WANG Rong,ZHOU Hai-tao, JI Ren-feng(张佳,刘楚明,王荣,周海涛,纪仁峰). Effect of Annealing Time on Damping Capacity of Hot-rolled Mg-0.6Zr Plate[J]. Journal of Materials Science and Engineering(材料科学与工程学报), 2006, 24:916-919.
    [80] A. Granato,K. Lücke.Application of dislocation theory to internal friction phenomena at high frequencies[J].Journal of Applied Physics,1956,27:789-809.
    [81] Kojima Y,Aizawa T,Kamado S. Progressive steps in the platform science and technology for advanced magnesium alloys [J]. Mater.Sci. Forum,2003,419-422:3-20.
    [82] WANG Jingfeng; ZHAO Liang, HU Yaobo, etc. Research Status and Prospect of Damping Magnesium Alloys[J]. Materials Review, 2008, 22(7): 103-106.(in chanese)
    [83] WANG Jingfeng; LING Chuang, PAN Fusheng, etc. Research progress in influence of alloyingelements on damping properties of magnesium alloys[J]. Ordnance Material Science and Engineering, 2009, 32(3): 90-95. (in chanese)
    [84] Kittel C. Introduction to solid state physics [M]. New York:Wiley,1976.
    [85] Huang Liangyu, Ye Qing, Zhai Chunquan,etc. The Developement of High Damping, High Strength Mg-Alloy ZMJD-1S and Its Application In Manufacturing the Parts of Some Appartuses[J]. Special Casting & Nonferrous Alloys, 1992, (5): 15-20. (in chanese)
    [86] H.T. Zhoua, Z.D. Zhang , C.M. Liu ,etc. Effect of Nd and Y on the microstructure and mechanical properties of ZK60 alloy[J]. Materials Science and Engineering A, 2007, 445-446: 1-6.
    [87] WANG Yingying, ZHANG Xiuyun, BAI Pucun, etc. Study on Microstructure and Properties of ZK60+Y Magnesium Alloy After Plastic Deformation[J]. Hot Working Technology, 2008, 37(24): 11-13. (in chanese)
    [88] Ya Zhang , Xiaoqing Zeng, Chen Lu,etc. Deformation behavior and dynamic recrystallization of a Mg-Zn-Y-Zr alloy[J]. Materials Science and Engineering A 2006,428: 91-97.
    [89] WANG Bin, YI Dan-qing, WU Chun-ping ,etc.Effect of yttrium on microstructure and properties of ZK60 sheet in annealing states[J]. The Chinese Journal of Nonferrous Metals, 2008, 18(10): 1831-1838. (in chanese)
    [90] Wan Diqing,Wang Jincheng, Yang Gencang. A study of the effect of Y on the mechanical properties, damping properties of high damping Mg-0.6%Zr based alloys[J]. Materials Science and Engineering A, 2009, 517: 114-117.
    [91] Zhang Jidong, Li Yaguo, Zhang Shaoqing, etc. Studies On The Microstructure And Grain Boundaries Of Magnesium Alloys MB25 In Different Contents Of Y[J]. 1989, 15(7): 89-94. (in chanese)
    [92] CHEN Gui-lin, ZHU Shi-jie, ZHANG Mei,etc. Effects of Zn and Y Content on Microstructure and Properties of Mg-Zn-Y Alloys[J]. Foundry Technology, 2005,26(10):963-965. (in chanese)
    [93]袁武华,张晨晨,陈吉华.准晶相增强高性能镁合金的研究进展[J].材料导报.2007,21(2):91-93.
    [94] Vladimir Bata, Elena V. Pereloma . An alternative physical explanation of the Hall–Petch relation[J]. Acta Materialia 2004,52: 657-665.
    [95] D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, E.H. Han. Effect of W-phase on the mechanical properties of as-cast Mg–Zn–Y–Zr alloys[J]. Journal of Alloys and Compounds. 2008, 461:248–252.
    [96] Granato A,Lucke K.Theory of Mechanical Damping Due to Dislocations[J].Journal of Applied Physics,1956,27(6):583-593.
    [97] K. Hagihara, N. Yokotani , Y. Umakoshi . Plastic deformation behavior of Mg12YZn with 18R long-period stacking ordered structure[J]. Intermetallics.2010, 18:267–276.
    [98] T. Itoi, T. Seimiya , Y. Kawamura , M. Hirohashi . Long period stacking structures observed in Mg97Zn1Y2 alloy[J]. Scripta Materialia.2004, 51:107–111.
    [99] Alok Singh, M. Watanabe , A. Kato , A.P. Tsai. Crystallographic orientations and interfaces of icosahedral quasicrystalline phase growing on cubic W phase in Mg–Zn–Y alloys[J]. Materials Science and Engineering A. 2005, 397 :22–34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700