硅基ZnO系薄膜的波长可调的电抽运随机激射及其物理机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
ZnO由于具有3.37eV的宽直接带隙,60meV的高激子束缚能等优点,被认为是优异的紫外发光材料。同时,ZnO还具有较高的折射率。因此,近十年来ZnO薄膜的随机激射引起了人们巨大的研究热情。在ZnO薄膜的光抽运随机激射得到充分研究的基础上,近年来人们以多种方式实现了ZnO薄膜的电抽运随机激射。需要指出的是,ZnO与MgO形成的合金半导体MgZnO的禁带宽度比ZnO的更大;而ZnO与CdO形成的合金半导体CdZnO的禁带宽度比ZnO的更小。因此,若能实现MgZnO和CdZnO薄膜的电抽运随机激射,则可使ZnO系薄膜的电抽运随机激射的波长覆盖紫外(甚至深紫外)至可见光区。众所周知,Si作为最重要的半导体被广泛用于微电子器件的制造,然而由于间接带隙的限制,Si不能作为发光器件的活性层。因此,如果能实现Si基ZnO系薄膜的电抽运随机激射,则不仅可发挥ZnO和Si各自的优势,而且还有可能为某些硅基光电子器件提供所需的光源。
     本文详细地研究了硅基ZnO、MgZnO和CdZnO薄膜的波长可调的电抽运随机激射及其物理机制。在制备以硅基ZnO、MgZnO和CdZnO薄膜为发光层的异质结或金属-绝缘体-半导体(MIS)器件的基础上,对这些器件的发光特性及其发光机制进行了研究,取得如下有创新意义的结果:
     (1)利用溶胶-凝胶法在硅衬底上制备了MgxZn1-xO (x=0,0.05,0.15,0.2,0.25, 0.35,0.8)薄膜,并以它们为半导体层形成MIS器件。在足够高的正向偏压(硅衬底接负压)下,器件均可产生来自于MgxZn1-xO薄膜的紫外随机激射。当Mg的组分在x=0~0.35间变化时,随着MgxZn1-xO薄膜中Mg含量的增高,随机激射的中心波长从~380nm逐渐蓝移到~356nm;而当Mg的组分增至x=0.8时,器件的随机激射的中心波长移至~285nm。从MgxZn1-xO薄膜的光增益和光多重散射的角度,阐明了上述电抽运随机激射现象的物理机制。
     (2)利用射频溅射法在硅衬底上制备了ZnO/CdO双层膜结构,通过高温热处理,使双层膜的组分发生互扩散,从而形成Cd和Zn组分渐变的CdxZn1-xO薄膜。利用此薄膜作为发光层,制备了SiO2/ZnO-CdO/SiO2双势垒结构器件,实现了紫外光和可见光并存的电抽运随机激射。研究表明,其紫外及可见光区的随机激射分别来源于SiO2/ZnO界面处附近的ZnO薄膜和其以下的组分渐变的CdxZn1-xO薄膜。
     (3)利用射频溅射法制备了Cd组分较高的CdZnO薄膜。通过对薄膜进行Ar气氛下不同温度的快速热处理,实现了CdZnO薄膜在可见光区的发光波长从-490nm到~425nm的可调。在硅衬底上制备了以上述薄膜为半导体层的MIS器件。在足够大的正向偏压下,器件在可见光区均产生了随机激射。随着CdZnO薄膜的快速热处理温度的升高,器件的随机激射中心波长从~490nm蓝移~430nm。研究表明,在MIS器件制备过程中,作为绝缘层的SiO2薄膜必须在足够低的温度下制备,才有可能保持CdZnO薄膜的发光性能不发生变化。
     (4)在硅衬底上制备了基于MgxZn1-xO/ZnO(x=0.25或1)异质结的器件,其中ZnO薄膜作为发光层,分别由溶胶-凝胶法和磁控溅射法制备;MgxZn1-xO薄膜作为势垒层。溶胶-凝胶法制备的ZnO薄膜晶粒取向更多且较为疏松,因而具有更强的光散射能力。当异质结中的ZnO薄膜由溶胶-凝胶法制备时,两种异质结器件在足够大的正向电流下都可产生随机激射;而当异质结中的ZnO薄膜由溅射法制备时,仅有MgO/ZnO异质结器件才在合适的电流下产生随机激射。分析表明:对于ZnO薄膜的电抽运随机激射,其光增益和光散射能力间存在补偿关系。即:光散射能力较强时,随机激射可在光增益较小的情况下产生。
     (5)在重掺N型硅衬底上制备了以Mg0.15Zn0.85O薄膜作为发光层,MgxZn1-xO (x=0.2,0.25,0.35)薄膜作为势垒层的异质结。在足够大的正向电流下,当势垒层为Mg0.2Zn0.8O薄膜时,异质结的电致发光表现为从可见到紫外光区的自发辐射;而当势垒层为Mg0.25Zn0.75O或Mg0.35Zn0.65O薄膜时,异质结在紫外光区产生随机激射,同时在可见光区产生自发辐射。分析表明,足够大的电子势垒是上述异质结产生随机激射的必要条件。对发光层为Mg0.15Zn0.85O薄膜的异质结来说,产生电抽运随机激射所需的电子势垒较小,大约为0.17eV。
     (6)研究了不同的ZnO薄膜的光抽运和电抽运随机激射在阈值上的差异。对溅射法制备的ZnO薄膜分别做不同温度的热处理,并在硅衬底上制备以此热处理后的ZnO薄膜作为半导体层的MIS器件。经高温处理后的ZnO薄膜具有较大的光增益,而经低温处理后的ZnO薄膜具有较强的光散射能力。对光抽运随机激射而言,经过高温热处理的ZnO薄膜产生随机激射的阈值较低。而对电抽运随机激射而言,基于两种ZnO薄膜的MIS器件产生随机激射的阈值几乎相同。从光抽运和电抽运两种情况下的载流子分布情况以及对光多重散射情况的分析出发,对此两种情况下激射阈值的差异进行了解释。
Owing to the wide band gap (~3.37 eV) and large exciton binding energy (~60 meV) at room temperature, ZnO has been considered as one of the most promising materials for ultraviolet (UV) optoelectronics. Meanwhile, ZnO has a considerably large refractive index. In the past decade, random lasing (RL) from ZnO materials has attracted extensive research interests. Subsequent to the essential investigation of the optically pumped RL from ZnO films, the electrically pumped RL actions from ZnO materials have been achieved by different strategies in recent years. It should be mentioned that the bandap of ZnO can be tuned to larger or smaller ones by alloying ZnO with MgO or CdO, respectively. Therefore, in principle, the electrically pumped RL actions from ZnO-based films MgZnO (CdZnO) films can be tuned from ultraviolet (UV) to red regimes. It is well know that silicon, as the utmost important semiconductor, is the base material for microelectronics. However, due to the intrinsic indirect bandgap, silicon is not an efficient light-emitting material. In this context, the realization of silicon-based ZnO random lasers with a wide range of emitting spectra is of significance, which integrates the merits of silicon and ZnO and, moreover, could provide light sources for certain silicon-based photoelectronic devices.
     In this dissertation, the electrically pumped wavelength-tunable RL from ZnO, MgZnO and CdZnO films on silicon and the related physical mechanism have been intensively investigated. Based on the fabrication of devices based on the heterojunctions and metal-insulator-semiconductor (MIS) structures in which ZnO, MgZnO or CdZnO films act as the light-emitting layers, the light-emission characteristics and the related mechanisms for these devices have been systematically addressed. In the following, the primary achievements in this work are described.
     (1) The electrically pumped wavelength-tunable ultraviolet RL from the MgxZn1-xO films with different bandgap energies, which act as the semiconductor components in the MIS structures fabricated on Si substrates has been achieved. When the metal (Au herein) gates of the MIS structures are applied with sufficiently high positive voltages, random lasing from the MgxZn1-xO films occurs, featuring a series of narrow spikes in the emitted spectra. Overall, the central wavelength of the random lasing spectrum is tuned from~380 to 356 nm with the increase of x value in MgxZn1-xO from 0 to 0.35. When the x value in MgxZn1-xO is 0.8, the central wavelength of the RL spectrum can be tuned to~285nm. The mechanism for the electrically pumped random lasing has been tentatively elucidated taking into account both the multiple optical scattering and the optical gain proceeding in the MgxZn1-xO films.
     (2) The electrically pumped simultaneous UV and visible random laser actions from ZnO-CdO interdiffused film has been demonstrated. The interdiffusion between ZnO and CdO films at 700℃forms composition-graded CdxZn1-xO alloy within the ZnO-CdO interdiffused film, which is luminescent in both UV and visible regions. A device based on SiO2/ZnO-CdO/SiO2 double-barrier structure on silicon substrate, where SiO2 acts as the barrier, is constructed for electrical pumping of the ZnO-CdO interdiffused film. As the device is applied with sufficiently high forward bias with negative voltage connecting to the silicon substrate, the UV and visible RL actions simultaneously occur. The mechanism for such electrically pumped random laser actions has been tentatively elucidated.
     (3) The electrically pumped wavelength-tunable blue RL from the hexagonal CdZnO films with different Cd contents, with central wavelength changing from-490 to 425 nm, has been demonstrated. The devices based on the MIS structures of Au/SiO2/CdZnO on silicon substrates are constructed for electrical pumping of the CdZnO films. The insulator layers of SiO2 onto the CdZnO films in the devices should be annealed at sufficiently low temperature such as 400℃so that the CdZnO films can be kept their integrity in terms of near-band-edge emissions.
     (4) The compensation between optical gain and light scattering in the electrically pumped RL from ZnO films has been clarified through investigating the electroluminescence of MgxZn1-xO/ZnO (x=0.25 and 1) heterostructured devices. As the active ZnO films are sol-gel derived, both heterostructured devices can be electrically pumped into RL at appropriate forward currents. While the active ZnO films are prepared by sputtering, only the MgO/ZnO heterostructured devices can generate RL pumped with sufficient forward currents. It is believed that the light scattering in the sputtered ZnO films is weaker than that in the sol-gel derived ones. However, the inferior light scattering capability of the sputtered ZnO films can be compensated by the MgO/ZnO-heterostructure-enabled higher optical gain in the electrically pumped RL.
     (5) The electrically pumped ultraviolet RL from the heterostructures formed by bi-layered MgZnO films on silicon, where Mg0.15Zn0.85O and MgxZn1-xO (x= 0.25 or above) films act as the light-emitting and barrier layers, respectively, has been achieved. While, with a barrier layer composed of a Mg0.20Zn0.80O film, only spontaneous electroluminescence occurs in the heterostructures. It has thus been proved that a large enough conduction-band offset (△Ec) is necessary for the electrically pumped RL from the MgZnO film-based heterostructures. The△Ec required herein is estimated to be~0.17 eV. The mechanism for the results as mentioned above has been tentatively elucidated.
     (6) The optically and electrically pumped random laser actions in the ZnO films annealed at low and high temperatures have been investigated. While the optically pumped RL threshold for the ZnO film annealed at a low temperature, which features stronger light scattering and larger optical loss, is far higher than that for the ZnO film annealed at a high temperature, the electrically pumped RL threshold currents for the two ZnO films are almost the same with the electrical pumping scheme of metal-insulator-semiconductor structure. It is suggested that if the lasing region within the ZnO film is narrow enough in the case of electrical pumping, the strong light scattering can substantially alleviate the adverse effect of large optical loss on the onset of RL.
引文
[1]S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, "Recent progress in processing and properties of ZnO", Prog. Mater. Sci,2005,50:293-340.
    [2]A. Janotti and C. G. Van de Walle, "Fundamentals of zinc oxide as a semiconductor", Rep. Prog. Phys.,2009,72:126501-126529.
    [3]A. Kobayashi, O. F. Sankey, and J. D. Dow, "Deep energy levels of defects in the wurtzite semiconductors A IN, CdS, CdSe, ZnS, and ZnO", Phys. Rev.B,1983,28:946-956.
    [4]A. Kobayashi, O. F. Sankey, S. M. Volz, and J. D. Dow, "Semiempirical tight-binding band structures of wurtzite semiconductors:AlN, CdS, CdSe, ZnS, and ZnO", Phys. Rev. B, 1983,28:935-945.
    [5]J. D. Albrecht, P. P. Ruden, S. Limpijumnong, W. R. L. Lambrecht, and K. F. Brennan, "High field electron transport properties of bulk ZnO", J. Appl. Phys.,1999,86: 6864-6867.
    [6]D. C. Look, J. W. Hemsky, and J. R. Sizelove, "Residual native shallow donor in ZnO", Phys. Rev. Lett.,1999,82:2552-2555.
    [7]C. G. Van de Walle, "Hydrogen as a cause of doping in zinc oxide", Phys. Rev. Lett.,2000, 85:1012-1015.
    [8]T. Minami, H. Sato, H. Nanto, and S. Takata, "Group Ⅲ impurity doped zinc oxide thin films prepared by rf magnetron sputtering ", Jpn. J. Appl. Phys.,1985,24:L781-L784.
    [9]T.-h. Kim, S.-H. Jeong, I.-S. Kim, S. S. Kim, and B.-T. Lee, "Magnetron sputtering growth and characterization of high quality single crystal Ga-doped n-ZnO thin films", Semicond. Sci. Technol.,2005,20:L43-L46.
    [10]O. Bamiduro, H. Mustafa, R. Mundle, R. B. Konda, and A. K. Pradhan, "Metal-like conductivity in transparent Al:ZnO films", Appl. Phys. Lett.,2007,90:252108.
    [11]N. Izyumskaya, V. Avrutin, U. Ozgur, Y. I. Alivov, and H. Morkoc, "Preparation and properties of ZnO and devices", Phys. Stat. Sol. B,2007,244:1439-1450.
    [12]C. H. Chia, T. Makino, K. Tamura, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma, "Confinement-enhanced biexciton binding energy in ZnO/ZnMgO multiple quantum wells", Appl. Phys. Lett.,2003,82:1848-1850.
    [13]V. S. Letokhov, "Generation of lasing a scattering medium with negative resonance absorption", Sov. Phys. J. EPT,1968,26:835-840.
    [14]N. M. Lawandy, R. M. Selschandran, and A. S. Lgomes, "Laser action in strongly scattering media", Nature,1994,368:436-440.
    [15]H. Cao, Y. G. Zhao, H. C. Ong, S. T. Ho, J. Y. Dai, J. Y. Wu, and R. P. H. Chang, "Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films", Appl. Phys. Lett.,1998,73:3656-3658.
    [16]H. Cao, Y. G. Zhao, H. C. Ong, and R. P. H. Chang, "Far-field characteristics of random lasers", Phys. Rev. B,1999,59:15107-15111.
    [17]H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, "Random Laser Action in Semiconductor Powder", Phys. Rev. Lett.,1999,82:2278-2281.
    [18]H. Cao, "Lasing in random media", Waves Random Media,2003,13:R1-R39.
    [19]H. Cao, "Review on latest developments in random lasers with coherent feedback".J. Phys. A:Math. Gen.,2005,38:10497-10535.
    [20]D. Wiersma, "The smallest random laser", Nature,2000,406:132-133.
    [21]S. Mujumdar, V. Tuerck, R. Torre, and D. S. Wiersma, "Chaotic behavior of a random laser with static disorder", Phys. Rev. A,2007,76:033807.
    [22]H. Cao, J. Y. Xu, D. Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, "Spatial Confinement of Laser Light in Active Random Media", Phys. Rev. Lett., 2000,84:5584.
    [23]E. S. P. Leong and S. F. Yu, "UV Random Lasing Action in p-SiC(4H)/i-ZnO-SiO2 Nanocomposite/n-ZnO:Al Heterojunction Diodes", Adv. Mater.,2006,18:1685-1689.
    [24]R. C. Polson, A. Chipouline, and Z. V. Vardeny, "Random Lasing in p-Conjugated Films and Infiltrated Opals", Adv. Mater.,2001.13:760-765.
    [25]R. C. Poison and Z. V. Vardeny, "Organic random lasers in the weak-scattering regime", Phys. Rev. B,2005,71:045205.
    [26]D. S. Wiersma, "The physics and applications of random lasers", Nature Phys.,2008,4: 359-367.
    [27]A. Tulek, R. C. Poison and Z. V. Vardeny, "Naturally occurring resonators in random lasing of π-conjugated polymer films", Nat. Photonic.,2010.6:303-310.
    [28]E. Abrahams, P. W. Anderson. D. C. Licciardello, and T. V. Ramakrishnan, "Scaling theory of localization:Absence of quantum di usion in two dimensions", Phys. Rev. Lett.,1979, 42:673-676.
    [29]S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers", Phys. Rev. Lett.,2004,93:053903.
    [30]G. Strangi, "Random lasing and weak localization of light in dye-doped nematic liquid crystals". Opt. Express,2006,14:7737-7744.
    [31]J. Fallert, Roman J. B. Dietz, J. Sartor, D. Schneider, C. Klingshirn, and H. Kalt, "Co-existence of strongly and weakly localized random laser modes", Nature Photon., 2009,3:279-285.
    [32]M. A. Noginov, G. Zhu. I. Fowlkes, and M. Bahoura, "GaAs random laser", Laser Phys. Lett.,2004,1:291-293.
    [33]C. R. Lee, S. H. Lin, C. H. Guo, S. H. Chang, T. S. Mo, and S. C. Chu, "All-optically controllable random laser based on a dye-doped polymer-dispersed liquid crystal with nano-sized droplets", Opt. Express,2010,18:2406-2412.
    [34]Q. H. Song, S. M. Xiao, Z. B. Xu, J. J. Liu, S. H. Sun, V. Drachev, V. M. Shalaev, D. and Y. L. Kim, "Random lasing in bone tissue", Opt. Lett.,2010,35:1425-1427.
    [35]S. F. Yu, C. Yuen, S. P. Lau, and H. W. Lee, "Zinc oxide thin-film random lasers on silicon substrate",Appl. Phys. Lett.,2004,84:3244-3246.
    [36]C. Yuen, S. F. Yu, E. S. P. Leong, H. Y. Yang, S. P. Lau, N. S. Chen, and H. H. Hng, "Low-loss and directional output ZnO thin-film ridge waveguide random lasers with MgO capped layer", Appl. Phys. Lett.,2005,86:031112.
    [37]H. D. Li, S. F. Yu, S. P. Lau, E. S. P. Leong, H. Y. Yang, Tu Pei Chen, A. P. Abiyasa, and C. Y. Ng, "High-Temperature Lasing Characteristics of ZnO Epi layers", Adv. Mater.,2006,18: 771-774.
    [38]H. D. Li, S. F. Yu, S. P. Lau, and E. S. P. Leong, "Simultaneous formation of visible and ultraviolet random lasings in ZnO films", Appl. Phys. Lett,2006,89:021110.
    [39]S. Y. Kuo, F. I. Lai, W. C. Chen, C. P. Cheng, H. C. Kuo, and S. C. Wang, "Ultraviolet Lasing of Sol-Gel-Derived Zinc Oxide Polycrystalline Films", Jpn. J. Appl. Phys.,2006, 45:3662-3665.
    [40]X. H. Zhang, S. J. Chua, A. M. Yong, H. D. Li, S. F. Yu, and S. P. Lau, "Exciton related stimulated emission in ZnO polycrystalline thin film deposited by filtered cathodic vacuum arc technique", Appl. Phys. Lett.,2006,88:191112.
    [41]A. P. Abiyasa, S. F. Yu, C. Yuen, and S. P. Lau, "Influence of Surface Roughness on the Lasing Performance of Highly Disordered ZnO Films", IEEE Photon. Technol. Lett.,2006, 18:2380-2382.
    [42]A. P. Abiyasa, S. F. Yu, S. P. Lau, Eunice S. P. Leong, and H. Y. Yang, "Enhancement of ultraviolet lasing from Ag-coated highly disordered ZnO films by surface-plasmon resonance", Appl. Phys. Lett.,2007,90:231106.
    [43]S. H. Tsang, S. F. Yu, S. P. Lau, H. Y. Yang, and X. F. Li, " Suppression of Random Lasing Modes in Polycrystalline ZnO Thin-Film by Using Distributed Bragg Reflector", IEEE Photon. Technol. Lett,2009,21:549-551.
    [44]P. H. Dupont, C. Couteau, D. J. Rogers, F. Hosseini Teherani, and G. Lerondel, "Waveguiding-assisted random lasing in epitaxial ZnO thin film", Appl. Phys. Lett.,2010, 97:261109.
    [45]Y. G. Wang, C. Yuen, S. P. Lau, S. F. Yu, and B. K. Tay, "Ultraviolet lasing of ZnO whiskers prepared by catalyst-free thermal evaporation", Chem. Phys. Lett,2003,377: 329-332.
    [46]S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G.-C. Yi, "Random laser action in ZnO nanorod arrays embedded in ZnO epilayers", Appl. Phys. Lett.,2004,84:3241-3243.
    [47]H.-C. Hsu, C.-Y. Wu, and W.-F. Hsieh, "Stimulated emission and lasing of random-growth oriented ZnO nanowires", J. Appl. Phys.,2005,97:064315.
    [48]S. P. Lau, H. Y. Yang, S. F. Yu, H. D. Li, M. Tanemura, T. Okita, H. Hatano, and H. H. Hng, "Laser action in ZnO nanoneedles selectively grown on silicon and plastic substrates", Appl. Phys. Lett.,2005,87:013104.
    [49]E. V. Chelnokov, N. Bityurin,I. Ozerov, and W. Marine, "Two-photon pumped random laser in nanocrystalline ZnO", Appl. Phys. Lett.,2006,89:171119.
    [50]H. Y. Yang, S. P. Lau, S. F. Yu, A. P. Abiyasa, M. Tanemura, T. Okita, and H. Hatano, "High-temperature random lasing in ZnO nanoneedles", Appl. Phys. Lett.,2006,89: 011103.
    [51]M. Tanemura, H. Hatano, M. Kudo, N. lde, Y. Fujimoto. L. Miao, H. Y. Yang, S. P. Lau, S. F. Yu, J. Kato, "Low-temperature fabrication and random laser action of doped zinc oxide nanoneedles", Surf. Sci.,2007,601:4459-4464.
    [52]C. W. Cheng, B. Liu, H. Y. Yang, W. W. Zhou, L. Sun, R. Chen, S. F. Yu, J. X. Zhang, H. Gong, H. D. Sun, and H. J. Fan, "Hierarchical Assembly of ZnO nanostructures on SnO2 backbone nanowires:low-temperature hydrothermal preparation and optical properties", ACS Nano.,2009,3:3069-3076.
    [53]H. Y. Yang, S. F. Yu, H. K. Liang, C. Pang, B. Yan, and T. Yu, "High-temperature lasing characteristics of randomly assembled ZnO nanowires with a ridge waveguide",J. Appl. Phys.,2009,106:043102.
    [54]H. Y. Yang, S. F. Yu, G. P. Li, and T. Wu, "Random lasing action of randomly assembled ZnO Nanowires with MgO coating", Opt. Express,2010,18:13647-13654.
    [55]T. Nakamura, B. P. Tiwari, and S. Adachi, "Control of random lasing in ZnO/Al2O3 nanopowders", Appl. Phys. Lett.,2011,99:231105.
    [56]E. S. P. Leong, S. F. Yu, and S. P. Lau, "Directional edge-emitting UV random laser diodes", Appl. Phys. Lett.,2006,89:221109.
    [57]Y. R. Ryu, J. A. Lubguban, T. S. Lee, H. W. White, T. S. Jeong, C. J. Youn, and B.J. Kim, "Excitonic ultraviolet lasing in ZnO-based light emitting devices", Appl. Phys. Lett.,2007, 90:131115.
    [58]X. Y. Ma, P. L. Chen, D. S. Li, Y. Y. Zhang, and D. R. Yang, "Electrically pumped ZnO film ultraviolet random lasers on silicon substrate",Appl. Phys. Lett.,2007,91:251109.
    [59]S. Chu, M. Olmedo. Z. Yang, J. Y. Kong, and J. L. Liu, "Electrically pumped ultraviolet ZnO diode lasers on Si", Appl. Phys. Lett.,2008,93:181106.
    [60]P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, "Electrically pumped ultraviolet random lasing from ZnO-based metal-insulator-semiconductor devices: dependence on carrier transport ", Opt. Express,2009,17:4712-4717.
    [61]H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, Z. Z. Zhang, D. X. Zhao, D. Z. Shen, X.W. Fan, Y. M. Lu, and Z. K. Tang, "Ultralow-Threshold Laser Realized in Zinc Oxide", Adv. Mater.,2009,21:1613-1617.
    [62]X. Y. Ma, P. L. Chen, J. W. Pan, D. S. Li, H. Zhang, Y. Yang, and D. R. Yang, " Room temperature electrically pumped ultraviolet random lasing from ZnO nanorod arrays on Si ", Opt. Express,2009,17:14426-14433.
    [63]J. Y. Zhang, Q. F. Zhang, T. S. Deng, and J. L. Wua, "Electrically driven ultraviolet lasing behavior from phosphorus-doped p-ZnO nanonail array/n-Si heterojunction". Appl. Phys. Lett.,2009,95:211107.
    [64]H. Zhu, C. X. Shan, J. Y. Zhang, Z. Z. Zhang, B. H. Li, D. X. Zhao, B. Yao, D. Z. Shen, X.W. Fan, Y. M. Lu, Z. K. Tang, and K. L. Choy, "Low-Threshold Electrically Pumped Random Lasers", Adv. Mater.,2010,22:1-5.
    [65]H. K. Liang, S. F. Yu, and H. Y. Yang, "Directional and controllable edge-emitting ZnO ultraviolet random laser diodes", Appl. Phys. Lett.,2010,96:101116.
    [66]H. K. Liang, S. F. Yu, and H. Y. Yang, "ZnO random laser diode arrays for stable single-mode operation at high power.", Appl. Phys. Lett.,2010,97:241107.
    [67]K. Kim, T. Moon, J. Y. Kim, and S. S. Kim, "Electrically driven lasing in light-emitting devices composed of n-ZnO and p-Si nanowires", Nanotechnology,2011,22:245203.
    [68]C. Y. Liu, H. Y. Xu, J. G. Ma, X. H. Li, X. T. Zhang, Y. C. Liu, and R. Mu, "Electrically pumped near-ultraviolet lasing from ZnO/MgO core/shell nanowires", Appl. Phys. Lett., 2011,99:063115.
    [69]H. Long, G. J. Fang, S. Z. Li, X. M. Mo, H. N. Wang, H. H. Huang, Q. K. Jiang, J. B. Wang, and X. Z. Zhao, "A ZnO/ZnMgO multiple-quantum-well ultraviolet random laser diode", IEEE Electron Device Lett,2011,32:54-56.
    [70]Y. P. Li, X. Y. Ma, M. S. Xu, L. L. Xiang, and D. R. Yang, "Remarkable decrease in threshold for electrically pumped random ultraviolet lasing from ZnO film by incorporation of Zn2TiO4 nanoparticles ", Opt. Express,2011,19:8662-8667.
    [71]H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, D. Z. Shen, and K. L. Choy, "Low-threshold electrically pumped ultraviolet laser diode", J. Mater. Chem.,2011,21:2848-2851.
    [72]T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, "Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films", Appl. Phys. Lett.,2001,78:1237-1239.
    [73]T. Gruber, C. Kirchner, R. Kling, F. Reuss, A. Waag, F. Bertram, D. Forster, J. Christen, and M. Schreck, "Optical and structural analysis of ZnCdO layers grown by metalorganic vapor-phase epitaxy", Appl. Phys. Lett.,2003,83:3290-3292.
    [74]J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki, and J. Temmyo, "Zn1-xCdxO systems with visible band gays", Appl. Phys. Lett.,2006,89:091914.
    [75]X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard, S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, and A. Dabiran, "Band gap properties of Zn1-xCdxO alloys grown by molecular-beam epitaxy",Appl. Phys. Lett.,2006,89:151909.
    [76]A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda, and Y. Segawa, "MgxZn1-xO as a Ⅱ-Ⅵ widegap semiconductor alloy", Appl. Phys. Lett.,1998,72:2466-2468.
    [77]A. Ohtomo, R. Shiroki, I. Ohkubo, H. Koinuma, and M. Kawasaki, "Thermal stability of supersaturated MgxZn1-xO alloy films and MgxZn1-xO/ZnO heterointerfaces ", Appl. Phys. Lett.,1999,75:4088-4090.
    [78]T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, and Y. Hamakawa, "Preparation of Zn1-xMgxO films by radio frequency magnetron sputtering", Thin Solid Films,2000,372: 173-176.
    [79]N. B. Chen, and C. H. Sui, "Recent progress in research on MgxZn1-xO alloys", Mat. Sci. Eng. B,2006,126:16-21.
    [80]A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Kolbas, and O. W. Holland, "Optical and structural properties of epitaxial MgxZn1-xO alloys", Appl. Phvs. Zett.,1999,75:3327-3329.
    [81]S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan, and H. Shen, "Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films", Appl. Phys. Lett.,2002,80:1529-1531.
    [82]P. Bhattacharya, R. R. Das, and R. S. Katiyar, "Fabrication of stable wide-band-gap ZnO/MgO multilayer thin films", Appl. Phys. Lett.,2003,83:2010-2012.
    [83]J. W. Kim, H. S. Kang, J. H. Kim, S. Y. Lee, J.-K. Lee, and M. Nastasi, "Variation of structural, electrical, and optical properties of Zn1-xMgxO thin films",J.Appl. Phys.,2006, 100:033701.
    [84]Y. Xue, H. P. He, Y. Z. Jin, and Z. Z. Ye, "Effects of rapid thermal annealing on the structural and electrical properties of Na-doped ZnMgO films", Appl. Surf. Sci.,2011,257: 5927-5930.
    [85]T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M Kawasaki, A. Ohtomo, and H. Koinuma, "Effect of MgZnO-layer capping on optical properties of ZnO epitaxial layers", Appl. Phys. Lett.,2002,81:2172-2174.
    [86]H. Matsui, H. Tabata, N. Hasuike, and H. Harima, "Critical thickness and lattice relaxation of Mg-rich strained Mgo.37Zno.63O (0001) layers towards multi-quantum-wells", J. Appl. Phys.,2006,99:024902.
    [87]T. A. Wassner, B. Laumer, S. Maier, A. Laufer, B. K. Meyer, M. Stutzmann, and M. Eickhoff, "Optical properties and structural characteristics of ZnMgO grown by plasma assisted molecular beam epitaxy", J. Appl. Phys.,2009,105:023505.
    [88]S. Blumstengel, S. Sadofev, H. Kirmse, and F. Henneberger, "Extreme low-temperature molecular beam epitaxy of ZnO-based quantum structures", Appl. Phys. Lett.,2011,98: 031907.
    [89]S. Muthukumar, J. Zhong, Y. Chen, Y. Lu, and T. Siegrist, "Growth and structural analysis of metalorganic chemical vapor deposited (11-2-0) MgxZn1-xO (0    [90]C. Y. Liu, Y. C. Liu, B. P. Zhang, and R. Mu, "Photoluminescence of MgxZn1-xO films grown on a sapphire substrate by a MOCVD technique", Phys. Stat. Sol. C,2006,3: 3508-3511.
    [91]L. K. Wang, Z. G. Ju, C. X. Shan. J. Zheng, B. H. Li, Z. Z. Zhang, B. Yao, D. X. Zhao, D. Z. Shen, and J. Y. Zhang, "Epitaxial growth of high quality cubic MgZnO films on MgO substrate", J. Cryst. Growth.,2010,312:875-877.
    [92]A. L. Yang, H. P. Song, D. C. Liang, H. Y. Wei, X. L. Liu, P. Jin. X. B. Qin, S. Y. Yang, Q. S. Zhu, and Z. G. Wang, "Photoluminescence spectroscopy and positron annihilation spectroscopy probe of alloying and annealing effects in nonpolar m-plane ZnMgO thin films",Appl. Phys. Lett.,2010,96:151904.
    [93]W. I. Park, G.-C. Yi, and H. M. Jang, "Metalorganic vapor-phase epitaxial growth and photoluminescent properties of Zn1-xMgxO(0    [94]Th. Gruber, C. Kirchner, R. Kling, F. Reuss, and A. Waag, "ZnMgO epilayers and ZnO-ZnMgO quantum wells for optoelectronic applications in the blue and UV spectral region", Appl. Phys. Lett.,2004,84:5359-5361.
    [95]K. Liu, J. M. Pierce, Y. S. Ali, A. Krahnert, and B. T. Adekore, "Photoluminescence studies of (Mg, Zn)O epilayers via metalorganic vapor phase epitaxy on m-plane ZnO substrates", J. Appl. Phys.,2011,109:083524.
    [96]T. Minemoto, T. Negami, S. Nishiwaki, H. Takakura, and Y. Hamakawa, "Preparation of Zni.xMgxO films by radio frequency magnetron sputtering", Thin Solid Films,2000,372: 173-176.
    [97]G.-J. Fang, D. Li, and X. Zhao, "Fabrication and characterization of ZnxMg1-xO thin films by dc magnetron sputtering with a composite target of AZO and Mg", Phys. Stat. Sol. A, 2003,200:361-368.
    [98]X. J. Zhang, H. L. Ma, and Q. P. Wang, "Structure Properties of MgZnO Films Deposited at Low Temperature", Chin. Phys. Lett.,2005.22:995-997.
    [99]Dhananjay, and S. B. Krupanidhi, "Dielectric properties of c-axis oriented ZnMgO thin films grown by multimagnetron sputtering", Appl. Phys. Lett.,2006,89:082905.
    [100]I. S. Kim, and B. T. Li, "Structural and optical properties of single-crystal ZnMgO thin films grown on sapphire and ZnO substrates by RF magnetron sputtering", J. Cryst. Growth.,2009,311:3618-3621.
    [101]S. Han, D. Z. Shen, J. Y. Zhang, Y. M. Zhao, D. Y. Jiang, Z. G. Ju, D. X. Zhao, and B.Yao, "Annealing effect on crystallization behavior of cubic MgZnO films on A-plane and M-plane sapphire". Vacuum,2010,84:1149-1153.
    [102]D. Zhao, Y. Liu, D. Shen, Y. Lu, J. Zhang, and X. Fan, "Photoluminescence properties of MgxZn1-xO alloy thin films fabricated by the sol-gel deposition method",J. Appl. Phys., 2001,90:5561-5563.
    [103]T. Murakawa, T. Fukudome, T. Hayashi, H. Isshiki, and T. Kimura, "Structural and optical properties of MgxZn1-xO thin films formed by sol-gel method", Phys. Slat. Sol. C,2004,1: 2564-2568.
    [104]陈培良.硅基ZnO (MgZnO)薄膜及发光器件[博士学位论文],杭州:浙江大学材料系.2008.
    [105]R. Ghosh, and D. Basak, "Composition dependence of electrical and optical properties in sol-gel MgxZn1-xO thin films", J. Appl. Phys.,2007,101:023507.
    [106]J. Li, J. H. Huang, W. J. Song, R. Qin, and X. M. Li, "Optical and electrical properties of MgxZnl2xO thin films by sol-gel method", J. Mater. Sci:Mater Electron,2010,21: 529-533.
    [107]W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, "Compositionally-tuned epitaxial cubic MgxZn1-xO on Si(100) for deep ultraviolet photodetectors", Appl. Phys. Lett.,2003,82:3424-3426.
    [108]H.-C. Hsu, C.-Y. Wu, H.-M. Cheng, and W.-F. Hsieh, "Band gap engineering and stimulated emission of ZnMgO nanowires", Appl. Phys. Lett.,2006,89:013101.
    [109]H. Y. Yang, S. P. Lau, S. F. Yu, M. Tanemura, T. Okita, H. Hatano,K. S. Teng and S. P. Wilks, "Wavelength-tunable and high-temperature lasing in ZnMgO nanoneedles", Appl. Phys. Lett.,2006,89:081107.
    [110]H. Y. Yang, S. F. Yu, and S. P. Lau, "Wide tunable ultraviolet random lasing action from ZnMgO thin films", J. Cryst. Growth.,2009,312:16-20.
    [111]H. Zhu, C. X. Shan, B. H. Li, Z. Z. Zhang, D. Z. Shen, and K. L. Choy, "Low-threshold electrically pumped ultraviolet laser diode", J. Mater. Chem.,2011,21:2848-2851.
    [112]T. Makino, C. H. Chia, Nguen T. Tuan, Y. Segawa, M. Kawasaki, A. Ohtomo, K. Tamura, and H. Koinuma, "Radiative and nonradiative recombination processes in lattice-matched CdZnO/MgZnO multiquantum wells", Appl. Phys. Lett.,2000,77:1632-1634.
    [113]S. Nakamura, T. Mukai, and M. Senoh, "Candela-class high-brightness inGaN/AlGaN double-heterostructure blue-light-emitting diodes", Appl. Phys. Lett., 1994,64:1687-1689.
    [114]M. R. McCartney, F. A. Ponce, Juan Cai, and D. P. Bour, "Mapping electrostatic potential across an AlGaN/InGaN/AlGaN diode by electron holography", Appl. Phys. Lett.,2000, 76:3055-3058.
    [115]R. H. Horng, W. K. Wang, and S. C. Huang, "Growth and characterization of 380-nm InGaN/AlGaN LEDs grown on patterned sapphire substrates", J. Cryst. Growth.,2007, 298:219-222.
    [116]J. A. Van Vechten and T. K. Bergstresser, "Electronic structures of semiconductor alloys", Phys. Rev. B.,1970,1:3351-3355.
    [117]A. V. Thompson, C. Boutwell, J. W. Mares, W. V. Schoenfeld, A. Osinsky, B. Hertog, J. Q. Xie, S. J. Pearton, and D. P. Norton, "Thermal stability of CdZnO/ZnO multi-quantum-wells", Appl. Phys. Lett.,2007,91:201921.
    [118]H. S. Kang, J. W. Kim, S. Y. Lee, Y. Li. J. K. Lee, M. A. Chow, and Q. X. Jia, "Optical property and Stokes' shift of ZnCdO films depending on Cd content", J. Appl. Phys.,2006, 99:066113.
    [119]J.-J Chen, F. Ren, Yuanjie Li, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong. P. P. Chow, and J. F. Weaver, "Measurement of Zn0.05Cd0.05O/ZnO (0001) heterojunction band offsets by x-ray photoelectron spectroscopy", Appl. Phys. Lett.,2005,87:192106.
    [120]J. W. Mares, M. Falanga, A. V. Thompson, A. Osinsky, J. Q. Xie, B. Hertog, A. Dabiran, P. P. Chow, S. Karpov, and W. V. Schoenfeld, "Hybrid CdZnO/GaN quantum-well light emitting diodes", J. Appl. Phys.,2008,104:093107.
    [121]Z. Yang, L. Li, and J. L. Liu, "Temperature-dependent photoluminescence of CdZnO thin films grown by molecular-beam epitaxy",J. Cryst. Growth.,2009,312:68-72.
    [122]L. Li, Z. Yang, Z. Zuo, J. H. Lim, and J. L. Liu, "Thermal stability of CdZnO thin films grown by molecular-beam epitaxy", Appl. Surf, Sci.,2009,256:4734-4737.
    [123]L. M. Kukreja, S. Barik, and P. Misra, "Variable band gap ZnO nanostructures grown by pulsed laser deposition", J. Cryst. Growth.,2004,268:531-535.
    [124]A. Schleife, M. Eisenacher, C. Rodl, F. Fuchs, J. Furthmuller, and F. Bechstedt, "Ab initio description of heterostructural alloys:Thermodynamic and structural properties of MgZnO and CdZnO", Phys. Rev. B,2010,81:245210.
    [125]W. F. Yang, B. Liu, R. Chen, L. M. Wong, S. J. Wang, and H. D. Sun, "Epilayers and ZnCdO/ZnO single quantum well on sapphire substrate", Appl. Phys. Lett.,2010,97: 061911.
    [126]H. Matsui, W. Nomura, T. Yatsui, and H. Tabata, "Optical dynamics of energy-transfer from a CdZnO quantum well to a proximal Ag nanostructure". Opt. Lett.,2011,36: 3735-3737.
    [127]J. Ishihara, A. Nakamura, S. Shigemori, T. Aoki and J. Temmyo, "ZnCdO systems with visible band gaps", Appl. Phys. Lett.,2006,89:091914.
    [128]C. X. Shan,Z. Liu,Z. Z. Zhang, D. Z. Shen, and S. K. Hark, "A Simple Route to Porous ZnO and ZnCdO Nanowires", J. Phys. Chem. B,2006,110:1176-1179.
    [129]K. Yamamoto, M. Adachi, T. Tawara, and J. Temmyo, "Synthesis and characterization of ZnCdO/ZnO multiple quantum wells by remote-plasma-enhanced MOCVD", J. Cryst. Growth.,2010,312:1496-1499.
    [130]K. Yamamoto, A. Nakamura, and A. Hierro, "Green Electroluminescence From ZnCdO Multiple Quantum-Well Light-Emitting Diodes Grown by Remote-Plasma-Enhanced Metal-Organic Chemical Vapor Deposition", IEEE Pho. Tech. Lett.,2011,23:1052-1054.
    [131]T. C. Zhang and A. Yu. Kuznetsov, "Surface/strain energy balance controlling preferred orientation in CdZnO films", J. Appl. Phys.,2011,110:053512.
    [132]D. W. Ma, Z. Z. Ye, J. Y. Huang, L. P. Zhu, B. H. Zhao, and J. H. He, "Effect of post-annealing treatments on the properties of ZnCdO films on glass substrates", Mater. Sci.Eng.,B.,2004,111:9-13.
    [133]S. Llican, Y. Caglar, M. Caglar, M. Kundakci, and A. Ates, "Photovoltaic solar cell properties of CdZnO films prepared by sol-gel method", Int. J. Hydrogen Energy.,2009, 34:5201-5207.
    [134]Y. Caglar, M. Caglar, S. Ilican, and A. Ates, "Morphological, optical and electrical properties of CdZnO films prepared by sol-gel method", J. Phys. D:Appl. Phys.,2009,42: 065421.
    [135]A. A. Ziabari, and F. E. Ghodsi, "Optoelectronic studies of sol-gel derived nanostructured CdO-ZnO composite films", J. Alloys Compd,2011,509:8748-8755.
    [136]A. A. Ziabari, and F. E. Ghodsi, "Synthesis and characterization of nanocrystalline CdZnO thin films prepared by sol-gel dip-coating process", Thin Solid Films.,2011,520: 1228-1232.
    [137]D. W. Ma, Z. Z. Ye, H. M. Lu, J. Y. Huang, L. P. Zhu, B. H. Zhao, and P. M. He, "Sputtering deposited ternary Zn1-χCdχO crystal films on Si(111) substrates", Thin Solid Films.,2004,461:250-255.
    [138]C. W. Sun, P. Xin, C. Y. Ma, Z. W. Liu, Q. Y. Zhang, Y. Q. Wang, Z. J. Yin, S. Huang, and T. Chen, "Optical and electrical properties of Zn1χACdχO films grown on Si substrates by reactive radio-frequency magnetron sputtering", Appl. Phys. Lett.,2006,89:181923.
    [139]R. J. Zhang, P. L. Chen, Y. Y. Zhang, X. Y. Ma, and D. R. Yang, "Effect of rapid thermal annealing on photoluminescence and crystal structures of CdZnO films", J. Cryst. Growth., 2010,312:1908-1911.
    [140]I. Shtepliuk, G. Lashkarev, V. Khomyak, O. Lytvyn, P. Marianchuk, I. Timofeeva. A. levtushenko, V. Lazorenko, "Features of the influence of the deposition power and Ar/O2 gas ratio on the microstructure and optical properties of the Zn0.9Cd0.1O films", Thin Solid Films.,2011, doi:10.1016/j.tsf.2011.10.181.
    [141]X. Y. Ma, P. L. Chen, R. J. Zhang, and D. R. Yang, "Optical properties of sputtered hexagonal CdZnO films with band gap energies from 1.8 to 3.3 eV", J. Alloys Compd., 2011,509:6599-6602.
    [142]X. J. Wang, I. A. Buyanova, W. M. Chen, M. Izadifard. S. Rawal, D. P. Norton, S. J. Pearton, A. Osinsky, J. W. Dong, and A. Dabiran, "Band gap properties of Zn1-xCdxO alloys grown by molecular-beam epitaxy", Appl. Phys. Lett.,2006,89:151909.
    [143]K. Yamamoto, T. Ohashi, T. Tawara, H. Gotoh, A. Nakamura, and J. Temmyo. "Photoluminescence lifetime and potential fluctuation in wurtzite Zn1χCdχO alloy films", Appl. Phys. Lett.,2008,93:171913.
    [144]A. Mohanta, and R. K. Thareja, "Photoluminescence study of ZnCdO alloy", J. Appl. Phys.,2008,103:024901.
    [145]J. W. Mares, F. R. Ruhge, A. V. Thompson, P. G. Kik, A. Osinsky, B. Hertog, A. M. Dabiran, P. P. Chow, and W. V. Schoenfeld, "Optical and morphological properties of MBE grown wurtzite CdxZn1-xO thin films", Opt. Mater.,2007,30:346-350.
    [146]S. Sadofev, S. Kalusniak, J. Puls, P. Schafer, S. Blumstengel, and F. Henneberger, "Visible-wavelength laser action of ZnCdO/(Zn,Mg)O multiple quantum well structures", Appl. Phys. Lett.,2007,91:231103.
    [147]T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, "Band gap engineering based on MgxZn1-xO and CdyZn1-yO ternary alloy films", Appl. Phys. Lett.,2001,78:1237-1239.
    [148]S. Sadofev, S. Kalusniak, J. Puls, P. Schafer, S. Blumstengel, and F. Henneberger, "Visible-wavelength laser action of ZnCdO/(Zn,Mg)O multiple quantum well structures", Appl. Phys. Lett.,2007,91:231103.
    [149]S. Kalusniak, S. Sadofev, J. Puls, and F. Henneberger, "ZnCdO/ZnO-a new heterosystem for green-wavelength semiconductor lasing". Laser & Photon. Rev.,2009,3:233-245.
    [150]L. K. Wang, Z. G. Ju, J. Y. Zhang, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li, and C. X. Shan, "Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices", Appl. Phys. Lett.,2009,95:131113.
    [151]L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, B. H. Li. B. Yao, Z. Z. Zhang, D. Z. Shen, and D. X. Zhao, "Epitaxial growth of high quality cubic MgZnO films on MgO substrate",J. Cryst. Growth.,2010,312:875-877.
    [152]J. Zeng, S. Wang, P. Tao, J. C. Xu, "Luminescence properties of nanostructure MgZnO prepared by thermal oxidation", J. Alloys Comp.,2009,476:60-63.
    [153]Y. Ogawa and S. Fujihara, "Blue Luminescence of MgZnO and CdZnO Films Deposited at Low Temperatures", J. Electrochem. Soc.,2007,154:J283-J288.
    [154]H.-T. Wang, B. S. Kang, J.-J. Chen, T. Anderson, S. Jang, F. Ren, H. S. Kim, Y. J. Li, D. P. Norton, and S. J. Pearton, "Band-edge electroluminescence from N+-implanted bulk ZnO", Appl. Phys. Lett.,2006,88:102107.
    [155]G. D. Mahan, L. M. Levinson, and H. R. Philipp, "Theory of conduction in ZnO varistors", J. Appl. Phys.,1979,50:2799-2812.
    [156]G. E. Pike, S. R. Kurtz, P. L. Gourley, H. R. Philipp, and L. M. Levinson, "Electroluminescence in ZnO varistors:Evidence for hole contributions to the breakdown mechanism", J. Appl. Phys.,1985,57:5512-5518.
    [157]S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers", Phys. Rev. Lett.,2004,93:053903.
    [158]R. C. Kistler, F. Widmer, and P. H. Brunner, "Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge", Environ. Sci. Technol., 1987,21:704-711.
    [159]J. H. Yu, J. H. Kim, D. S. Park, T. S. Jeong, C. J. Youn, and K. J. Hong, "Effect of rapid thermal annealing on Zn1-xCdxO layers grown by radio-frequency magnetron co-sputtering", Cryst. Res. Technol.,2010,45:1050-1056.
    [160]A. Nakamura, T. Ohashi, K. Yamamoto, J. Ishihara, T. Aoki, and J. Temmyo, "Full-color electroluminescence from ZnO-based heterojunction diodes", Appl. Phys. Lett.,2007,90: 093512.
    [161]J. W. Mares, M. Falanga, A. V. Thompson, A. Osinsky, J. Q. Xie, B. Hertog, A. Dabiran, P. P. Chow, S. Karpov, and W. V. Schoenfeld, "Hybrid CdZnO/GaN quantum-well light emitting diodes", J. Appl. Phys.,2008,104:093107.
    [162]L. Li, Z. Yang, J. Y. Kong, and J. L. Liu, "Blue electroluminescence from ZnO based heterojunction diodes with CdZnO active layers", Appl. Phys. Lett.,2009,95:232117.
    [163]L. Li, Z. Yang, and J. L. Liu, "Cyan electroluminescence from n-ZnO/i-CdZnO/p-Si heterojunction diodes", Mater. Res. Soc. Symp. Proc.,2010,1201:H01-H09.
    [164]P. L. Chen, X. Y. Ma, D. S. Li, Y. Y. Zhang, and D. R. Yang, "Electric-field-induced random lasing from ZnO and Mg0.1Zn0.9O films optically pumped with an extremely low intensity", Opt. Express,2009,17:18513-18517.
    [165]A. Schenk, and G. Heiser, "Modeling and simulation of tunneling through ultra-thin gate dielectrics", J. Appl. Phys.,1997,81:7900-7908.
    [166]L. Li, Z. Yang, Z. Zuo, J. Y. Kong, and J. L. Liu, "Study of rapid thermal annealing effect on CdZnO thin films grown on Si substrate", J. Vac. Sci. Technol. B.,2010,28:C3D13-C3D16.
    [167]J. H. Yu, J. H. Kim, T. S. Jeong, M. Shaheer Akhtar, C. J. Youn, and K. J. Hong, "Study on the Structural and Optical Properties of CdZnO Layers Enhanced by Rapid Thermal Annealing", Electron. Mater. Lett.,2011,7:215-220.
    [168]W. Zaleszczyk, K. Fronc, M. Aleszkiewicz, W. Paszkowicz, S. Kret, M. Klepka, AL. KAlopotowski, G. Karczewski and T. Wojtowicz, "Photoluminescence properties of ZnO and ZnCdO Nanowires", Acta Phys. Pol, A,2007,112:357-362.
    [169]Z. Yang, L. Li, Z. Zuo, J.L. Liu, "Temperature-dependent photoluminescence of CdZnO thin films grown by molecular-beam epitaxy", J. Cryst. Growth.,2009,312:68-72.
    [170]Y. F. Yan, M. M. Al-Jassim, and S.-H. Wei, "Oxygen-vacancy mediated adsorption and reactions of molecular oxygen on the ZnO (1010) surface", Phys. Rev. B,2005,72: 161307.
    [171]C. M. Jin, A. Tiwari and R. J. Narayan, "Ultraviolet-illumination-enhanced photoluminescence effect in zinc oxide thin films", J. Appl. Phys.,2005,98:083707.
    [172]Y. H. Lin, D. J. Wang, Q. D. Zhao, Z. H. Li, Y. D. Ma and M. Yang, "Influence of adsorbed oxygen on the surface photovoltage and photoluminescence of ZnO nanorods", Nanotechnology,2006,17:2110-2115.
    [173]W. Y. Sua, J. S. Huang and C. F. Lina, "Improving the property of ZnO nanorods using hydrogen peroxide solution', J. Crystal Growth,2008,310:2806-2809.
    [174]Frank J. P. Schuurmans, M. Megens, D. Vanmaekelbergh, and A. Lagendijk, "Light scattering near the localization transition in macroporous GaP networks", Phys. Rev. Lett. 1999,83:2183.
    [175]T. Suhara, in Semiconductor Laser Fundamentals (Marcel Dekker, Inc., New York,2004), equation (3.16) in Chapter 3.
    [176]V. M. Apalkov, M. E. Raikh, and B. Shapiro, "Random resonators and prelocalized modes in disordered dielectric films", Phys. Rev. Lett.2002,89:016802.
    [177]D. J. DiMaria, E. Cat-tier, and D. Arnolda, "Impact ionization, trap creation, degradation, and breakdown in silicon dioxide films on silicon", J. Appl. Phys.,1993,73:3367-3384.
    [178]F. Masatoshi, M. Wataru, K. Atsushi, M. Seiichi, and H. Masataka, "Analysis of tunnel current through ultrathin gate oxides", Jpn. J. Appl. Phys.,1998,37:L1534-L1536.
    [179]J. Robertson, "Band offsets of wide-band-gap oxides and implications for future electronic devices", J. Vac. Sci. Technol. B,2000,18:1785-1791.
    [180]G. Coli, and K. K. Bajaj, "Excitonic transitions in ZnO/MgZnO quantum well heterostructures", Appl. Phys. Lett.,2001,78:2861-2863.
    [181]Y. I. Alivov, E. V. Kalinina, B. M. Ataev, A. K. Omaev, and D. M. Bagnall, "Fabrication and characterization of n-ZnO/p-AIGaN heterojunction light-emitting diodes on 6H-SiC substrates", Appl. Phys. Lett.,2003.83:4719-4721.
    [182]S. C. Su, Y. M. Lu, Z. Z. Zhang, C. X. Shan, B. H. Li, D. Z. Shen, B. Yao, J. Y. Zhang, D. X. Zhao, and X. W. Fan, "Valence band offset of ZnO/Zn0.85Mg0.15O heteroj unction measured by x-ray photoelectron spectroscopy", Appl. Phys. Lett.,2008,93:082108.
    [183]G. D. Wilk, R. M. Wallace, and J. M. Anthony, "High-kappa gate dielectrics:Current status and materials properties considerations",J. Appl. Phys.,2001,89:5243-5247.
    [184]Y. Y. Zhang, X. Y. Ma, P. L. Chen, D. S. Li, and D. R. Yang, "Electroluminescence from TiO2/p+-Si heterostructure", Appl. Phys. Lett.,2009,94:061115.
    [185]Y. Hishinuma, T. H. Geballe, B. Y. Moyzhes, and T. W. Kenny, "Refrigeration by combined tunneling and thermionic emission in vacuum:Use of nanometer scale design", Appl. Phys. Lett.,2001,78:2572-2574.
    [186]W. G. Morris, "Physical properties of the electrical barriers in varistors", Vac. Sci. Technol., 1976,13:926-932.
    [187]S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, "Amplified extended modes in random lasers", Phys. Rev. Lett.,2004,93:053903.
    [188]Y. G. Wang, S. P. Lau, X. H. Zhang, H. H. Hng, H. W. Lee, S. F. Yu, B. K. Tay, "Enhancement of near-band-edge photoluminescence from ZnO films by face-to-face annealing",J.Cryst. Growth.,2003,259:335-339.
    [189]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen, and T. Goto, "Optically pumped lasing of ZnO at room temperature", Appl. Phys. Lett.,1997,70: 2230-2232.
    [190]D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, M. Y. Shen, and T. Goto, "High temperature excitonic stimulated emission from ZnO epitaxial layers", Appl. Phys. Lett.,1998,73: 1038-1040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700